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a  b  s  t  r  a  c  t

Electrochemical  impedance  spectra  for  battery  electrodes  are  usually  interpreted  using models  that
assume isotropic  active  particles,  having  uniform  current  density  and  symmetric  diffusivities.  While
this  can  be  reasonable  for amorphous  or  polycrystalline  materials  with  randomly  oriented  grains,  mod-
ern electrode  materials  increasingly  consist  of  highly  anisotropic,  single-crystalline,  nanoparticles,  with
different  impedance  characteristics.  In  this  paper,  analytical  expressions  are  derived  for  the  impedance
of  anisotropic  particles  with  tensorial  diffusivities  and  orientation-dependent  surface  reaction  rates  and
capacitances.  The  resulting  impedance  spectrum  contains  clear signatures  of  the  anisotropic  material
properties  and  aspect  ratio,  as  well  as  statistical  variations  in  any  of these  parameters.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is used in vari-
ous fields, such as energy storage and conversion [1–6], cell biology
[7,8], corrosion science [9,10], and catalysis [11,12], to character-
ize transport, reaction, and accumulation of charge carriers in the
systems. For insertion battery electrodes, it has also been widely
used across many different material compositions [1–3]. Various
models have been introduced to interpret the battery impedance
behavior. After adopting the Randles model for combined contri-
bution of charge accumulation, insertion reaction, and transport in
active material [13,14], models were further developed to consider
different particle shape [15,16], size distribution [16–19], phase
transformation [20,21], and additional layers on the active parti-
cles [17,22,23]. Some also incorporate the concentration gradient
along the thickness of a porous electrode [17,23,24] and its hetero-
geneous thickness [18,19,25]. Nevertheless, essentially all models
assume isotropic properties for the active particles, regardless of
their area of application.

In contrast, most battery materials currently under investiga-
tion are strongly anisotropic, which means that behavior of charge
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carriers in the materials varies with the direction in respect to the
crystallographic axes [26–32]. The anisotropy is attributed to dif-
ferent activation barriers along the hopping paths of charge carriers
depending on the direction. Since many battery materials have high
electron mobility compared to that of ions [15,27], it is the ion hop-
ping that determines the anisotropy in transport of charge carriers
as well as in surface insertion kinetics [15,33,34]. For example,
LixCoO2 has a layered metal oxide structure, where lithium ions
can move quickly through the plane between the metal oxide lay-
ers, but their movement across the layers is less likely and very
slow [28,29]. On the other hand, LixFePO4 has an olivine structure,
where lithium ions can move quickly through one-dimensional
channels in the b-crystallographic direction [30–32]. Models also
predict that intercalation kinetics [35], phase separation dynam-
ics [36], and nucleation [37] are highly anisotropic due to tensorial
coherency strain and different composition-dependent surface on
each crystal facet [38,39]. Like LixFePO4, other important battery
materials tend to phase-separate when they are alloying with Li
ions [40–42], and their impedance characteristics are beginning to
be considered [20,21]. In this paper, however, we confine our scope
to the materials forming a single phase solid solution. This also
includes materials that tend to phase-separate, such as LixMn2O4
and LixFePO4, while outside of their miscibility gaps for x ≈ 0 or
x ≈ 1.

Isotropic models of active particles are still widely employed
in EIS studies of batteries, in part because traditional active par-
ticles were large enough to have many randomly oriented crystal
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Nomenclature

Ap particle surface area
c local ion concentration
cs surface ion concentration
(∇c)s ion concentration gradient at surface
ˆ̃c =

(
−∂��eq/∂c

)
ĉ/��̂, dimensionless local ion con-

centration
Cp particle surface capacitance
Csurf surface capacitance
Csurf,x =Csurf(ex), surface capacitance on x normal surface
Csurf,y =Csurf(ey), surface capacitance on y normal surface
Dch chemical diffusivity tensor
Dch,x chemical diffusivity in x direction
Dch,y chemical diffusivity in y direction
Dch,z chemical diffusivity in z direction
e elementary electric charge
ex unit vector in x direction
ey unit vector in y direction
i = √−1, unit imaginary number
j0 exchange current density
jacc accumulation current density
jins insertion current density
jtot total current density
Jp total current on particle surface
Jov overall electrode current
k Boltzmann’s constant
lx one half of particle length in x direction
ly one half of particle length in y direction
l̃x = lx/L̄x, dimensionless particle length in x direction
l̃y = ly/L̄y, dimensionless particle length in y direction
Lx one half of particle length in x direction, a random

variable
Ly one half of particle length in y direction, a random

variable
L̄x mean value of Lx

L̄y mean value of Ly

L̃x = Lx/L̄x, dimensionless particle length in x direction,
a random variable

L̃y = Ly/L̄y, dimensionless particle length in y direction,
a random variable

n surface normal vector
np index of summation for active particles
Np total number of active particles
PrVd

joint probability density function of Vd

PrL̃x,L̃y joint probability density function of L̃x and L̃y

Rp particle surface resistance
t time variable
T temperature
vd vector of distributed parameters, a realization
Vd vector of distributed parameters, a random vector

variable
x spatial variable in x direction
x̃ = x/lx, dimensionless spatial variable in x direction
X arbitrary variable
X0 reference state response in X
X1 ε-order perturbation in X
X̂ Fourier coefficient of perturbation in X
y spatial variable in y direction
ỹ = y/ly, dimensionless spatial variable in y direction
zacc local accumulation impedance
zD local diffusion impedance

zG local Gerischer impedance
zins local insertion impedance
ztot local total impedance
Zp particle impedance
Zov overall electrode impedance
z̃tot = ztot/�ct,x, dimensionless local total impedance
Z̃p = 8lyZp/�ct,x, dimensionless particle impedance
Z̃p,G Gerischer limit of dimensionless particle impedance
Z̃ov = 8L̄yNpZov/�ct,x, dimensionless overall electrode

impedance

Greek letters
 ̨ charge transfer coefficient

ˇx = �D,x/�ct,x, ratio of diffusion characteristic resis-
tance in x direction and charge transfer resistance
on x normal surface

ˇy = �D,y/�ct,y, ratio of diffusion characteristic fre-
quency in y direction and charge transfer resistance
on y normal surface

�x = ωRC,x/ωD,x, ratio of RC characteristic frequency on
x normal surface and diffusion characteristic fre-
quency in x direction

�y = ωRC,y/ωD,y, ratio of RC characteristic frequency
on y normal surface and diffusion characteristic fre-
quency in y direction

ε arbitrary small number
�� potential drop across electrolyte/active material

interface
��eq equilibrium potential drop of insertion reaction
−∂��eq/∂c Nernst shift coefficient
	 = lx/ly, geometric aspect ratio of a rectangular par-

ticle

 surface overpotential
� = �ct,y/�ct,x, ratio of charge transfer resistances
�xy correlation between L̃x and L̃y

