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a b s t r a c t

A general continuum theory is developed for ion intercalation dynamics in a single crystal of rechargeable-
battery composite electrode material. It is based on an existing phase-field formulation of the bulk free
energy and incorporates two crucial effects: (i) anisotropic ionic mobility in the crystal and (ii) surface
reactions governing the flux of ions across the electrode/electrolyte interface, depending on the local free
energy difference. Although the phase boundary can form a classical diffusive “shrinking core” when the
dynamics is bulk-transport-limited, the theory also predicts a new regime of surface-reaction-limited
(SRL) dynamics, where the phase boundary extends from surface to surface along planes of fast ionic
diffusion, consistent with recent experiments on LiFePO4. In the SRL regime, the theory produces a fun-
damentally new equation for phase transformation dynamics, which admits traveling-wave solutions.
Rather than forming a shrinking core of untransformed material, the phase boundary advances by filling
(or emptying) successive channels of fast diffusion in the crystal. By considering the random nucleation of
LiFePO4

SRL phase-transformation waves, the theory predicts a very different picture of charge/discharge dynam-
ics from the classical diffusion-limited model, which could affect the interpretation of experimental data
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for LiFePO4.

. Introduction

LiFePO4is widely considered to be a promising cathode material
or high-rate Li-ion rechargeable batteries, so it provides a natu-
al setting to develop mathematical models of charge/discharge
ynamics. The high practical capacity and reasonable operating
oltage of the material, along with its nontoxicity and potential low
ost, make it well-suited for large-scale battery applications [1–3].
nlike many other cathode materials that increase their Li concen-

ration in a continuous solid solution, LixFePO4only exists for x ≈ 0
nd x ≈ 1 [4] and charges or discharges with Li by changing the
raction of phase with x ≈ 0 and x ≈ 1. This tendency for phase sep-
ration, coupled with strong crystal anisotropy, poses significant
hallenges for any attempt to describe intercalation dynamics with
ontinuum models, which until now have been limited to isotropic

shrinking-core” models [5,6].

In contrast to the simplicity of current continuum models,
ather complex phase-transformation and transport properties
ave been revealed by atomistic simulations [7–10]. For example,
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rst-principles calculations have shown that Li diffusion in the bulk
ePO4crystal is highly anisotropic [7,8]. Li is essentially constrained
o 1D channels in the (0 1 0) direction, as depicted in Fig. 1. The lat-
ice mismatch at the FePO4/LiFePO4phase boundary is significant
5% in the x direction, shown in Fig. 1), and recent work has inves-
igated the differences in elastic properties between the lithiated
nd unlithiated material [11]. Atomistic simulations have also sug-
ested that electrons in the crystal may diffuse as small, localized
olarons confined to planes parallel to the Li channels [12–14].

Recent experiments have confirmed the anisotropic transport
nd phase separation of Li in single crystal LiFePO4[15–17]. More-
ver, detailed microscopy in these studies has revealed that the
ePO4/LiFePO4phase boundary is a well-defined interface that
xtends through the bulk crystal to the surface. In experiments, the
hase boundary has a characteristic width of several nanometers
n the surface [16], although this width is probably broadened by
xperimental resolution, and Li insertion and extraction seem to
e concentrated in this region, with negligible transfer occurring
n either the FePO4or LiFePO4phases. Notably, the phase boundary
oves orthogonally to the direction of the surface flux, indicating

hat as Li insertion (extraction) proceeds, layers of the 1D channels
re progressively filled (emptied). The observation of surface cracks
nd their alignment with the phase boundary [15] also reinforces

http://www.sciencedirect.com/science/journal/00134686
mailto:bazant@math.mit.edu
dx.doi.org/10.1016/j.electacta.2008.03.083
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Fig. 1. Schematic of plate-like single crystals of LiFePO4. Li is confined to 1D channels
in the y direction, and channels are stacked in layers parallel to the yzplane, indicated
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maintaining concentration gradients of different orientations in the
y the dotted lines. Typical dimensions of single crystals are 2 �m × 0.2 �m × 4 �m
n the x, y, z dimensions, respectively [15]. For each direction, the corresponding
pace group Pnma axis and Miller index are shown in parentheses.

he view that the FePO4/LiFePO4 lattice mismatch plays an impor-
ant role in the electrochemical function of the material, as may the
ssociated stress field [18].

