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Steric effects on ac electro-osmosis in dilute electrolytes
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The current theory of alternating-current electro-osmosis (ACEO) is unable to explain the experimentally
observed flow reversal of planar ACEO pumps at high frequency (above the peak, typically 10-100 kHz), low
salt concentration (1-1000 wM), and moderate voltage (2-6 V), even taking into account Faradaic surface
reactions, nonlinear double-layer capacitance, and bulk electrothermal flows. We attribute this failure to the
breakdown of the classical Poisson-Boltzmann model of the diffuse double layer, which assumes a dilute
solution of pointlike ions. In spite of low bulk salt concentration, the large voltage induced across the double
layer leads to crowding of the ions and a related decrease in surface capacitance. Using several mean-field
models for finite-sized ions, we show that steric effects generally lead to high-frequency flow reversal of
ACEO pumps, similar to experiments. For quantitative agreement, however, an unrealistically large effective

ion size (several nanometers) must be used, which we attribute to neglected correlation effects.
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I. INTRODUCTION

Electrokinetic phenomena, which couple fluid flow, ion
transport, and electric fields in electrolytes, are exploited in a
variety of microfluidic technologies [1]. A solid surface in
contact with an electrolyte typically acquires a surface
charge and forms an electric double layer composed of wall
charge and a screening layer of excess counterions. Electro-
osmosis results from the action of an applied electric field on
this double-layer charge, which sets the bulk fluid into mo-
tion. Although the double layer is typically very thin (nm)
compared to the channel dimensions (um), it is the source of
long-range flow patterns.

The classical continuum theory of electro-osmosis [2,3]
suffices to understand most direct-current (dc) electro-
osmotic flows, which are linear in the applied voltage. dc
electro-osmosis results from application of an external elec-
tric field parallel to the surface, which acts on equilibrium
double-layer charge and induces motion in the bulk, neutral
liquid. The linear response is due to the assumption that the
applied field does not perturb the preexisting surface charge.
When dc electro-osmosis is used in microfluidic environ-
ments, electrodes are placed at the ends of relatively long
(cm) channels, and therefore large voltages (kV) are typi-
cally needed to generate sufficient fields.

Electrokinetic phenomena can be exploited at much lower
voltages and with much greater precision by placing elec-
trodes close together inside the fluid channels and using al-
ternating current (ac) to inhibit Faradaic reactions. Large
electric fields (100 V/cm) needed to induce adequate flow
can thus be generated with only a few volts by microelec-
trodes. The most studied example is alternating-current
electro-osmosis (ACEO) [4], discovered by Ramos and co-
workers [5-8]. When a periodic array of interdigitated elec-
trodes is placed inside the channel, an ac signal applied to
the electrodes can generate a steady set of microvortices.
Ajdari showed that if geometrical asymmetry is introduced,

1539-3755/2008/77(3)/036317(11)

036317-1

PACS number(s): 47.57.jd, 47.65.—d, 82.45.Gj

then these vortices can be rectified to drive net pumping in
one direction over the array [9]. The original implementation
of this principle was a planar array of flat electrode pairs of
unequal widths and gaps [10-12], as shown in Fig. 1. Recent
designs for “three-dimensional ACEO” pumps have achieved
much faster flows (mm/s) using nonplanar electrodes, which
more efficiently rectify opposing slip velocities in a “fluid
conveyor belt” [13-15]. Waves of voltage can also pump
fluids over electrode arrays by traveling-wave electro-
osmosis (TWEO) [16,17].

These effects exemplify the fundamental nonlinear elec-
trokinetic phenomenon [20] of induced-charge electro-
osmosis (ICEO) [21-23], which also has other applications
in microfluidics. The key source of nonlinearity is that the
diffuse double-layer charge is induced near a polarizable sur-
face by the applied electric field, which then acts on it to
drive nonlinear electro-osmotic flow. Although ICEO flows
were first described in the 1980s in the context of colloid
science [24,25], they are finding new applications in micro-
fluidic devices. As in the case of ACEO pumps, broken spa-
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FIG. 1. One period of an asymmetric planar array of microelec-
trodes in an ac electro-osmotic (ACEO) pump. This geometry has
been studied experimentally by several groups [10,12,14,18] and is
the subject of the present theoretical study. The dimensions are
W1=42 pm, W2=25.7 um, G1=4.5 pum, and G2=15.6 um, us-
ing the notation of Ref. [19].
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tial symmetries in ICEO flows can also be used to pump
fluids around polarizable microstructures and to manipulate
polarizable particles [21,26-28].

The current theory of ICEO flow [22], including ACEO
[7,19] and TWEO [16,17] microfluidic pumps, is based on
the classical electrokinetic equations [2,3]. This century-old
model comprises the Poisson-Nernst-Planck (PNP) equations
of ion transport coupled to the Navier-Stokes equations of
viscous fluid flow via electrostatic Maxwell stresses. The
crucial modification is in the boundary conditions, relaxing
the assumption of fixed surface charge (or constant { poten-
tial) to allow for significant electrostatic polarizability of the
surface (e.g., fixed surface potential). The electrokinetic
equations themselves, however, have not been questioned,
until very recently [29], which provides the motivation for
this work.