�ct = kT/j0e, charge transfer resistance
�ct,x = �ct (ex), charge transfer resistance on x normal

surface
�ct,y = �ct

(
ey

)
, charge transfer resistance on y normal

surface
�D,x =

(
−∂��eq/∂c

)
lx/eDch,x, diffusion characteristic

resistance in x direction
�D,y =

(
−∂��eq/∂c

)
ly/eDch,y, diffusion characteristic

resistance in y direction
˙xx variance in L̃x

˙yy variance in L̃y

˙xy, ˙yx covariance of L̃x and L̃y

� = ωD,y/ωD,x, ratio of diffusion characteristic fre-
quencies

ω applied frequency
ωD,x = Dch,x/l2x , diffusion characteristic frequency in x

direction
ωD,y = Dch,y/l2y , diffusion characteristic frequency in y

direction
ωRC,p RC characteristic frequency of particle impedance

ωRC,x =
(

�ct,xCsurf,x

)−1
, RC characteristic frequency on x

normal surface
ωRC,y =

(
�ct,yCsurf,y

)−1
, RC characteristic frequency on y

normal surface
ω̃ = ω/ωD,x, dimensionless applied frequency
� domain of Vd
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grains and presented lumped isotropic behaviors [43]. Mean-
while, with the recent developments in synthesis of active
materials, modern battery electrodes are made of small particles
with a few grains or even a single grain, to achieve excellent rate
capability and long cycle life [44–47]. Then, the anisotropic particle
properties may  significantly affect their impedance spectra, and
this motivates us to consider the effects of particle anisotropies
on battery impedance. Therefore in this study, we  first illustrate
a generic approach to arrive at an impedance model for a battery
electrode with anisotropic active particles. Using the generic
framework, we  then analytically study the impedance of an
anisotropic 2D rectangular particle, where we could investigate
the effects of anisotropies in diffusion, surface kinetics, and surface
capacitance. Lastly, we study the overall impedance of an electrode
where the particles have anisotropic distributions in length scales.
Throughout this work, we assumed that the active material has
high electron mobility and forms a homogeneous solid solution. It
is also assumed for a porous electrode that its thickness is nominal
and the electrolyte conductivity is high so that the models do not
account for any gradient that may  develop along the electrode
thickness.

2. General Theory

Impedance is measured by applying a small perturbation, either
in potential or current, to an electrochemical system around a
reference state and measuring the response in the other vari-
able [48]. When a system is approximated linear and perturbed
by a small sinusoidal stimulus, relevant variables fluctuate cor-
respondingly in isofrequential sinusoidal forms with negligible
harmonic responses. Applying a regular perturbation analysis, an
arbitrary system variable, X, can be expanded as a power series
of a sufficiently small parameter, ε, where the zero-order term
and the ε-order term represent the reference state response and
the sinusoidal perturbation, respectively. The higher-order terms,
represented by the mathematical order of ε2, correspond to the
non-linear harmonic responses, which are relatively small.

X = X0 + εX1 + O
(

ε2
)

= X0 + εX̂ exp (iωt) + O
(

ε2
)

(1)

where i = √−1 is the unit imaginary number, ω is the applied fre-
quency, and t is the time variable. The Fourier transform of the
perturbation term, X1, yields X̂ , the Fourier coefficient, which is a
complex number containing information related to the magnitude
and the phase of the perturbation in X.

2.1. Anisotropic transport of charge carriers

The system under initial investigation is a single crystal
nanoparticle of anisotropic battery material, in which diffusivi-
ties of charge carriers vary depending on the diffusion direction.
The system is fully exposed to electrolyte solution, except small
contacts to electron conducting material. Ions intercalate into the
system from the interface with electrolyte solution, and electrons
come from the contacts with conducting material. In many battery
materials, the mobility of electrons is much higher than that of ions
[15,27]. Under such conditions, the neutral diffusion of ions limits
the solid-state transport of charge carriers, and the Fick’s neutral
diffusion equation can be recovered in its tensor form, to describe
the anisotropic ion transport in the system.

∂c

∂t
= ∇ · (Dch∇c) (2)

where c is the local ion concentration, and Dch is the chemical dif-
fusivity tensor. It is always possible to make Dch diagonal by setting
the coordinate axes aligned with the diffusion principal axes.

Dch =

⎛⎜⎝Dch,x 0 0

0 Dch,y 0

0 0 Dch,z

⎞⎟⎠ (3)

Each component of Dch is the diffusivity in corresponding direction
and may  be different from the others. For olivine structure as an
example, Dch,y is much larger than the two others, and Li ions have
effectively 1D transport in y or (0 1 0) direction [27,30]. Calculation
of the ion diffusivities in battery materials has been extensively
studied in the community using the first principle approaches
[27,29,30,49], and it has also been shown that the anisotropy in
diffusion depends on the system size [31].

In calculation of impedance, the anisotropic diffusion equation is
expanded by substituting the power series expression in Equation
(1):

∂c0

∂t
+ ε

∂c1

∂t
+ O
(

ε2
)

= ∇ ·
((

Dch,0 + εDch,1 + O
(

ε2
))∇ (c0 + εc1 + O

(
ε2
)))

(4)

Notice Dch may  also fluctuate, since it is a function of c due to
any non-ideal interaction between the ions and the host material.
The expanded terms can be collected according to their orders in
ε, to give a set of linear differential equations to be successively
solved. When the system is perturbed around an uniform reference
state, the zero-order problem is trivial and results in the gradient-
free solution, where ∇c0 = 0. The ε-order problem, by which the
impedance response is defined, can then be reduced to an ordinary
linear differential equation in the frequency-space domain through
Fourier transformation.

iωĉ = ∇ · (Dch∇ ĉ) (5)

Hereby we denote the chemical diffusivity tensor evaluated at the
reference state simply by Dch, instead of Dch,0. Likewise, for any
Fourier transformed equations in this article, parameters without
the caret notation (�̂) represent their values evaluated at the ref-
erence state. Note that the Dch,1 term would survive in the ε-order
problem, if the reference state has non-uniform composition. Given
the linearity approximation is valid, the higher-order solutions are
negligible compared to the ε-order solution, and Equation (5) gov-
erns the transport of charge carriers in the system.

Transport of charge carriers in active material has been
described by current flow in a distributed RC transmission line
[50,51]. Isotropic transport in traditional approach could be
modeled using a 1D transmission line shown in Figure 1 (a). In the
circuits, the grid in black corresponds to the ion pathways and its
resistors represent drag that ions experience when they transport
in the active material. The other grid in grey corresponds to the elec-
tron pathways, and it has negligible resistance between the nodes
when electron mobility is high enough. Likewise, anisotropic trans-
port can be modeled using a 2D or a 3D transmission line shown
in Figure 1 (b) and (c), where the resistors between the nodes have
different resistance values depending on the direction. The circuits
may  be connected to various terminating structures depending on
the particle environment [17].