In light of the understanding gained from these atomistic
nd experimental studies, the continuum theory of transport and
hase separation in LiFePO4merits renewed attention. The prevail-

ng shrinking-core model can be traced to a qualitative picture
ccompanying the first experimental demonstration of the material
s an intercalation electrode [1]. This model assumes a grow-
ng shell of one phase surrounding a shrinking core of the other
hase, with the shell and core phases determined by the direc-
ion of the net Li flux: a LiFePO4shell surrounds an FePO4core
uring Li insertion (battery discharging); an FePO4 shell sur-
ounds a LiFePO4 core during Li extraction (battery charging). It
s important to note that in such a model the boundary between
he shell and core phases is entirely contained within the bulk
f the material and moves parallel to the direction of the Li
ux, in contrast to the observations of the experiments cited
bove.

The current state of mathematical modeling of ion intercala-
ion is based on the shrinking-core concept with some further
implifying assumptions. In earlier work, a simplified version of
he model was mathematically formulated by Srinivasan and New-

an [5] and incorporated into an existing theory for transport in
omposite cathodes [6]. In their model, FePO4is treated as a contin-
ous, isotropic material, and Li is inserted and extracted uniformly
ver the surface of a spherical FePO4particle. The phase boundary
s defined as where the compositions Li�FePO4/Li1−�FePO4 coex-
st, with � � 1 specifying the equilibrium composition between
he Li-poor and Li-rich phases, and no nucleation constraints are
ncluded. Only Li transport in the shell is considered and modeled
y an isotropic, constant diffusivity diffusion equation, while the
elocity of the phase boundary is prescribed by a mass balance
cross the boundary. Thus, for Li insertion (extraction), diffusion
n the growing shell occurs between the surface Li concentration
nd 1 − � (�). The value of � is set as a parameter in the numerical
olution of the model.

In this paper, we develop a continuum theory for ionic trans-
ort and phase separation in single-crystal rechargeable battery
aterials, motivated by the special case of LiFePO4, but also more

enerally applicable. Our theory accounts for anisotropic ionic dif-
usion in the bulk as well as the formation and dynamics of a
ocalized phase boundary, driven by surface reactions at the elec-
rolyte/electrode interface. We utilize an existing phase-field model
or the free energy of the system, which has been used to calculate
he Li chemical potential in FePO4[19]; the bulk transport equa-

ion and surface reaction rates for Li are then derived in terms of
his chemical potential. The phase-field approach provides a sound
hermodynamic basis for studying the system and also directly con-
ects our theory to first-principles atomistic modeling, which can

s
(
p
fi
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ccurately compute chemical potentials in a wide range of interca-
ation compounds [20,21].

In this initial effort, we neglect the possibility of charge separa-
ion and assume that electrons are freely available in the material
o compensate ionic charges; the presence of multiple diffusing
nd migrating charged species (interacting through an electrostatic
otential) can be modeled as an extension of the general framework
e present. We also avoid an explicit treatment of stresses gener-

ted by mismatch strain across the phase boundary, which could
lay an important role in some processes. Instead, we indicate how
lastic energy could be added to the model and note that a term in
he phase-field formulation may serve as a local approximation of
he lattice-mismatch energy. In any case, we will see that this sim-
le approach already suffices to explain some of unusual features
f phase-transformation dynamics in LiFePO4.

The paper is organized as follows. In Section 2, we begin by
eveloping a general model for intercalation dynamics, notably
aking into account crystal anisotropy and the tendency for phase
eparation, as well as composition dependence of surface reac-
ions. That section concludes with a discussion of possible regimes
f phase-transformation dynamics in strongly phase separating
aterials, including a new regime of surface-reaction-limited (SRL)

ynamics, where the flux is concentrated at a phase boundary
hat extends to the surface along channels of fast bulk diffusion.
he SRL regime, which has obvious relevance for LiFePO4, is ana-

yzed in detail in Section 3, where a reduced depth-integrated
odel is derived and shown to have wave solutions, which

re characterized in detail. The fundamental implications of SRL
hase-transformation waves for current–voltage measurements
re discussed in Section 4, and we close with some general con-
lusions.