ICEO flows typically involve large voltages induced
across the double layer, greatly exceeding the thermal equi-
librium voltage kT/e (=25 mV at room temperature). In par-
ticular, experimental ~ACEO  electroarray  pumps
[10,12,14,15,18], the subject of our study, usually apply sev-
eral volts to the double layer. Such large voltages of order
100kT/ e inevitably lead to the breakdown of the PNP equa-
tions by violating the fundamental assumption of an ideal
dilute solution [30,31]. The limitations of dilute solution
theory for double-layer structure are well known, and many
attempts have been made to incorporate effects such as steric
exclusion and electrostatic correlations. (See Ref. [30] for a
recent review.) ICEO flow, however, raises new issues due to
its more extreme, dynamical context [29]. Even if the bulk
solution is dilute, the surface becomes so highly charged by
the induced voltage that counterions become crowded in the
double layer, while simultaneously driving tangential fluid
flow.

The need for improved models is also indicated by some
unexplained features of ICEO experiments. In this paper, we
focus on the tendency for planar ACEO pumps to reverse at
high voltage [12,14,18,32,33], which naturally poses prob-
lems for microfluidic applications, if it cannot be reliably
predicted. The standard model of ACEO based on the clas-
sical electrokinetic equations predicts a single peak in the
flow rate versus frequency at the characteristic “RC” charg-
ing frequency of the electrodes, in both the linear [9] and
nonlinear [19,34] regimes. Flow reversal has been observed
at high voltage (>2 V) and high frequency (10-100 kHz) in
ACEO pumping of dilute KC1[12,18,32] and de-ionized wa-
ter [14] with 10-um-scale electrode arrays.

Representative examples of the observed and predicted
frequency response are shown in Fig. 2 for the pump geom-
etry of Fig. 1. Here we compare experimental data taken at
3.0 V=120kT/e in an 0.03 mM KCI solution over gold elec-
trodes [18] to simulations with two commonly used models:
one assumes the linear Debye-Hiickel (DH) model of the
double layer [5,7,9], while the other adopts a nonlinear
Poisson-Boltzmann (PB) model based on the Gouy-
Chapman solution [19]. Following prior work [8,9,23], a
constant Stern-layer capacitance is added in order to better fir
the experimental data by matching the peak frequency in the
DH model. Both models can reasonably fit the data in terms
of the peak in the forward pumping, though this becomes
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FIG. 2. (Color online) Pumping velocity vs frequency for the
planar ACEO pump in Fig. 1 from experiments and simulations.
Points: experimental data at 3 Vpp in 0.03 mM KCI from Ref. [18]
(taken by J. P. Urbanski). Solid curve: linear Debye-Hiickel-Stern
model of the diffuse layer with a constant compact layer capaci-
tance Cy=g/(J\p), where 6=0.5 is chosen to fit the experimental
peak frequency. Dashed curve: nonlinear Gouy-Chapman-Stern
(Poisson-Boltzmann) model of the diffuse layer also with §=0.5.

more difficult for PB at higher voltages [19]. Each model
predicts a single peak of forward flow, while the experiments
show the pump reversing above 10 kHz. The inability of
these classical models to capture, even qualitatively, this
high-frequency flow reversal motivates us to consider modi-
fied double-layer models.

The reversal of ACEO pumps has been considered in sev-
eral previous studies. Flow reversal was first attributed to
Faradaic reactions [32], and this view of “Faradaic charging”
persists in recent work on dc-biased ac electro-osmosis [35].
Simulations of ACEO pumps with Butler-Volmer reaction
kinetics, however, have failed to predict the observed flow,
especially at high frequency [19,34]. In existing models, a
weak flow reversal due to reactions can only be observed at
low frequency (far below the maximum) and for certain sets
of parameters [9,19,34]. This is consistent with the observa-
tion of gas bubbles from electrolysis at low frequency and
high voltage in dilute KCI with gold electrodes [12]. Re-
cently, higher-resolution measurements of the same pump
design with platinum electrodes have revealed very weak
(<10 um/s) reverse ACEO flow at low frequency
(<20 kHz) and low voltage (<1.5 V) and have demon-
strated the importance of Faradaic currents through in situ
impedance spectroscopy [36]. Although the theory predicts
similar flow reversal, it is not in quantitative agreement and
does not predict the concentration dependence.

In addition to Faradaic reactions, various other nonlinear
effects in dilute solution theory also dominate at low fre-
quencies: The differential capacitance of the diffuse layer [2]
diverges, which causes the RC charging time to grow expo-
nentially with voltage [19], and salt adsorption and tangential
conduction by the diffuse layer are coupled to (much slower)
bulk diffusion [37-39]. All of these effects have recently
been incorporated in simulations of ACEO at large voltages
using the classical electrokinetic equations, but high-
frequency flow reversal was not observed [19,34]. Another
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possible source of flow reversal is ac electrothermal flow
[40], which can lead to reverse pumping in experiments with
planar electrode arrays [35], but under different conditions of
much higher salt concentration (>1 M), voltage (>10 V),
and higher frequency (>100 kHz) than ACEO (<0.01 M,
<5 V, <100 kHz). To date, none of the above effects have
been able to explain the experimental data for ACEO pumps.

In this paper, we use a straightforward modification to the
classical electrokinetic equations to account for steric effects
of finite-sized ions. We apply these models to the ACEO
geometry and show that this single effect can lead to predic-
tions of a qualitatively different flow. In fact, we are able to
predict a frequency response of ACEO pumps that is very
similar to that observed in experiments, including high-
frequency flow reversal. Although our results do not provide
a complete quantitative theory, we will demonstrate that ac-
counting for steric effects can have an important impact on
the theory of ACEO.