2.2. Anisotropic surface kinetics

To focus on the effects of anisotropic surface kinetics, we con-
sider a simple interface model, where the active material is in direct
contact with the electrolyte solution without any additional resis-
tive layer, such as solid electrolyte interface (SEI) layer. On the
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chC

chC

D,xR

chC

D,xR

D,yR

D,xR
D,yRD,zR

(a)

(b)

(c)

Fig. 1. Transmission line models describing transport of charge carriers in active
material: (a) a 1D transmission line model, (b) a 2D transmission line model, and
(c)  a repeating node of a 3D transmission line model. RD,x , RD,y , and RD,z are the
differential resistance of ion diffusion in the corresponding direction, and Cch is the
differential chemical capacitance [50,51].

electrolyte/active material interface, the ion insertion kinetics can
be modeled by the Butler-Volmer equation. When the insertion
rate is different according to the surface orientation with respect
to the crystallographic axes, parameters in the equation should be
functions of the surface orientation.

jins = j0 (n)
[

exp
(

−˛ (n)
e


kT

)
− exp

(
(1 − ˛ (n))

e


kT

)]
(6)

where jins and j0(n) are the insertion current density and the
exchange current density, respectively. e is the electron charge
constant, n is the surface normal vector, �(n) is the transfer coeffi-
cient (0 <  ̨ < 1), and 
 = �� − ��eq is the surface overpotential.
Notice that j0 and  ̨ are now functions of the surface normal vector,
n.

Applying the regular perturbation analysis to Equation (6), we
can collect ε-order terms to calculate the impedance response
for the insertion reaction. When the system is perturbed around
an equilibrium reference state, fluctuations in j0 and  ̨ do not
effectively contribute to the impedance response, since the two
exponential terms balance out each other. On the other hand,
perturbation in ��eq brings the contribution of surface ion con-
centration. Taking the Fourier transformation, perturbation in jins
can be expressed by the following equation.

ĵins = 1
�ct (n)

(
��̂ −

(
∂��eq

∂c

)
ĉs

)
(7)

where �ct (n) = kT/ (j0 (n) e) is the charge transfer resistance and
∂��eq/∂c is the Nernst shift coefficient, both evaluated at the ref-
erence state. ĉs is the surface ion concentration, which may  have
different values depending on the position. In more general, ��eq

as well as ∂��eq/∂c may  also depend on surface orientation, but we

leave these subtle effects out of consideration and focus on �ct (n)
only as a measure of anisotropy in surface kinetics.

The Faraday’s law can be applied at the electrolyte/active mate-
rial interface to correlates jins and the ion flux in the active material.
The insertion current can then be represented as:

ĵins = −e
(

Dch

(∇ ĉ
)

s

)
· n (8)

where
(∇ ĉ
)

s
is the ion concentration gradient at the surface. When

it is used together with the Butler-Volmer model in Equation (7),
they present a boundary condition governing the ion transport in
active material.

−e
(

Dch

(∇ ĉ
)

s

)
· n = 1

�ct (n)

(
��̂ −

(
∂��eq

∂c

)
ĉs

)
(9)

With this boundary condition, the anisotropic diffusion equation,
Equation (5), can be integrated twice to give the ion concentration
field in the system. Here, we  neglected surface diffusion of charge
carriers, which can be important in other studies [52].

2.3. Anisotropic interface capacitance

Another electrochemical process taking place on the interface
is accumulation of charge carriers, and it can be described by the
ideal capacitor model. While capacitance from diffuse double layer
should be fairly isotropic, pseudocapacitance, if there is any, should
depend on surface orientation as it arises from surface-specific side
reactions. To consider such anisotropy in surface accumulation, the
capacitance should be given as a function of the surface orientation.

jacc = Csurf (n)
d��

dt
(10)

where jacc is the accumulation current density on the interface, and
Csurf (n) is the surface capacitance. Applying the regular perturba-
tion analysis and the Fourier transformation, Equation (10) can be
mapped into the frequency domain for impedance calculation.

ĵacc = iωCsurf (n) ��̂ (11)

Other models for surface accumulation, including the constant
phase element (CPE), can also be generalized to account for the
anisotropy, in the similar manner.

2.4. Definitions of impedance functions

For each of the electrochemical processes, a local impedance
function [53] can be defined on an infinitesimal area of active par-
ticle surface. To begin with diffusion impedance, contribution of
the ion diffusion appears through the equilibrium potential of the
insertion reaction, ��eq, due to the Nernst equilibrium correlation.
Therefore, the local diffusion impedance is defined with the partial
derivative of ��eq with respect to c:

zD = ��̂eq

ĵins

=
(

∂��eq

∂c

)
ĉs

ĵins

(12)

where zD is the local diffusion impedance. Employing this defini-
tion, Equation (7) can be rearranged into a generalized Ohm’s form,
which leads to the definition of local insertion impedance.

zins = ��̂

ĵins

= �ct (n) + zD (13)

where zins is the local insertion impedance. It implies a circuit anal-
ogy of the ion insertion process, a series circuit of �ct and zD, in
a small perturbation regime. On the other hand, the impedance
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Fig. 2. Anisotropic 2D rectangular particle in electrolyte solution, and behavior of charge carriers in the system.

function corresponding to the charge carrier accumulation on the
surface can be defined independently from Equation (11).

zacc = ��̂

ĵacc

= 1
iωCsurf (n)

(14)

where zacc is the local accumulation impedance.
The total local impedance is the combined response of these,

and it is related to the activeness of a specific position on particle
surface. We  assume independent parallel contributions of jins and
jacc on particle surface, following Randles [14].

ĵtot = ĵins + ĵacc (15)

where jtot is the total current density. The total local impedance
then can be defined using jtot.

ztot = ��̂

ĵtot

= ��̂

ĵins + ĵacc

=
(

z−1
ins

+ z−1
acc

)−1

=
(

(�ct (n) + zD)−1 + z−1
acc

)−1
(16)

where ztot is the total local impedance. As implied by the expression,
ztot can be represented by the Randles equivalent circuit, which has
Csurf in parallel with a series of �ct and zD.

The particle impedance is defined by a collective response of
local impedance on the entire surface of a particle. Its definition
therefore employs the total current on the particle surface, which
can be obtained by integrating jtot over the particle surface area. The
potential is assumed homogeneous on the entire particle surface
due to high electron mobility. Then, the particle impedance can be
defined as:

Zp = ��̂

Ĵp
= ��̂∫

Ap
ĵtotdS

=
(∫

Ap

z−1
tot dS

)−1

(17)

where Zp is the particle impedance, Jp is the total current on the
particle surface, and Ap is the particle surface area. Zp can be con-
sidered as a harmonic average of ztot over the particle surface. In
terms of equivalent circuit, local impedance elements are arranged
in parallel or side by side to constitute Zp.

Expanding our view to the overall electrode, the overall elec-
trode impedance is a collective response of all particles in an
electrode. Thus, its definition employs the overall current summed
over the particle population. When there are distributions in parti-
cle properties, it is useful to convert the summation to an integral

over the distributions. It can be done by defining continuous ran-
dom variables that represent the distributed particle properties.