. General mathematical model

In this section, we present a general continuum framework to
escribe intercalation dynamics in rechargeable battery materials.

n principle, our model can be adapted to arbitrary intercala-
ion compounds, not only phase separating systems, such as
ePO4/LiFePO4, but also materials forming solid solutions, such
s LixCoO2, depending on the parameters. For a given material,
epending on the chemical driving force and physical constants,
here can be different modes of phase-transformation dynam-
cs. In the next section, we will focus on a new dynamical

ode limited by surface reactions in a strongly anisotropic crys-
al, which clearly could not be described by existing isotropic

odels.

.1. Phase-field formulation

We follow the conventional Cahn–Hilliard phase-field model
22] applied to an anisotropic intercalation compound, where the
otal free energy of the system is expressed as a functional of the
ocal ionic concentration

=
∫ [

f̄ (c) + 1
2

∇c · K∇c
]

dr, (1)

here c is the dimensionless, normalized concentration (0 < c <
), f̄ (c) the homogeneous free energy density, and K is a symmet-
ic, positive definite tensor that represents the energy penalties for
ystem. An isotropic version of this phase-field model with Kij = Kıij

where ıij is the Kronecker delta function, or identity matrix) has
reviously been developed for bulk transport in LiFePO4 with f̄ (c)
tted to atomistic simulations [19], although in this section we
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Fig. 2. Transport models obtained in different limits of the characteristic timescales
for bulk diffusion and surface reactions. Figures show xy cross sections of spherical
and plate-like single crystals during Li insertion, after phase nucleation has occurred.
Lithiated portions of the crystal are shaded, and points outside particles represent
flux of Li ions across the electrode/electrolyte interface (shown only for spheri-
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nvision more general applications. (For a recent review of phase-
ransformation modeling in solids, see Ref. [23].)

In strongly phase separating systems, the phase boundary usu-
lly coincides with the concentration gradient, so the gradient
enalty in (1) can be regarded as approximating related contri-
utions to the free energy. Phase-field models have also been
eveloped, which include long-range elastic contributions to the
ree energy [24,25], but here we restrict ourselves to the sim-
ler formulation above in order to focus on other effects, namely
nisotropic transport and surface reactions. In this spirit, we also
gnore any surface contributions to the free energy, such as the
ension of the electrode/electrolyte interface.

In the simplest continuum approximation of intercalation into
crystal lattice, the homogeneous, bulk free energy density takes

he form of a regular solution model

¯(c) = ac(1 − c) + �kT [c ln c + (1 − c) ln(1 − c)] , (2)

here a is the average energy density (in a mean field sense) of
he interaction between Li ions, � the number of intercalation sites
er unit volume, k the Boltzmann’s constant, and T is the temper-
ture. The first term in (2), the enthalpic contribution to the free
nergy, promotes separation of the system to c = 0 or 1, while the
econd term, the entropic contribution, favors mixing of the system.
herefore, the strength of the phase separation is characterized by
he dimensionless ratio a/�kT .

The chemical potential of an ion in the host crystal is calculated
s a variational derivative of the free energy

= ıF

ıc
= �̄ − ∇ · K∇c, (3)

here we define �̄ as the homogeneous chemical potential

¯ = ∂f̄

∂c
= a(1 − 2c) + �kT ln

(
c

1 − c

)
. (4)

While in general, the two phase compositions in equilibrium
cross the miscibility gap are determined by the common tangent
onstruction, in the symmetric free energy f̄ of (2) these composi-
ions correspond to �̄ = 0. These roots cannot be found analytically
rom (4), but asymptotic approximations in the small parameter
kT/a can be obtained; two term expansions are

− ∼ e−a/�kT
(

1 + a

�kT
e−a/�kT

)
, (5)

+ ∼ 1 − c−, (6)

here c− is the root near c = 0 and c+ is the root near c = 1. As
ay be expected, c± approach the concentration extremes expo-

entially in a/(�kT). While nucleation may be required to form a
econd phase for compositions in the miscibility gap, spontaneous
hase separation occurs when the composition is within the spin-
dals. The spinodals correspond to the zeros of the curvature of the
ree energy and can be determined from (2) as

sp = 1 ±
√

1 − 2�kT/a

2
. (7)

We observe that a > 2�kT is required for distinct, physically
eaningful spinodal compositions.