II. STERIC EFFECTS IN A THIN DOUBLE LAYER

In the dilute-solution theory of electrolytes [2,3], the con-
centration of each ionic species in the diffuse part of the
electric double layer at a charged surface is in thermal equi-
librium with a Boltzmann distribution,

- ziep(x) )

T (1)

ci(x) = ¢ exp(
where k is Boltzmann’s constant, T the temperature, e the
electron charge, z; the valence, ¢, the concentration in the
neutral bulk electrolyte just outside the double layer, and ¢
the (mean) electrostatic potential relative to the bulk (x> \p,
where A, is the Debye-Hiickel screening length). In classical
linear electrokinetic phenomena, the diffuse-layer voltage
drop ¢(0) is set by chemical equilibrium at the surface and is
thus typically comparable to the thermal voltage kT/e. At an
electrode driving ACEO flow, however, much larger diffuse-
layer voltages ¢(0)>>kT/e are induced by an applied volt-
age of order 100k7T/e. Under these conditions, it is easy to
see that Boltzmann equilibrium (1) breaks down by predict-
ing diverging concentrations of counterions at the surface of
order ¢!%c,,.

The assumption of a dilute solution is thus incompatible
with a large applied voltage. If we assume ions have a char-
acteristic length scale a, then the corresponding cutoff con-
centration a~> for the breakdown of dilute-solution theory is
reached at relatively low voltage, even if the bulk salt solu-
tion is very dilute. For example, for C0=10_5 M, z=1, and
a=3 A (including a solvation shell), the cutoff concentration
is reached at 0.33 V. To account for the excess ions (at typi-
cal equilibrium voltages), Stern postulated a compact layer
of solvated ions of finite size on the surface [41], which
carries most of the double-layer voltage as the diffuse-layer
capacitance diverges. Such an intrinsic “surface capacitance”
is also invoked in models of ICEO flows, where it can also
include the effect of a thin dielectric coating on a metal sur-
face [9,37]. It seems unlikely, however, that an atomically
thin Stern or coating layer could withstand several volts, e.g.,
since dielectric breakdown occurs in most materials (includ-
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FIG. 3. (Color online) (a) Schematic of the equilibrium distri-
bution of counterions near a positively charged surface taking into
account a minimum ion spacing « for large applied voltages. As the
voltage increases, the width of the condensed layer will increase
causing a decrease the capacitance. (b) The voltage dependence of
the capacitance of the diffuse layer for PB and MPB at different
values of v; where v=2a%c, is the bulk volume fraction of ions.

ing water) in fields of order 10 MV/m=0.01 V/nm [42].
Instead, it seems the diffuse layer must carry a substantial
voltage ¢>>kT/e in ACEO experiments, which causes the
ions to become highly crowded near the surface.

A variety of “modified Poisson-Boltzmann equations”
(MPB) have been proposed to describe equilibrium ion pro-
files near a charged wall, as reviewed in Ref. [30]. To capture
ion-crowding effects across a wide range of voltages, we
employ the simplest possible MPB model [30,43-45], first
proposed by Bikerman [46], which is a continuum approxi-
mation of the entropy of ions on a lattice of size a. As shown
in Fig. 3(a), when a large voltage is applied, the counterion
concentration exhibits a smooth transition from an outer PB
profile to a condensed layer at c=c,,,,=a~> near the surface.

In ACEOQO, charging dynamics are very important, so the
double-layer capacitance is an important property. Dilute-
solution theory predicts that the differential capacitance Cp,
diverges with the voltage as

2)

zeV D)
2kT )’

€
Cp(Vp) = —bcosh<

Ap
where ¥, is the voltage applied across the double layer. For
a concentrated solution described by Bikerman’s model, we
predict the opposite trend [30]
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where v=2cya’ is the bulk volume fraction of ions [30].
(Note that the same formula was derived by Kornyshev [47]
in the context of ionic liquids around the same time that Kilic
et al. [30] derived it in the present context of electrolytes at
large voltages; it was perhaps first derived by Freise [48].)

As shown in Fig. 3(b), with this model the differential
capacitance reaches a maximum near the critical voltage and
then decreases at larger voltages because the capacitor width
grows due to steric effects. The same result also follows from
a simpler model using PB theory outside a condensed layer
of variable width at the maximum density [30]. We will show
that this general decrease in capacitance with voltage that
can drastically impact the charging dynamics in ACEO
flows.

This effect is in contrast to the classical PB-based Gouy-
Chapman-Stern model of the double layer, which assumes an
additional constant surface capacitance due to a compact
Stern layer of solvated ions of finite size on the surface [41].
With this model, the PB capacitance in Fig. 3(b) would sim-
ply plateau to a constant value at high voltage when the Stern
layer is carrying nearly all the double-layer voltage. In some
sense, our model extends the steric constraint embodied in
the concept of the “outer Helmholtz plane” of closest ap-
proach of hydrated ions, but it enforces a maximum filling of
this layer and propagates steric effects into the diffuse layer.
On the other hand, the simplest version of the model used
here ignores the possibility of different electrical and hydro-
dynamic properties for solvent molecules and adsorbed ions
at the “inner Helmholtz plane” on the surface. It is possible
to incorporate a surface layer with different electrostatic
properties (such as lower dielectric constant [41]) in our
model [30], but we stress that the Stern model alone is not
able to capture the dynamic formation of a condensed layer,
as hydrated ions become crowded by a large voltage. The
present model also accounts for steric effects more than one
atomic diameter from the surface, which are surely important
at large voltage and must inevitably accompany the break-
down of the PB model.