Zov = ��̂

Ĵov
= ��̂∑Np

np=1 Ĵp,np

= ��̂

Np

∫



PrVd
(vd) Ĵp (vd) dvd

= N−1
p

(∫



PrVd
(vd) Z−1

p (vd) dvd

)−1

(18)

where Zov is the overall electrode impedance, Ĵov is the overall
electrode current, np and Np are the numbering index and the
number of active particles in the electrode, respectively. When
Zov is defined with the integral over distributed particle parame-
ters, vd is a realization of the random variable vector, VSSSd, where
each component represents one of the distributed parameters. PrVd

is then the joint probability density function (PDF) of Vd, and �
is the domain in which Vd is defined. Vd may have diffusivities,
resistances, and lengths in different directions for its components.
Arriving at Equation (18), we assumed that the ion conductivity in
the electrolyte solution is high and/or the electrode is thin enough,
so that any gradient along the electrode thickness was not consid-
ered. Otherwise, the impedance definitions presented here can be
incorporated into the impedance models of thick porous electrodes
suggested in References [17] and [23].

3. Impedance of an Anisotropic 2D Rectangular Particle

In this section, we  focus on the impedance behavior of an
anisotropic 2D rectangular particle shown in Figure 2. It can be
considered as a hypothetic 2D particle or a rectangular cross-
section of a rod-shaped particle, which is fully submerged in the
electrolyte solution with small contacts to conductive materials.
With this system, we  can fully study the effects of anisotropies
on the impedance behavior with minimal complexity. To obtain
the impedance behavior, we need to solve the ion transport prob-
lem, which is reduced to a 2D boundary value partial differential
equation (PDE) problem. The governing diffusion equation is:

iωĉ = Dch,x
∂2ĉ

∂x2
+ Dch,y

∂2ĉ

∂y2
(19)
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The boundary conditions come from the Butler-Volmer model and
the system symmetry.

−eDch,x
∂ĉ

∂x

∣∣∣∣
x=lx

= 1
�ct,x

(
��̂ −

(
∂��eq

∂c

)
ĉ
∣∣
x=lx

)
−eDch,y

∂ĉ

∂y

∣∣∣∣
y=ly

= 1
�ct,y

(
��̂  −

(
∂��eq

∂c

)
ĉ
∣∣
y=ly

)
∂ĉ

∂x

∣∣∣∣
x=0

= 0

∂ĉ

∂y

∣∣∣∣
y=0

= 0

(20)

where �ct,x = �ct (ex) and �ct,y = �ct

(
ey

)
are the charge transfer

resistances on x and y normal surfaces, respectively. lx and ly are
the one halves of the particle lengths in corresponding directions,
as shown in Figure 2.

The variables in Equations (19) and (20) can be nondimension-
alized using appropriate scales. The dimensionless concentration
can be defined by ˆ̃c =

(
−∂��eq/∂c

)
ĉ/��̂, and the dimensionless

spatial variables by x̃ = x/lx and ỹ = y/ly. Further scaling becomes-
simpler when we define frequency scales and resistance scales for
diffusion in each direction: ωD,x = Dch,x/l2x , ωD,y = Dch,y/l2y , �D,x =(
−∂��eq/∂c

)
lx/eDch,x, and �D,y =

(
−∂��eq/∂c

)
ly/eDch,y, where

ωD,x and ωD,y are the diffusion characteristic frequencies in x and
y directions, and �D,x and �D,y are the diffusion characteristic
resistances in x and y directions, respectively. Then, it turns out
that four dimensionless numbers govern the ion transport in the
system. Two are ratios of the frequency scales: ω̃ = ω/ωD,x and
� = ωD,y/ωD,x. The other two are ratios of the diffusion character-
istic resistance and the charge transfer resistance on each surface:
ˇx = �D,x/�ct,x and ˇy = �D,y/�ct,y. Each of the resistance ratios
indicates relative insertion rate on the surfaces and diffusionrate in
the bulk system, like a Biot number in traditional transport systems
involving boundary fluxes. Employing the dimensionless variables
and the scaled parameters, the governing equation and the bound-
ary conditions become

i ω̃ ˆ̃c = ∂2 ˆ̃c
∂x̃2

+ �
∂2 ˆ̃c
∂ỹ2

−ˇ−1
x

∂ ˆ̃c
∂x̃

∣∣∣∣
x̃=1

= 1 + ˆ̃c
∣∣
x̃=1

−ˇ−1
y

∂ ˆ̃c
∂ỹ

∣∣∣∣
ỹ=1

= 1 + ˆ̃c
∣∣
ỹ=1

∂ ˆ̃c
∂x̃

∣∣∣∣
x̃=0

= 0

∂ ˆ̃c
∂ỹ

∣∣∣∣
ỹ=0

= 0

(21)

Such a boundary value PDE problem, defined in a finite domain,
can be solved analytically by the finite Fourier transformation (FFT)
method [54]. Mathematical works involved in deriving the solution
are presented in Appendix B. The solution for ˆ̃c is given by

ˆ̃c (x̃, ỹ) = −1

+
∞∑

k=1

�k

(
1 − ˇy cosh (�kỹ)

ˇy cosh (�k) + �k sinh (�k)

)
Bk cos (�kx̃) (22)

where �k, Bk, �k, and �k are defined in Appendix B.
The particle impedance includes parallel contributions from

the charge accumulation and the ion insertion. Under such an
arrangement, a resistive-capacitive (RC) characteristic frequency

Table 1
Isotropic reference values of parameters, characteristic scales and dimensionless
numbers [23].

Property Value Unit(
−∂��eq/∂c

)
20.27 Vcm3/mol

Dch,x , Dch,y 1.0 × 10−9 cm2/s
�ct,x , �ct,y 44.06 
cm2

Csurf,x , Csurf,y 1.0 × 10−5 F/cm2

lx , ly 2.0 × 10−4 cm
�D,x , �D,y 46.16 
cm2

ωD,x , ωD,y 2.5 × 10−2 s−1

ωRC,x , ωRC,y 2.3 × 103 s−1

ˇx , ˇy 1.05 –
�x , �y 9.08 × 104 –
�  1 –
�  1 –
	  1 –

naturally arises for each of x normal and y normal surfaces: ωRC,x =(
�ct,xCsurf,x

)−1
and ωRC,y =

(
�ct,yCsurf,y

)−1
, where Csurf,x = Csurf (ex)

and Csurf,y = Csurf

(
ey

)
. While various scaling strategies could be

employed depending on the characteristics to be studied, the
local impedance functions are scaled by �ct,x, and Zp is scaled by(

�ct,x/8ly
)

in this article. Using the definition in Equation (17), the
dimensionless particle impedance becomes

Z̃p =
(

8ly
�ct,x

)
Zp

=
(

1
2

∫ 1

0

(
z̃tot

∣∣
x̃=1

)−1
dỹ + 1

2
	

∫ 1

0

(
z̃tot

∣∣
ỹ=1

)−1
dx̃

)−1

(23)

where z̃tot = ztot/�ct,x is the dimensionless local total impedance,
and 	 = lx/ly is the geometric aspect ratio of the particle. Expand-
ing z̃tot according to Equation (16) and performing the integrals,
an analytical expression for Z̃p is obtained. Detailed algebraic and
calculus steps are given in Appendix C.