.2. Anisotropic bulk transport

Intercalation compounds typically have anisotropic layered

rystal structures, where ions diffuse much more easily in cer-
ain directions than others. In standard transition-metal (M) oxide

aterials of the form LixMO2, ions tend to move more freely
etween oxide layers than in the transverse direction [26]. The
obility of Li in FePO4is even more complicated. As described

t

�

al particles). The FePO4/LiFePO4 phase boundary is denoted by the dashed line,
nd arrows indicate movement of the boundary as insertion proceeds. (a) Isotropic
ulk transport limited. (b) Anisotropic bulk transport limited. (c) Anisotropic surface
eaction limited.

bove, Li migration in the bulk crystal is confined to 1D channels
n the (0 1 0) direction, labeled as y in Fig. 2. Some diffusion in
ther directions may occur due to defects in the crystal lattice or
racks caused by the FePO4/LiFePO4lattice mismatch, as have been
bserved experimentally [15,16]. Experiments [15,16] have found
hat layers of stacked 1D channels in the z direction are progres-
ively filled or emptied as the phase boundary moves across the
ayers in the x direction, indicating that transport in the z direction
s faster than transport in the x direction.

In general, therefore, we must postulate a tensorial relation for
he ionic flux

= −cB∇�, (8)

here we make the standard approximation of linear response to
hemical potential gradients with a symmetric, positive definite
obility tensor B. In the common case of an orthorhombic crystal,

his tensor is diagonal, Bij = biiıij , but it is generally not isotropic. For
xample, we have b11 � b33 � b22 for Li in FePO4, where the indices
, 2, 3 correspond to the x, y, z directions, respectively, defined in
ig. 1. In commonly used intercalation oxides, such as CoO2(which
as hexagonal crystal structure), the mobility of Li in any direction
onfined between oxide layers is likewise much greater than in any
ut-of-plane direction.
With the ionic fluxes thus defined, the dynamics of the concen-
ration profile is governed by the mass conservation law

∂c

∂t
+ ∇ · j = 0, (9)
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here the factor of � (density of intercalation sites) is needed for
imensional consistency.

The diffusivity tensor is determined from the mobility tensor by
he Einstein relation D = kTB. Note that D can, in general, depend on
osition or concentration. Even if it is constant, the phase-field for-
ulation of the flux density (8) implies a concentration-dependent

hemical diffusivity,

chem(c) = B
c

�

d�̄

dc
= D

(
1 − 2ac

�kT
+ c

1 − c

)
(10)

hich would enter into a nonlinear generalization of Fick’s Law, j =
Dchem�∇c in the limit of negligible gradient penalty (|∇ · K∇c| �

�̄|). In this case, our use of the regular solution model (2) leads
o two concentration-dependent terms in (10): the first, enthalpic
erm promoting phase separation and the second, entropic term
nforcing volume constraints. For the solid-solution compound
ixCoO2, first principles calculations have shown that the chemi-
al diffusivity is a highly nonlinear function of the Li concentration,
arying by several orders of magnitude over the composition range
26]. Such effects can be less dramatic in strongly phase separat-
ng materials, at least in the model. Even with the non-Fickian flux
rom the gradient penalty term in (8), numerical solutions of the
ame model applied to LiFePO4have shown that both potentiostatic
nd galvanostatic response can be reasonably approximated by an
ffective Fickian diffusion coefficient Deff.

.3. Surface reactions

We assume that Arrhenius kinetics govern the insertion and
xtraction rates of ions across the electrode/electrolyte interface,
here the activation energies are related to the difference in

hemical potential of ions across the interface, which provides
he thermodynamic driving force. In standard models of elec-
rochemical charge-transfer reactions, such as the Butler–Volmer
quation [27,28], activation energies depend only on the difference
n electrostatic potential, and concentration-dependent chemical
nteractions of ions with other molecules in the two phases are
eglected. In our model, the overpotential biasing the reactions
ould be explicitly described by adding electrostatic energy to the
hemical potentials, but here we choose to focus instead on novel
ffects of compositional changes in the crystal on the local reaction
ate.