As Biesheuvel er al. point out [45,49], Bikerman’s
latticed-based approach can underestimate the true steric ef-
fect to a large degree and more accurate models of the en-
tropy of a hard-sphere liquid, such as the Carnahan-Starling
(CS) equation of state or various extensions to multicompo-
nent mixtures [50,51], can be used instead. The CS equation
is not tractable for a closed-form analytical expression for
double-layer capacitance, but we can easily obtain it numeri-
cally as a function of the voltage. For the details, see the
Appendix.

Although various mean-field models, such as CS, are very
accurate for equilibrium properties of the hard-sphere gas
and liquid at low to moderate volume fractions ® <0.55,
none can claim to accurately describe the packing limit at
large volume fractions, which would generally lead to the
decrease in double-layer capacitance at large voltage [30].
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For example, these models predict a diverging chemical po-
tential only at ®=1, and not at the mathematical packing
bound ($=0.74, corresponding to the face-centered cubic
lattice) or the more relevant bound of the jamming transition
(around ®=0.63 for hard spheres [52]). Even in simple
model systems in equilibrium, the jamming transition is
poorly understood [53-57], so none of these models can pos-
sibly be expected to accurately capture the dynamics of jam-
ming of hydrated ions very close to a surface driven by a
large ac voltage, while also producing ACEO flow. Of
course, under such extreme conditions, the mean-field ap-
proximation for both steric and electrostatic interactions
should also be questioned.

Due to all of these complexities, following Bazant et al.
[29], we will focus on the simplest approximation of Biker-
man’s model in order to explore the qualitative impact of
steric effects on ACEO flow. It will turn out that this very
simple model suffices to predict high-frequency flow reversal
of ACEO pumps. We will then repeat some calculations with
the CS model, which improves the agreement with experi-
ments somewhat, but does not alter the qualitative predic-
tions of Bikerman’s model.

III. MODEL FOR ACEO PUMPS

In our theoretical study of ACEO pumping, we consider
the standard experimental geometry of planar, asymmetric
electrode-array pumps shown in Fig. 1 due to Brown et al.
[10]. The specific dimensions are selected to match the ex-
periments Studer et al. [12] and Urbanski and co-workers
[14,18]. The basic question of ACEO flow in such pumps has
been thoroughly addressed by Olesen er al. [19,34] using the
classical electrokinetic equations of dilute solution theory
[2,3]. The significant difference between this work and Ref.
[19] is our application of the new physical model for the
double-layer capacitance, taking into account steric effects at
large voltage. Unlike Ref. [34], we also ignore ‘“strongly
nonlinear” effects associated with salt uptake by a highly
charged diffuse layer and resulting bulk diffusion [37,38],
since these phenomena are greatly reduced by steric effects
[30,31].

In the bulk fluid outside the electric double layers, we
assume electroneutrality with a constant electrical conductiv-
ity o. Under these assumptions, the electric potential in the
fluid bulk, ¢, satisfies Laplace’s equation, which is equiva-
lent to Ohm’s law for a constant bulk resistance. This corre-
sponds to the “weakly nonlinear” regime where nonlinear
circuit models still hold [34,37,38]. For boundary conditions
on the potential, we assume that there is no normal Ohmic
current on the sections of channel substrate at y=0 and the
upper boundary at y=H.

For the boundary condition over the electrodes, we must
incorporate a model of the thin electric double layers that
will form. These double layers are so thin (10~100 nm) that
when we apply the boundary condition on ¢ at y=0, we
assume this is outside the double layer and not at the elec-
trode surface. The local charge stored in the double layer,
q(x), changes in time due to the Ohmic current. Our double-
layer model provides the voltage difference between the fluid
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bulk and the externally applied voltage at the electrode, V,,;,
based on the amount of charge stored. Thus the boundary
condition for the electric potential in the bulk is dynamically
determined. While Faradaic currents certainly play a role in
ACEO, we neglect it in our model to focus on steric effects
alone, which have not previously been considered. The role
of reactions in classical double-layer models in ACEO was
studied by Olesen et al. [19] and shown not to play a role in
high-frequency flow reversal.

As in prior work [9,19], we introduce the following scales
for the nondimensionalization of the governing equations:

eyl=L. =25 [4]=

(o ze

kyT kT
== [ql=—C,.
ze

Note that [7] is the “RC time” for the equivalent circuit
[5,37], where the characteristic Debye capacitance is C,
:)\LD where ¢ is the permittivity of the electrolyte and Ap is
the Debye length. The characteristic length scale for comput-
ing the bulk resistance, L/ o, is the electrode spacing L=G;.
As stated previously, we assume there is no additional con-
stant Stern layer capacitance. Instead, we rely on the dy-
namic formation of a condensed layer that is characteristic of
Bikerman’s model.