Z̃−1
p =
(

i ω̃

2

)(
1
�x

+ 	

���y

)
+ 1

2

∞∑
k=1

�kBk

⎛⎝cos (�k) +

(
	�k

��k

)
sinh (�k) sin (�k) −  ˇysinh (�k) cos (�k)

�kˇy cosh (�k) + �2
k

sinh (�k)

⎞⎠
(24)

where � = �ct,y/�ct,x, �x = ωRC,x/ωD,x, �y = ωRC,y/ωD,y, and 	 =
lx/ly are additionally identified as dimensionless numbers gover-
ning the system response. Therefore, in total, eight dimensionless
numbers are found to determine the behavior of the particle
impedance. Table 1 shows values of the parameters, the charac-
teristic scales, and the dimensionless numbers for the isotropic
reference case [17,23]. In examining Z̃p under various anisotropies,
the corresponding parameters are varied for a certain range.

3.1. Effects of Anisotropic Diffusion

The effect of anisotropic diffusion can be examined by using the
Z̃p solution in Equation (24) and the parameters in Table 1, and
varying one of the diffusivity values. Figure 3 shows behavior of
Z̃p under various extents of anisotropy in diffusion. Dch,y is gradu-
ally changed by Dch,y = 10�Dch,x for � = −2, −1, 0, 1, 2, while Dch,x

is fixed at the reference value. As described in the complex plane
plot, Figure 3 (a), various slopes can be obtained in the Warburg
regime when the diffusion becomes anisotropic. While the slope is
around 45◦ for the isotropic reference case, it becomes lower when
diffusion in one direction is slower, and it becomes higher when
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Fig. 3. Particle impedance varying the extent of anisotropy in diffusion: (a) a com-
plex plane plot, (b) magnitude and phase angle plots, which are also called a
Nyquist plot and Bode plots, respectively. Dch,y is changed by Dch,y = 10�Dch,x for
�  = −2, −1, 0, 1, 2, while Dch,x is fixed at 1.0 × 10−9cm2/s. For each curve, �, �, �,
and © represent Z̃p at ω̃ = �x , �y , 1, and, �, respectively.

diffusion in one direction is faster. In the magnitude and the phase
angle plots, Figure 3 (b), transitions still take place near ω̃ ≈ 1 and
ω̃ ≈ 105 with little change in its shape or magnitude.

When the charge transfer resistance and the diffusion charac-
teristic resistance are comparable in one of the directions, like in
the above case where ˇx ≈ 1, the ion transport is strongly aligned
with the direction in the Warburg regime. Therefore in Figure 3, it
is the diffusion in x direction that determines the transition and the
magnitude of the diffusion impedance. The transition thus remains
near ω̃ ≈ 1, equivalently ω ≈ ωD,x, and the Warburg regime keeps
its magnitude around �D,x, even though �D,y varies by orders. On

the other hand, a significant amount of ions still pass through the
y normal surfaces since the charge transfer resistances at both x
normal and y normal surfaces are the same. There is local accu-
mulation of ions near y normal surfaces when the diffusion in y
direction becomes slower, and ions tend to be quickly distributed
homogeneously along the direction when the diffusion becomes
faster. The local accumulation gives the resistive contribution, and
the homogenous distribution gives the capacitive contribution to
the Warburg regime, varying its slope.

In particular, when Dch,y 
 Dch,x in the above case with ˇx ≈ 1
and � ≈ 1, the Gerischer limit can be defined. In more general, the
Gerischer limit can be found when the system has strong anisotropy
in diffusion but has relatively even insertion rate. Additionally, the
largest diffusion characteristic resistance and the charge transfer
resistances should be similar in order. Under such conditions, the
ion flux through the surface normal to the faster diffusion direction
could be analogized by a homogenous reaction that simultaneously
taking place with 1D diffusion in the slower direction. Therefore,
in the Gerischer limit, the combined response of the 2D diffusion
and the surface insertion can be approximated by the 1D Gerischer
impedance, by averaging the variables over the cross-section nor-
mal  to the slower diffusion direction. Then, the transport problem is
reduced to a typical 1D diffusion-reaction problem, and its response
can be obtained in an analytical form:

Z̃−1
p,G =

(
i ω̃

2

)(
1
�x

+ 	

���y

)

+ 1
2

[(
1 + �ˇy

i ω̃

)  (
1 + ˇx coth (�)

�

)]−1

(25)

where Z̃p,G is the Gerischer limit of particle impedance, and

� =
√

i ω̃ + �ˇy. As implied by its name, a bounded Gerischer
impedance function, ˇx coth (�) /�, can be found in place of the dif-
fusion impedance. Detailed derivation of the solution is shown in
Appendix D.

Such trends, however, are not general but depend on the param-
eter values and the corresponding dimensionless numbers. For
instance, if ˇx 
 1 and ˇy 
 1, the insertion reaction stays near
its equilibrium, and the ions are supplied at the surface as quickly
as they diffuse away. Therefore, the system response is largely
determined by the ion diffusion, and the charge transfer resistance
appears negligible compared to the diffusion impedance. When
the diffusion becomes strongly anisotropic, either Dch,x 
 Dch,y or
Dch,x � Dch,y, the response approaches that of 1D diffusion. The
magnitude and the transition frequency of the diffusion impedance
are then solely determined by the diffusion in the faster direc-
tion. On the other hand, when ˇx � 1 and ˇy � 1, the ions diffuse
quickly throughout the system as soon as inserted, and it is the ion
insertion rate that determines the system response. In this case,
contribution of the ion diffusion appears as a purely capacitive
behavior at frequencies lower than the RC characteristic frequen-
cies, and the anisotropy in diffusion does not affect the impedance
behavior.

3.2. Effects of Anisotropic Surface Kinetics

The effect of anisotropic surface kinetics can be examined by
varying one of the charge transfer resistance values. Figure 4 shows
behavior of Z̃p under various extents of anisotropy in surface kinet-
ics, using the parameter values in Table 1. Among the parameters,
�ct,y is gradually changed by �ct,y = 10��ct,x for � = −2, −1, 0, 1, 2,
while �ct,x is fixed at the reference value. The change in Z̃p is
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Fig. 4. Particle impedance varying the extent of anisotropy in surface kinetics: (a) a
complex plane plot, (b) magnitude and phase angle plots. �ct,y is changed by �ct,y =
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better explained by defining the particle surface resistance and the
particle surface capacitance.