For simplicity, we assume that the chemical potential of ions
n the host crystal, � in Eq. (3), is valid everywhere on the elec-
rode surface where transfer reactions occur, (crucially) including
he gradient penalty term. By also using the bulk chemical potential
or ions at the crystal surface, we are neglecting the possibility of
ny variation in the chemical potential at the electrode/electrolyte
nterface, e.g. due to surface orientation or surface curvature, as
oted above [29]. In reality, electron-transfer reactions must also
ccur at the intersection of three phases—the host crystal in contact
ith composite matrix containing the electrolyte and an electron-

onducting phase, whose local structure we also neglect in our
implified treatment.

With these assumptions, we postulate the following form for
he insertion rate density of ions into the host crystal

ins = kinsce e(�e−�)/(�kT), (11)

here kins is the insertion rate coefficient, and ce and �e are the
oncentration and chemical potential of Li in the electrolyte, respec-

ively. Note that since ce is expressed as a dimensionless filling
raction, Rins and kins have dimensions of inverse time. In alter-
ate formulations of the model, different forms for the reaction rate
ould be assumed (see below), but the key feature for our predic-
ions below is the Arrhenius dependence on the chemical potential

t
s
v
i
�
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f intercalated ions in the crystal, given by the phase-field model
bove.

In a more complete battery model, ce and �e would be deter-
ined by solving the appropriate transport equations for ions in the

lectrolyte, as well as possibly electrons in the conducting phase.
owever, since we focus here on ion transport in the intercala-

ion compound, we ignore variations in the electrolyte and take
e and �e to be constants. Our formulation therefore describes
otentiostatic, or constant chemical equilibrium, conditions in the
lectrolyte, with the interfacial transfer of ions as the rate limiting
rocess. Absorbing the (dimensionless) constant ce into kins then
ives

ins = kins eˇ(�e−�) = R̄ins eˇ∇·K∇c, (12)

here ˇ = 1/(�kT) and R̄ins is the homogeneous insertion rate

¯ ins = kins

(
1 − c

c

)
eˇ[�e−a(1−2c)]. (13)

Similarly, the extraction rate is assumed to have the form

ext = kextc eˇ(�−�e) = R̄ext e−ˇ∇·K∇c, (14)

here R̄ext is the homogeneous extraction rate

¯ ext = kext

(
c2

1 − c

)
eˇ[a(1−2c)−�e]. (15)

Finally, the net rate of insertion is

= Rins − Rext = R̄ins eˇ∇·K∇c − R̄ext e−ˇ∇·K∇c, (16)

= kins

(
1 − c

c

)
eˇ[�e−a(1−2c)+∇·K∇c]

− kext

(
c2

1 − c

)
eˇ[a(1−2c)−�e−∇·K∇c]. (17)

Note that in this formulation there is broken symmetry about
= 1/2 in the net reaction rate.

The boundary conditions for (9) on the crystal surface express
ass conservation at the electrode/electrolyte interface,

· j = −�sR, (18)

here n is the unit normal vector directed out of the crystal, and �s

s the number of intercalation sites per unit area, which depends on
he orientation of the surface. Consistent with our neglect of surface
xcess chemical potential, we neglect the possibility of a surface
ux density js, whose surface divergence ∇s · js would appear as an
xtra term on the right hand side of (18).

Before continuing, it is worth emphasizing the unusual com-
ositional dependence of these expressions. We are not aware of
ny prior model of chemical reaction kinetics (not only in electro-
hemistry) where concentration gradients contribute to the activation
nergy. This will turn out to be an essential ingredient for our pre-
iction of phase-transformation waves transverse to the lithium
ux in the following sections. Here such novel terms arise via the
radient penalty in the chemical potential from a phase-field model
sed on one side of the reaction interface.