The dimensionless problem reduces to Laplace’s equation
for the potential in the fluid bulk,

V2 =0. (4)

The boundary condition on the substrate (the entire upper
wall at y=H/L and the insulating regions along y=0 be-
tween the electrodes) is

9% _

2 ()

The boundary condition over the electrode double layer is
given by

¢ = Vext - \PD(q) > (6)

where W,(q) is the total potential drop across the double
layer. The functional relationship between the double-layer
voltage drop and charge is given by the model from Kilic et
al. [30],

Vy==2 sgn(q)sinh_l< \/%}(6‘72"/2— 1)), (7)

while the local charge is dynamically determined by the RC
condition

dg _ 94

(8)

dt dy

y=0

The closed set of equations (4)-(8) form our electrical
model. Note that in the limit of very small v in Eq. (7) we
obtain the classic result from Poisson and Boltzmann, ¥,
=-2 sinh(%). In the limit of small potential and small v we
obtain W,=-¢, the linear Debye-Hiickel model. The latter
two limits have been extensively studied [19]; it is the im-
pact of Eq. (7) on the flow that is the focus of this paper.
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Once the electrical problem is solved, we compute the
electro-osmotic slip by the Helmholtz-Smoluchowski rela-
tionship

J =0
v, <z’>(;x )

U ©)
and ignore any modifications at large voltage, e.g., due to
crowding effects [29] in order to focus on steric effects in the
double-layer charging dynamics. We emphasize that Eq. (9)
is valid for any continuum double-layer model based on PB
or MPB theories, assuming only that the viscosity and per-
mittivity are constants within the double layer. In the general
case at large voltages, € should be decreased due to align-
ment of water dipoles and # should be increased due to
viscoelectric effects [29]. We expect that the actual electro-
osmotic slip is reduced from that predicted by classical
theory assuming constant properties within the double layer.
The amount of reduction is expected to be greater for con-
centrated solutions. The general formula for electro-osmotic
slip with variable fluid properties is discussed in the Appen-
dix.

Velocity is made dimensionless by the natural scale [5,21]

eV?
[U]=—,
nL

where V is the magnitude of the applied voltage and 7 is the
viscosity. An interesting fact, exploited by previous authors
[7,9,19], is that we can compute the net pumping without
actually solving the flow field in the channel, but by taking
the time and spatial average of Eq. (9) along the boundary
y=0. Further details of this derivation can be found
elsewhere—e.g., in Olesen et al. [19].

Due to the irregular electrode geometry and the nonlinear
charging processes, we must resort to solving Egs. (4)—(8)
numerically. We couple the solution of Laplace’s equation to
the dynamic boundary condition for the charge. The solution
is integrated forward in time until an adequate steady state is
reached and the net flow is computed by averaging Eq. (9) in
time and space. Details on the numerical method can be
found in the supplementary material [60]. The simulations
were confirmed by an independent method using the com-
mercial software package COMSOL MULTIPHYSICS.

IV. RESULTS

We start by comparing our results with the steric model
for the double layer, Eq. (7), to simulations of the dilute-
solution models used in all prior work. In Fig. 4, we compare
the flow velocity as a function of frequency for the classic
linear Debye-Hiickel model valid only when the applied
voltage is much less that k7/e, the Poisson-Boltzmann non-
linear capacitance which is recovered from our model when
v=0, and the model which accounts for steric effects, Eq.
(7). At a voltage of 100kT/e=2.5 V, we see that the model
which accounts for steric effect shows a high-frequency flow
reversal. As we note in Ref. [29], to our knowledge, these
results represent the first demonstration of a mathematical
model that can predict such reversal of flow in ACEO
pumps.
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FIG. 4. (Color online) Average slip velocity as a function of
frequency for three different models at 2.5 V. The solid blue curve
is for »=0.01 with the complete model, the black dash-dotted line
assumes the linear Debye-Hiickel relationship g=—V¥,, and the red
dashed curve is for v=0 with a Stern layer capacitance of 6=0.1.
Only the model with steric effects predicts flow in the negative
direction. Points A, B, and C will be referred to in Fig. 6.

In order to understand the physical mechanism of flow
reversal, we must first understand why there is flow at all.
The basic mechanism for flow in ACEO can be best under-
stood when considering a geometrically symmetric electrode
array, as in Fig. 5, subjected to a suddenly applied dc voltage
(without any Faradaic current) [4]. When the voltage is ini-
tially switched on, the electric field lines point from the posi-
tive to the negative electrodes as shown in Fig. 5(a). Since
there is initially no double-layer charge, the field lines are

(a)

0
0 I + 2 3 4 — 5 6
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perpendicular at the electrode surface. A current will begin to
flow through the electrolyte with ions migrating along the
electric field lines and the double layers over the electrode
will begin to charge as shown in Fig. 5(b). The electric field
is strongest at the electrode edges and the resulting high cur-
rent quickly charges the double layer at that location. On the
order of the characteristic charging time 7, (as computed us-
ing the gap length scale), the electrode edges will be signifi-
cantly screened. In Fig. 5(b) we show the charge at y=0 at
three instances in time.

As the double layers charge up, the electric field lines in
the fluid bulk are diverted around the screened electrode
edges, resulting in a tangential component of the electric
field. This is shown in Fig. 5(c) where we can see the field
lines are no longer perpendicular over the entire electrode,
especially near the electrode edges. The tangential electric
field exerts a force on the fluid in the charged double layer,
causing flow. Given the direction of the field and sign of the
charge, the flow always goes from the edge of the electrodes,
inward. The flow streamlines and flow direction are shown in
Fig. 5(d). If the applied voltage is maintained, eventually the
entire electrode becomes fully screened and there is no elec-
tric field in the bulk and the flow will stop. The above argu-
ment about the direction of flow did not depend upon the
sign of the applied voltage, reversing the sign causes the
same flow pattern. Therefore, if an ac voltage is applied at a
frequency corresponding to the charging time, time-averaged
vortex flow can be maintained.