Rp =
(

4ly
�ct,x

+ 4lx
�ct,y

)−1

(26)

Cp = 4lyCsurf,x + 4lxCsurf,y (27)

where Rp and Cp are the particle surface resistance and capaci-
tance, respectively. The corresponding dimensionless parameters
are R̃p = 8lyRp/�ct,x and C̃p = ωD,x�ct,xCp/8ly. In Figure 4 (a), the
diameter of the RC semicircle represents R̃p. When �ct,y decreases,
the diameter shrinks together, but it converges to 2 when �ct,y

increases. At this limit, as y normal surfaces are being blocked, most

ions intercalate through x normal surfaces, and R̃p is determined by
�ct,x. The RC characteristic frequency of the particle impedance is

defined by ω̃RC,p =
(

R̃pC̃p

)−1
. In Figure 4 (b), the RC transition takes

place at higher frequencies when �ct,y decrease, but when �ct,y

increases, the transition frequency does not change significantly.
There is one more interesting aspect in this result: the

anisotropy in surface kinetics also affects the diffusion impedance.
Whenever �ct,y decreases or increases, if the two  charge transfer
resistances differ significantly, the diffusion impedance approaches
its 1D limit. As shown in the complex plane plot, Figure 4 (a),
the Warburg regime becomes straighter and less steep for both
� = −2 and � = 2. In such conditions, the majority of ions interca-
late through the less resistive surfaces, and their diffusion becomes
effectively one dimensional, normal to the surface. For example,
when �ct,y 
 �ct,x, the majority of ions intercalate through x nor-
mal  surfaces and diffuse predominantly in x direction. The diffusion
impedance approaches its 1D limit that corresponds to the ion dif-
fusion in x direction.

3.3. Effects of Anisotropic Surface Capacitance

Likewise, employing the solution of Z̃p and varying one of the
surface capacitances, we can study the effect of anisotropy in
surface capacitance. Figure 5 shows behavior of Z̃p under vari-
ous extent of anisotropy in surface capacitance. Csurf,y is gradually
changed by Csurf,y = 10�Csurf,x for � = −2, −1, 0, 1, 2, while Csurf,x is
fixed at the reference value. As shown in Figure 5 (b), when Csurf,y

increases, the RC transition frequency, ω̃RC,p, shifts to a lower value.
Accordingly in Figure 5 (a), the RC semicircle tends to be more
convoluted with the diffusion impedance. On the other hand, the
transition frequency changes by little when Csurf,y decreases. The
particle surface capacitance, C̃p in Equation (27), increases together
with Csurf,y when Csurf,y increases, but it converges to the constant
Csurf,x when Csurf,y shrinks. Therefore, ω̃RC,p, which is inversely pro-
portional to C̃p, shifts to a lower value when Csurf,y increases, but it
stays around the reference value when Csurf,y decreases.

4. Overall Impedance of an Electrode with Anisotropic 2D
Rectangular Particles

Now, we expand our view to the overall impedance of a battery
electrode. The overall electrode impedance is a collective response
of all the particles in an electrode, and is affected by distribu-
tion in the anisotropic properties among the particles. Consider a
porous battery electrode that has hypothetic 2D rectangular par-
ticles or rod-shaped particles with rectangular cross-sections, as
shown in Figure 6. In either case, impedance response of each par-
ticle can be described by Z̃p in Equation (24). For such electrodes,
two of the apparent distributions are the length distributions of
the particles or the cross-sections. Considering the two  lengths as
the distributed parameters of our concern, the overall electrode
impedance in Equation (18) becomes:

Z̃ov =
(

8L̄yNp

�ct,x

)
Zov

=
(∫ ∞

0

∫ ∞

0

PrL̃x,L̃y

(
l̃x, l̃y

)
Z̃−1

p

(
l̃x, l̃y

)
l̃ydl̃xdl̃y

)−1

(28)

where Z̃ov is the dimensionless overall electrode impedance. Lx and
Ly are the random variables representing the length distributions
in x and y directions, respectively, and L̃x = Lx/L̄x and L̃y = Ly/L̄y

are the corresponding dimensionless random variables, scaled by
their respective means, L̄x and L̄y. Then, l̃x and l̃y are realizations
of L̃x and L̃y, respectively, and PrL̃x,L̃y

is the joint PDF  of L̃x and L̃y.
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Z̃p

(
l̃x, l̃y

)
is the dimensionless particle impedance we studied in

the previous section, which is funtionalized in terms of l̃x and l̃y.
We employed a bivariate log-normal PDF to describe the distribu-
tion in L̃x and L̃y. When parameters vary among the particles, the
characteristic scales and the dimensionless numbers are redefined
for the electrode using their mean values.

4.1. Effect of uncorrelated length distributions

Suppose the particles are strongly anisotropic, having faster
diffusion in x direction and faster insertion kinetics on x normal
surface. We set Dch,x = 20Dch,y and �ct,x = 1/40�ct,y, while taking

Fig. 6. Electrode configurations considered in Section 4: (a) an electrode with
hypothetic 2D rectangular particles, and (b) an electrode with rod-like particles
of rectangular cross-sections.

the reference values in Table 1 for Dch,y, �ct,y, and other parameters.
In each particle, the agiler surface kinetics on x normal surface and
the faster diffusion in x direction makes the majority of ions inter-
calate through x normal surface and diffuse mainly in x direction.
Hence, the ion transport can be approximated by 1D transport in x
direction. l̃x becomes the main diffusion length and l̃y becomes the
secondary diffusion length. In the particle impedance, R̃p converges
to 2, and the diffusion element approaches its 1D limit, correspond-
ing to the diffusion in x direction, having the magnitude and the
characteristic frequency of ˇx and 1, respectively.

The random variables representing the length distributions, L̃x

and L̃y, may have various distributions. Figure 7 (a) shows scattered
plots of their distributions employed in calculating Z̃ov, where ˙xx,
˙yy, ˙xy = ˙yx are the variance of L̃x, the variance of L̃y and the
covariance of L̃x and L̃y. Each distribution is a bivariate log-normal
distribution, and L̃x and L̃y are considered independent from each
other at this time

(
˙xy = ˙yx = 0

)
. Figure 7 (b) shows the complex

plane plot of Z̃ov examined using the length distributions in Figure 7
(a). Only the distribution in main diffusion length, L̃x, affects the
impedance behavior, while the distribution in secondary diffusion
length, L̃y, has little effect. As L̃x spreads broader with increas-
ing ˙xx, the transition in diffusion impedance becomes smoother.
Simultaneously, the capacitive regime starts deviating from the
vertical behavior and shows a CPE-like behavior. Such trend is not
affected by the change in ˙yy, as long as the length distributions
are independent. This is because ion intercalation and diffusion in
each particle is nearly one-dimensional in x direction. The distribu-
tion in L̃x leads to dispersion in the transition frequency of diffusion
impedance and makes the transition spread over a wide frequency
range. This is similar to the effect of size distribution of isotropic
particles in a battery electrode [16], as well as the effect of pore size
distribution in a porous capacitor electrode [55,56].

4.2. Effect of correlated length distributions

It becomes a different story when the length distributions are
correlated. Now we  need to consider the fact that, in the rectangu-
lar geometry of the particles or the cross-sections, the secondary
diffusion length, l̃y, determines the effective surface area, or length,
over which the majority of ions are being inserted. Thus, l̃y can also
be defined as the main insertion area, which gives weighting on
the transport response in the main diffusion direction. Figure 8 (a)
shows scattered plots of correlated distributions with various �xy,
and constant ˙xx and ˙yy. As the distributions are more correlated
with a larger �xy, it becomes relatively more probable that large l̃x
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Fig. 7. (a) Uncorrelated length distributions with various covariance matrices, and
(b) a complex plane plot of overall electrode impedance with the length distributions
in  (a). For each curve, �, �, and � represent Z̃ov at ω̃ = �x , �y , and 1, respectively. Z̃ov

at ω̃ = � raises out of the plot range.

and large l̃y are paired together, and small l̃x and small l̃y are paired
together. Therefore, response of long diffusion lengths is weighted
more by large insertion areas. Figure 8 (b) shows the behavior
of Z̃ov in a complex plane, using the distributions in Figure 8 (a).
As �xy increases, the capacitive regime in diffusion impedance
becomes more resistive and shifts in the positive real direction.
This is because the response of long diffusion lengths is weighted
heavier and presents a resistive contribution to the overall diffusion
impedance.