As long as this crucial feature is maintained, we expect the
ualitative predictions below to be robust for a variety of differ-
nt models for the reaction rate. Here, we adopt Eq. (16) simply as
n example in this class, which leads to new modes of intercala-

ion dynamics. Alternate forms for the reaction rate can be derived
ystematically from transition rate theory, assuming thermal acti-
ation over a chemical potential energy barrier [30]. For example,
f we define excess chemical potentials, �ex = � − �kT log c and

ex
e = �e − �kT log ce, and shift the barrier in proportion to the
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hermodynamic driving force, ��ex = �ex
e − �ex, then the net

nsertion rate is

= Rins − Rext = k0
(

ce e˛insˇ ��ex − c e−˛extˇ ��ex)
(19)

here k0 is a rate constant and ˛ins and ˛ext are (positive) transfer
oefficients, analogous to those standard models for electrochemi-
al reactions [28], where �� is simply a voltage difference, without
ny compositional dependence. In contrast, in Eq. (16) we have arbi-
rarily replaced ��ex with �� = �e − � and set ˛ins = ˛ext = 1
o avoid introducing additional parameters, but this modifies the
oncentration dependence of R̄ins and R̄ext. In the context of transi-
ion rate theory, one would instead require ˛ins + ˛ext = 1 to satisfy
e Donder’s relation, Rins/Rext = eˇ��, and different models of the
ctivation free energy could also be postulated. Exploring such
odifications of the reaction rate on phase-transformation dynam-

cs in our theory is a subject of current work in our group, beyond
he scope of this paper.

.4. Fundamental regimes of phase-transformation dynamics

The general model from the preceding sections describes a
eaction-diffusion system with a composition-dependent reaction
ate R and an anisotropic chemical diffusivity Dchem. For strongly
hase-separating systems (our primary interest here), we can make
ome simple scaling arguments to try to anticipate its basic dynam-
cal regimes, sketched in Fig. 2. For the purpose of these crude
stimates, we ignore composition dependence of the reaction rate,
xcept to note that it is focused on regions of varying composition
y the gradient term. Motivated by the simulations of Han et al. [19]
ith the same bulk phase-field model, we assign a constant effec-

ive Fickian diffusivity Deff
i

to each coordinate direction (i = x, y, z),
long which the crystal has a typical length scale Li and reaction
ate Ri.

With these gross simplifications, in a given direction i, the char-
cteristic timescales for bulk diffusion and surface reactions are

D
i = L2

i

Deff
i

and tR
i = 1

Ri
, (20)

espectively. The dimensionless ratio of these timescales is a
amkohler number

ai = tD
i

tR
i

= RiL
2
i

Deff
i

. (21)

An isotropic bulk-transport-limited (BTL) process, where bulk dif-
usion in all directions is much slower than surface reactions, is
haracterized by

ax = Day = Daz � 1. (22)

In this regime, the phase boundary is entirely contained within
he material and moves along the direction of the ionic flux, as
hown in Fig. 2 a. In the special case of a spherical phase boundary
n a spherical, isotropic crystal, the phase boundary ressembles a
hrinking core [5].

Anisotropic BTL phase transformation dynamics involves much
aster diffusion in one or more crystal directions, while still slower
han surface reactions. For example, in layered intercalation com-
ounds, such as LiCoO2, diffusion is much faster between oxide
lanes in parallel directions than in the perpendicular direction
cross those planes. The case of fast one-dimensional diffusion

hannels, examplified by LiFePO4, is depicted in Fig. 2 b. Here, dif-
usion in the x and z directions is negligible, while diffusion in the

ore accessible y direction is much slower than surface reactions:

ax, Daz � Day � 1, (23)

d
v
L
1
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In this regime, the phase boundary still ressembles a shrinking
ore in the bulk, but ions are confined to 1D channels in the y direc-
ion. Here, anisotropy alters the shape of the phase interface, but
ot its basic diffusive dynamics.

In classical reaction-diffusion models, these dynamical regimes
re contrasted with isotropic surface-reaction-limited processes,
here surface reactions are slower than bulk transport in all direc-

ions:

ax, Day, Daz � 1 (24)

In this regime, bulk transport is fast enough equilibrate the con-
entration to a nearly constant value c(t) across the material, which
aries uniformly at the slowest reaction time scale. (This case of
patially homogeneous dynamics is not shown in the figure.)