Ajdari introduced the idea of rectifying this symmetric
flow pattern to create an ACEO pump by introducing various
forms of geometrical asymmetry within each spatial period
of the electrode array [9]. This principle was first imple-
mented by Brown et al. using flat, coplanar electrodes of

(b)

FIG. 5. (Color online) Basic mechanism for flow in ACEO devices. Here we consider a symmetric array of electrodes under a suddenly
applied voltage. In (a) we show electric field lines at the instance the field is turned on. The electric field points from the positive to the
negative electrode. The location on the electrodes at y=0 is shown. In (b) we show the charge density over the electrodes at 1/10 the charging
time ¢, at the charging time and at 10 times the charging time. In (c) we show streamlines of the electric field at the charging time. In (d) we
show electric field lines at the charging time. The arrows denote the flow direction.
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FIG. 6. (Color online) Streamlines (a),(c),(e) and slip velocity (b),(d),(f) for three different cases. The first row is for V=100, v=0.01, and
w=0.7. This frequency corresponds to the peak in the forward flow for the steric model. In (a) we show the streamlines. In (b) we show the
time-averaged slip velocity (solid line) and the cumulative spatial integral of this velocity (the dashed curve). The second row, (c) and (d),
is for V=100, »=0.01, and w=3. This frequency corresponds to the peak in the reversed flow. The third row, (e) and (f), is for V=100 and

w=3 with the linear Debye-Hiickel model ¥,=—¢.

different widths and gaps [10], as shown in Fig. 1, and this
general design has been studied extensively by several
groups [11,12,14,18,19,34,36,58]. In this geometry, the sym-
metry breaking causes the flow to go from left to right by
upsetting the delicate balance between leftward and right-
ward slip patterns. The fact that pumping comes from a rela-
tively small bias of opposing, coplanar surface flows makes
this design susceptible to flow reversal if nonlinearities in
charging dynamics tip the balance the other way, as we dem-
onstrate below. Current designs using stepped, three-
dimensional electrodes are much faster and more robust
against flow reversal, since the opposing slip patterns work
together to drive pumping in one direction, as a “fluid con-
veyor belt” [13-15,59]. The sensitivity to flow reversal in the
planar pump, however, allows us a better opportunity to ex-
plore subtle nonlinearites in double-layer charging dynamics,
which is why we have chosen it for our theoretical study.
In Fig. 6 we demonstrate how the geometrical asymmetry
results in forward flow when driven at the charging time and
how steric effects can produce high-frequency reversal. In
Figs. 6(a) and 6(b) we show the time averaged streamlines
(a) and time average slip velocity (b) for the ACEO pump
driven at the charging time, corresponding to point A in Fig.
4. We notice a few features of the slip profiles. First, the
magnitude of velocity over the small electrode is greater than
the velocity over the large electrode. This difference is due to
the fact that the toral charge contained on both electrodes

must be the same; the local charge density (and thus electro-
osmotic slip) is always higher on the small electrode. Sec-
ond, we notice slip profiles over either electrode is asymmet-
ric with the greatest slip found at the edges at the small gap.
This effect is simply due to high electric field in the small
gap which can exert a larger force. Finally we see the asym-
metry in the slip is greater for the large electrode than the
small electrode, an effect due to the geometry. The result for
this geometry and frequency is the net flow goes in the posi-
tive x direction. The relative contributions to the flow is eas-
ily seen by the cumulative spatial integral of the time aver-
aged slip; the dotted line in Fig. 6(b).

In Figs. 6(c) and 6(d) we show the behavior at the ap-
proximate peak of the reverse flow in Fig. 4, corresponding
to point B in Fig. 4. The same generic features of the slip
profiles are the same as in (b). However, the relative contri-
butions have changed at this frequency. The reason for the
reversal can be explained by the change in charging time for
the different size electrodes. When steric effects are included,
we must remember that the capacitance decreases as more
charge is stored inside the double layer. Since the charge
density over the small electrode is much greater, the capaci-
tance of the small electrode’s double layer is decreased at
high voltage due to the steric effects. The lower capacitance
means that the charging time of the small electrode is de-
creased relative to the large electrode. This change in charg-
ing time means that at high frequency and high voltage the
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FIG. 7. (Color online) Flow
response as a function of voltage
for various values of v, the steric
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small electrode has more time to sufficiently charge to gen-
erate flow.

This idea is illustrated in Figs. 6(c) and 6(d). The cumu-
lative spatial integral of the time-averaged slip shows that the
negative flow contribution from the small electrode is nearly
twice the positive contribution. At this high frequency the
large electrode is not very highly charged and its forward-
flow component adds only a small amount to the net. That
this reversal is caused by the change in the charging dynam-
ics can be seen in Figs. 6(e) and 6(f), which shows the same
condition as (c) and (d) only with the linear Debye-Hiickel
model; point C in Fig. 4. Here, since the large electrode has
the same charging time as the small electrode, its forward
component is significant to provide a net positive flow. It is
clear from these pictures that with the inclusion of steric
effects, the direction and magnitude of flow in ACEO pumps
are determined by a delicate balance influenced by both the
geometry and charging dynamics.