Unlike the behavior of Z̃ov under uncorrelated length distri-
butions, it is affected by the distribution in l̃y, when the length
distributions are correlated. Figure 9 (a) shows scattered plots of
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Fig. 8. (a) Correlated length distributions with various �xy values, and (b) a complex
plane plot of overall electrode impedance with the length distributions in (a). For
each curve, �, �, and � represent Z̃ov at ω̃ = �x , �y , and 1, respectively. Z̃ov at ω̃ = �
raises out of the plot range.

correlated length distributions with various ˙yy, and constant ˙xx

and �xy. Figure 9 (b) shows the behavior of Z̃ov on a complex plane,
using the distributions in Figure 9 (a). As L̃y spreads wider with a
larger ˙yy, the capacitive regime in diffusion impedance becomes
more resistive and shifts in the positive real direction. In fact, it
turns out that the effect of increasing �xy and the effect of increas-
ing ˙yy are very similar, given the lengths are correlated. When
˙yy > 0 and �xy > 0, L̃y spreads wider given a larger l̃x, compared
to its distribution given a smaller l̃x. Therefore, the response of long
diffusion lengths is weighted by a wider distribution of L̃y, and it
provides a resistive contribution to the diffusion impedance.



Author's personal copy

224 J. Song, M.Z. Bazant / Electrochimica Acta 131 (2014) 214–227

Fig. 9. (a) Correlated length distributions with various ˙yy values, and (b) a complex
plane plot of overall electrode impedance with the length distributions in (a). For
each  curve, �, �, and � represent Z̃ov at ω̃ = �x , �y , and 1, respectively. Z̃ov at ω̃ = �
raises out of the plot range.

5. Conclusion

In this article, impedance models were developed for an
anisotropic battery particle and for an electrode consisting of such
particles. Using the particle impedance model and typical parame-
ter values, we studied the effects of anisotropies in various particle
properties. It was found that the diffusion impedance may  have var-
ious slopes in the Warburg regime when ion diffusion in the particle
is anisotropic. The Warburg regime becomes more capacitive when
one of the diffusivities increases, and more resistive when one of the
diffusivities decreases. On the other hand, when the surface inser-
tion kinetics and capacitance depend on the surface orientation, R̃p

becomes a harmonic average of the charge transfer resistances, and
C̃p becomes an arithmetic average of the surface capacitances. Thus,
the RC transition frequency in particle impedance varies according
to the change in R̃p and C̃p. The diffusion impedance is also affected
by the anisotropy in surface kinetics and approaches its 1D limits
when one of the surfaces become relatively inactive.

Additionally, the effects of anisotropic length distributions were
examined using the overall impedance model. It is assumed that
the active particles in the electrode have strong anisotropies both
in surface kinetics and bulk diffusion, which make the transport
of ions effectively one-directional. The main diffusion length and
the main insertion area were defined. When the two lengths are
distributed independently, only the distribution in main diffu-
sion length affects the diffusion impedance, making its capacitive
regime inclined. If the length distributions are correlated, it is likely
that the response of long diffusion lengths is weighted more by
large insertion areas. It therefore raises a resistive contribution to
the diffusion impedance. The resistive contribution is more signif-
icant when the correlation is higher or when the variance in main
insertion area is larger. The general models in this article can also
be used to investigate distribution effects of any other anisotropic
properties.
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Appendix A. Nomenclature

Fourier transforms are denoted by a caret (�̂), and dimensionless
variables are denoted by a tilde (�̃) [16,57]. This is different from
the notation in some of the cited literatures[17,23,53] where the
caret refers to model values in regression and the tilde refers to
oscillating components.

Appendix B. Solution for the 2D anisotropic transport
problem [54]

Ion diffusion in an anisotropic 2D rectangular domain is gov-
erned by Equations (21). This boundary value PDE problem can
be reformulated to have homogeneous boundary conditions, by
shifting the solution by a unity.

� = ˆ̃c + 1 (B.1)

Then, as depicted in Figure B.1, the governing PDE and boundary
conditions for � become

i ω̃
(

� − 1
)

= ∂2�

∂x̃2
+ �

∂2�

∂ỹ2

∂�

∂x̃

∣∣∣∣
x̃=1

+ ˇx �
∣∣
x̃=1

= 0

∂�

∂ỹ

∣∣∣∣
ỹ=1

+ ˇy �
∣∣
ỹ=1

= 0

∂�

∂x̃

∣∣∣∣
x̃=0

= 0

∂�

∂ỹ

∣∣∣∣
ỹ=0

= 0

(B.2)
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Fig. B.1. Dimensionless governing equation and boundary conditions for the 2D
anisotropic ion transport problem.

Notice that the boundary conditions in Equations (B.2) are all homo-
geneous. In the FFT method, we hypothesize that the solution � can
be written in a series expansion as

� (x̃, ỹ) =
∞∑
k

˚k (ỹ) �k (x̃) (B.3)

where �k are the basis functions, and ˚k are the coefficient func-
tions. Appropriate basis functions are

�k (x̃) = Bk cos (�kx̃) (B.4)

where

Bk = 2

√
�k

2�k + sin(2�k)
(B.5)

and

�k tan (�k) = ˇx (B.6)

for 0 < �k < �k+1, and k = 1, 2, 3, ....
In the FFT method, the PDE problem for � is transformed to a

number of ordinary differential equation (ODE) problems for ˚k for
k = 1, 2, 3, ...,  which is defined by Equation (B.3) or equivalently by

˚k (ỹ) =
〈

�k (x̃) , � (x̃, ỹ)
〉

=
∫ 1

0

�k (x̃) � (x̃, ỹ) dx̃ (B.7)

Equations (B.2) are transformed by taking every terms in the equa-
tions inner product with �k.

d2˚k

dỹ2
−
(

i ω̃ + �2
k

�

)
˚k + i ω̃

�

(
Bk sin (�k)

�k

)
= 0

d˚k

dỹ

∣∣∣
ỹ=1

+ ˇy ˚k

∣∣
ỹ=1

= 0

d˚k

dỹ

∣∣∣
ỹ=0

= 0

(B.8)

The solution for this ODE problem is

˚k (ỹ) = �k

(
1 − ˇy cosh (�kỹ)

ˇy cosh (�k) + �k sinh (�k)

)
(B.9)

where

�k =
√

i ω̃ + �2
k

�
(B.10)

and

�k =
(

i ω̃

i ω̃ + �2
k

)(
Bk sin (�k)

�k

)
(B.11)

The overall solution for � (x̃, ỹ) then can be obtained by plugging
the final expressions for �k (x̃) and ˚k (ỹ) into Equation (B.3).