Up to now, we have taken the volume fraction v to be a
constant. To better see the effect of v on the predicted flow,
in Fig. 7 we show contours of the flow rate as a function of
voltage and frequency at different values of v. For a fixed
physical value of a, different values of v represent how the
flow would change as a function of concentration (in dimen-
sionless terms). The heavy lines denote the region where the
flow is negative, indicating a reversal of flow. We see that the
frequency response of the flow does not change with voltage
at low voltage, as would be predicted by the linear Debye-
Hiickel model. At low voltage, we see only a single peak in
the forward flow at the characteristic frequency. As the volt-
age is increased, the nonlinearity begins to set in which
causes the peak of the forward flow to move toward lower
frequency as predicted by dilute solution theory. As the volt-
age is further increased, the steric effects begin to become
important with the reversal eventually setting in.

The change in frequency of the maximum forward flow at
higher voltage as v changes is easily understood. As v in-

Frequency

10°

creases, the value of the maximum value of the capacitance
decreases, shifting the peak response to higher frequencies.
For a given v, as the voltage continues to increase, the con-
tinual decrease in the double-layer capacitance can be seen in
the shift of the maximum of the positive flow to higher fre-
quency at high voltage. When there are no steric effects (or
Stern layer) the capacitance diverges, which can be seen in
Fig. 7(d). The inclusion of the constant Stern layer capaci-
tance causes this decrease to limit at the constant Stern layer
capacitance [19]

Qualitatively, our model can predict a flow response that
looks very similar to experimental results; however the quan-
titative ability of our model is still problematic. In Fig. 8(a)
we show the model predicting the experimental data of
Studer et al. [12]. In Fig. 8 we treat the parameter v as a
fitting parameter to approximate the data of Fig. 6 in the
experimental work of Studer et al. [12]. We find that a value
of v=0.01 provides a reasonable fit to their experimental
data. However, given a concentration of 0.1 mM KClI, this
value corresponds to a=4.4 nm, about an order of magni-
tude larger than we would expect based on the hydrated ra-
dius of the ion. The fact their experiment [12] only predicts
reverse flow at high voltage (their Fig. 7) is consistent with
the low-frequency regime of their work being inaccessible
due to electrochemical reactions and degradation of the elec-
trode (see their Fig. 4).

We considered whether the CS form of the excess chemi-
cal potential would provide a more reasonable value of a. In
order to include the CS equation in the model we numeri-
cally solve for the relationship of ¥ (g) to replace Eq. (7) in
our model. We follow the work of Bieshuvel and Soestber-
gen [45] to obtain this relationship numerically, as described
in the Appendix. The result of using the CS equation in our
ACEO model is shown in Fig. 8(b), and it is qualitatively
similar to our prior results with the Bikerman model. The CS
steric model has somewhat different quantitative behavior,
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FIG. 8. (Color online) Flow as a function of frequency at dif-
ferent voltages. The voltages are V=0.5, 1, 1.5, 2.9, 3.6, 4.5, and 6
V rms. The voltages are selected to match Fig. 6 in Studer et al.
[12]. The data are presented in dimensional form in order to com-
pare the frequency response. The flow velocity is corrected for the
hydraulic resistance of the experimental flow loop. In (a), using the
Bikerman model, we used a=4.4 nm. In (b), using the Carnahan-
Starling model, we used a=2.2 nm. The general shape of both
frequency response curves has many of the experimentally observed
features.

but still requires an ion size of approximately a=2.2 nm to
fit the experimental data. While the magnitude of the flow
reversal changes with the CS equation, the use of a more
accurate model for the excess chemical potential still require
a relatively large ion size.

V. DISCUSSION

In order to fit the experimental data, the ACEO models
modified for steric effects imply an ion length scale a almost
an order of magnitude larger than we would expect. A factor
of 10 in ion size results in a factor of 1000 in ». This differ-
ence means that while the response in Fig. 7(a) is closer to
what is observed, it is Fig. 7(c) that is predicted based on a
reasonable hydrated radius for the ions. The current model
cannot yet predict the experimental data from first principles.
It is important to note that the large value of v is needed not
to predict flow reversal at all, but to predict flow reversal at
the frequencies observed in experiments.

As discussed in Sec. II, the mean-field models of steric
effects which we consider are unlikely to accurately capture

PHYSICAL REVIEW E 77, 036317 (2008)

the dynamical formation of a condensed layer on the surface.
One reason is the difficulty in describing the jamming tran-
sition, as ions and solvent molecules are squashed onto the
surface by large, time-dependent normal electric fields. Un-
der such extreme conditions, we should not expect more than
qualitative trends from such models. Another possibly cru-
cial feature missing in these models is the interaction with
the surface, which is assumed to be a mathematically flat,
homogeneously charged, perfectly rigid wall, as sketched in
Fig. 3. Since the condensed layer of (presumably solvated)
ions is at the scale of only a few molecular lengths, there
must be a strong coupling with nanoscale roughness on the
surface. This may have the effect of increasing the effective
ion size, as we have inferred, since what matters is not the
ion density in the solution, but the density very close to the
surface, which is reduced by atomic asperities. The viscosity
may also diverge near the surface as ions become jammed
among surface inhomogeneities [29]. It would be interesting
to do experiments with atomically flat electrodes (e.g., car-
bon graphene) or ones with controlled nanoroughness to test
this hypothesis.

It is also possible that changes in the permittivity & within
the double layer may also effect the frequency response.
Electrochemists infer for the Stern layer that € may be 1/10
of & in the bulk [41]. If it were true that & is reduced by 1/10
in the condensed layer, the overall double-layer capacitance
would be decreased. Such a change would cause the peaks in
the frequency response to shift to higher frequency for the
same value of v. If we make the assumption that ¢ is reduced
by a factor of 10 in the entire double layer, then an ion size
of approximately 1 nm is needed to predict the data of Studer
et al. [12] with the CS equation. If € is reduced only in the
condensed layer, the true effect on the frequency response
would be less than predicted with the simple assumption.
Therefore, it seems likely that accounting for changes in &
would reduce the needed ion size to correlate the data; how-
ever, at most this would reduce the ion size to 1 nm, still
much larger than expected.

A further complication is that the mean-field approxima-
tion breaks down when ion spacings approach the Bjerrum
length I=(ze)?/4mekT, which is 7 A for bulk water and
monovalent ions (z=1). Again, if it were true that & is re-
duced by 1/10 in the condensed double layer, then [p
=7 nm. Correlation effects on electro-osmotic flow (which
to our knowledge have never been studied) could be very
significant at large voltages, even in dilute bulk solutions
[29].

While much work remains, we have highlighted an inter-
esting and practically important application where dilute so-
lution theory clearly breaks down. We have demonstrated
that accounting for steric effects in double-layer models can
have a dramatic impact on the predicted flow in ACEO
pumps. Because of the large value of a needed to fit the
experimental data, we cannot claim that our model defini-
tively explains high-frequency flow reversal in ACEO
pumps, but it is the only plausible explanation to date. The
prediction is also quite robust: we have found that flow re-
versal can be predicted by any model which accounts steric
effects by the generic feature that the double-layer capaci-
tance decreases with applied voltage.
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Physically, it seems that this generic effect of decreasing
capacitance must be true for any model of the double layer
considering finite-sized ions [30]. As the voltage increases,
more ions are packed in the double layer. Once the concen-
tration of ions becomes so high that the packing density is
reached, the ions would have to pile up forming a condensed
layer whose thickness would increase with voltage. As the
double-layer thickness grows, the capacitance must decrease.
We believe this general effect is true regardless of the details
of the model, and we have shown that it has major implica-
tions for ACEO pumping and, by extension, all nonlinear
ICEO flows. Steric effects are clearly among the new effects
which must be considered in developing more accurate theo-
ries of ICEO flow at large applied voltages [29].
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APPENDIX: GENERALIZED CONTINUUM MODELS

In dilute solution theory, the chemical potential of a point-
like ion i takes the ideal form

Wl = kT 1n ¢; + zie b, (A1)

where c¢; is the mean concentration and ¢ is the self-
consistent mean electrostatic potential, both continuous func-
tions in a large dilute system. In concentrated solutions, the
chemical potential is modified by a variety of statistical ef-
fects, such as electrostatic correlations (beyond the mean-
field approximation) and interactions among discrete, finite-
sized ions and solvent molecules. In order to isolate such
effects, it is customary to decompose the chemical potential
into ideal and excess contributions, ,u,i:,u,fde“l+ wi*. Various
models for u* are reviewed in Refs. [30,31,45].

In the asymptotic limit of thin double layers, the chemical
potential is constant in the normal direction under rather gen-
eral conditions [39]. In many cases, the algebraic conditions
{u;=const} then suffice to determine the concentration pro-
files {c;} in the diffuse layer in terms of the mean potential
distribution ¢. For example, in an ideal dilute solution (A1),
the condition u;=const yields the Boltzmann distribution (1).

In the general case, solving the equations {u;=const} and
substituting the charge density p(¢) in Poisson’s equation
leads to a MPB equation for the mean potential,
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~ed'=p(d)= S zec(d). (A2)

which can be integrated to obtain the differential capacitance
of the diffuse layer,

2e

v, )
f p(p)ded

0

CD(q’D) = P(‘I’D) (A3)

in terms of p(¢). This procedure can be carried out analyti-
cally for the Gouy-Chapman and Bikerman models to obtain
Egs. (2) and (3), respectively, or numerically for more com-
plicated models.

There are a number of models for the excess chemical
potential due to steric effects of finite (typically hydrated)
ion sizes. Here, we list a few cases, following Biesheuvel
and van Soestbergen [45]. Bikerman’s model corresponds to
the continuum limit of a lattice gas for cubic ions of size a.
In terms of the volume fraction ®=3,a’c;, the excess chemi-
cal potential is simply [31,45]

wit==kT In(1 - ), (A4)
which comes from the entropy of solvent molecules (empty

lattice sites). A more accurate expression for a liquid is the
CS equation [50]

o PB-9D +30%)
F=ma-ep

which has been closely validated by simulations of the hard-
sphere liquid [51]. There are also analytical extensions to
mixtures of hard spheres of different sizes, which have been
applied to volume effects in multicomponent electrolytes
[45].

Regardless of the form of the chemical potential, the
electro-osmotic slip is determined by

Vp g
U=—EIJ —dV,
o 7

(A5)

(A6)

where E, is the electric field tangent to the surface. In the
classical theory as well as in the present work, /7 is taken
to be a constant. In the general case at large voltages, &
should be decreased due to alignment of water dipoles and 7
should be increased due to viscoelectric effects [29]. We ex-
pect that the actual electro-osmotic slip is reduced from that
predicted by classical theory assuming constant properties
within the double layer. The amount of reduction is expected
to be greater for concentrated solutions.
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