� (x̃, ỹ) =
∞∑

k=1

�k

(
1 − ˇy cosh (�kỹ)

ˇy cosh (�k) + �k sinh (�k)

)
Bk cos (�kx̃)

(B.12)

where �k, Bk, �k and �k are defined above. Finally we can shift �
back by a negative unity to have the solution for ˆ̃c.

ˆ̃c (x̃, ỹ) = −1

+
∞∑

k=1

�k

(
1 − ˇy cosh (�kỹ)

ˇy cosh (�k) + �k sinh (�k)

)
Bk cos (�kx̃) (B.13)

This solution is employed in the main article and Appendix C, to
calculate various impedance functions.

Appendix C. Particle impedance of the 2D rectangular
particle

The integrals for Z̃p in Equation (23) can be performed sepa-
rately. Expanding z̃tot on x normal surface,∫ 1

0

(
z̃tot

∣∣
x̃=1

)−1
dỹ =

∫ 1

0

((
1 + z̃D

∣∣
x̃=1

)−1 +
(

z̃acc

∣∣
x̃=1

)−1
)

dỹ

(C.1)

where z̃tot = ztot/�ct,x. Terms on the right hand side are

z̃D

∣∣
x̃=1

= zD|x̃=1

�ct,x
=
(

∂��eq

∂c

)
ĉ
∣∣
x̃=1

�ct,x ĵins

∣∣
x̃=1

=
− ˆ̃c
∣∣
x̃=1

ˆ̃c
∣∣
x̃=1

+ 1
(C.2)

and

z̃acc

∣∣
x̃=1

= zacc |x̃=1

�ct,x
= 1

iωCsurf,x�ct,x
= �x

i ω̃
(C.3)

where �x = ωRC,x/ωD,x. Plugging Equations (C.2) and (C.3) in Equa-
tion (C.1), we  can analytically perform the integral.∫ 1

0

(
z̃tot

∣∣
x̃=1

)−1
dỹ =
∫ 1

0

(
�
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x̃=1
+ i ω̃/�x

)
dỹ

=
(

i ω̃

�x

)
+

∞∑
k=1

�k

(
1 − ˇy sinh (�k)

�kˇy cosh (�k) + �2
k

sinh (�k)

)
Bk cos (�k)

(C.4)

where �k, Bk, �k, and �k are defined in Appendix B for k =
1, 2, 3, ....

The integral on y normal surface could be obtained through the
similar method:∫ 1

0

(
z̃tot

∣∣
ỹ=1

)−1

dx̃ = �−1

∫ 1

0

(
�
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ỹ=1
+
(

i ω̃/��y

))
dx̃

= 1
�

((
i ω̃

��y

)
+
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�k

(
�k sinh (�k)

ˇy cosh (�k) + �k sinh (�k)

)(
Bk sin (�k)

�k

))
(C.5)

where � =
(

�ct,y/�ct,x

)
, � = ωD,y/ωD,x, and �y = ωRC,y/ωD,y.

Putting the results together intoEquation (23), the particle



Author's personal copy

226 J. Song, M.Z. Bazant / Electrochimica Acta 131 (2014) 214–227

impedance has the following expression:

Z̃−1
p =
(

i ω̃

2

)(
1
�x

+ 	

���y

)
+ 1

2

∞∑
k=1

�kBk

⎛⎝cos (�k) +

(
	�k

��k

)
sinh (�k) sin (�k) − ˇysinh (�k) cos (�k)

�kˇy cosh (�k) + �2
k

sinh (�k)

⎞⎠
(C.6)

This solution is employed in the main article to evaluate Z̃p and
other related impedance functions.

Appendix D. The Gerischer limit of particle impedance

The Gerischer limit can be defined when the system has strongly
anisotropic diffusion but relatively even surface insertion rate. It
is also required that the charge transfer resistances are compara-
ble to the largest diffusion characteristic resistance. In our system,
such conditions are satisfied when Dch,y 
 Dch,x, � ≈ 1, and ˇx ≈ 1.
Under these conditions, the ion concentration varies much less in y
direction compared to that in x direction, and we can approximate
the concentration as a function of x only. The local variables can
be replaced by their cross-sectional average along the y direction,
which is defined as:

ˆ̄̃c (x̃) =
∫ 1

0

ˆ̃c (x̃, ỹ) dỹ (D.1)

where ˆ̄̃c is the cross-sectional average dimensionless concentra-

tion at a certain x. To obtain the governing equation for ˆ̄̃c, take the
average of each term in Equations (21).

d2 ˆ̄̃c
dx̃2

=
(

i ω̃ + �ˇy

) ˆ̄̃c + �ˇy

−ˇ−1
x
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dx̃
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= 1 + ˆ̄̃c
∣∣∣
x̃=1

d ˆ̄̃c
dx̃

∣∣∣∣∣
x̃=0

= 0

(D.2)

Instead of the second order partial derivative in y, we obtain two
terms in the governing equation: a first-order term and a constant.
Each of them functions like a first order reaction and a zeroth order
reaction, respectively. We  can therefore expect that the impedance
response would contain a Gerischer impedance element, may  be
with modification due to the zeroth order reaction term. The solu-
tion for this ODE problem is

ˆ̄̃c = D cosh (�x̃) −
(

�ˇy

i ω̃ + �ˇy

)
(D.3)

where

D = −
(

ˇx

� sinh (�) + ˇx cosh (�)

)  (
i ω̃

i ω̃ + �ˇy

)
(D.4)

and

� =
√

i ω̃ + �ˇy (D.5)

Only the charge accumulation is considered on y surface, and the
transport response on x normal surface is defined as the local
Gerischer impedance. Therefore from Equation (23), the particle
impedance becomes

Z̃p,G =
(

1
2

((
1 + z̃G

∣∣
x̃=1

)−1 +
(

z̃acc

∣∣
x̃=1

)−1
)

+1
2

	
(

z̃acc

∣∣
ỹ=1

)−1
)−1

(D.6)

where Z̃p.G and z̃G are the dimensionless particle impedance and
the dimensionless local Gerischer impedance, respectively. z̃G can
be calculated using the definition of z̃D:

z̃G = ˇx

ˆ̄̃c
∣∣∣
x̃=1(

d ˆ̄̃c/dx̃
)∣∣∣

x̃=1

= ˇx

�
coth (�) +

(
�ˇy

i ω̃

)  (
1 + ˇx coth (�)

�

)
(D.7)

Then, Z̃p.G becomes

Z̃−1
p,G

=
(

i ω̃

2

)(
1
�x

+ 	

���y

)
+ 1

2

[(
1 + �ˇy

i ω̃

)(
1 + ˇx coth (�)

�

)]−1

(D.8)

where ˇx coth (�) /� is the bounded Gerischer impedance element.
The additional term in the prefactor, �ˇy/i ω̃, is attributed to the
constant term in the governing equation, Equation (D.2).
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