Motivated by the experiments and simulations of LiFePO4
escribed above, we focus on a new dynamical regime where sur-

ace reactions are much slower than diffusion in the y direction but
uch faster than diffusion in the x and z directions. Thus, we study

he limit

ax, Daz � 1 � Day, (25)

llustrated in Fig. 2 c. The phase boundary in this regime extends
hrough the bulk of the material to the xzsurfaces, and thus allows
he dominant reaction-rate Ry to be focused there by the gradient-
enalty term. The phase boundary then moves in such a way that
ach channel is almost completely lithiated (delithiated) before
nsertion (extraction) progresses to an adjacent channel. For such
n anisotropic surface-reaction-limited process, our general model
educes to a fundamentally new, depth-averaged equation gov-
rning the transport and phase separation dynamics. The reduced
odel predicts phase transformation by nonlinear wave propaga-

ion, rather than a classical diffusive process.
Before analyzing this behavior in the next section, we stress that

ransitions between the different dynamical regimes in our general
odel can be induced by changing the applied potential, the size

nd shape of the crystal and/or the diffusivities (e.g. by the forma-
ion of crystal defects [31]). For example, the SRL wave dynamics is
xpected to breakdown and give way to a BTL regime if the depth Ly

f the crystal becomes large enough or Deff
y becomes small enough

hat Day > 1. A similar transition occurs if the strength of the driv-
ng electrochemical potential |�e| is increased, due to enhanced
eaction rates, Ri.

Of course, these reaction-diffusion arguments are oversimpli-
ed and only give a sense of possible dynamical regimes in the
eneral model. For example, the reaction rates Ri, and thus the
eaction times tR

i
, are non-uniform in time and space and depend

n the evolving concentration profile in all regimes. The reaction
ates also depend on other physical parameters, such as the gradient
enalty tensor Kij and phase-separation energy a. The same param-
ters affect bulk transport by introducing nonlinear concentration
ependence, as noted above. There may also be subtle differences
etween potentiostatic and galvanostatic response [19]. A detailed
arametric study of dynamical transitions in our model is beyond
he scope of this paper and will be the subject of future work.

. Surface-reaction-limited phase-transformation waves

.1. Depth-integrated model
We now develop a special limit of the general model that
escribes SRL phase-transformation dynamics, which is rele-
ant for strongly anisotropic phase-separating systems such as
iFePO4/FePO4. We assume that fast diffusion in the y oriented
D channels rapidly equilibrates the bulk Li concentration to the
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urface concentration. A depth-averaged concentration c̄ on the xz
urface can therefore be defined as

¯ = 1
Ly(x, z)

∫
c(x, y, z, t) dy, (26)

here Ly(x, z) is the depth of the crystal in the y direction, from
urface to surface.

By depth-averaging the bulk transport Eq. (9), using the bound-
ry condition (18), we find that the dynamics of c̄ are governed
olely by the surface reaction rate R, acting as a source term on the
zsurface,

�Ly(x, z)
2�s(x, z)

)
∂c̄

∂t
= R(c̄, ∇ · K∇ c̄), (27)

here �s(x, z) is the number of atoms per unit area, dependent
n the local orientation of the crystal surface. As noted above, a
urface diffusion term could also be explicitly added to (27), but we
hall see that the reaction rate R already produces weak xz diffusion
ue to the gradient penalty, which suffices to propagate the phase
oundary along the surface.

Eq. (27) describes a fundamentally different type of phase
ransformation dynamics. From a mathematical point of view, the
triking feature is that the Laplacian term ∇2c̄ appears in a non-
inear source term, as opposed to the additive quasilinear term in
lassical reaction-diffusion equations. We are not aware of any prior
tudy of this type of equation, so it begs mathematical analysis to
haracterize its solutions.

Here, we begin this task by making some simplifying assump-
ions, which allow us to highlight new nonlinear wave phenomena
escribed by (27). As noted above, experiments indicate that lay-
rs of 1D channels along the yz plane are progressively filled or
mptied as Li transfer proceeds, so it is natural to neglect concen-
ration variations in the z direction as a first approximation, for a
lanar phase boundary spanning the crystal. In that case, we only
eed one component of the gradient penalty tensor in the phase
eld model, Kx = K , in the x direction of wave propagation. We also
eglect depth variations, Ly = constant, and assume constant sur-

ace orientation, �s = constant, which corresponds to the common
ase of a plate-like crystal.

.2. Dimensionless formulation

A dimensionless form of the model, suitable for mathematical
nalysis, is found by scaling each variable to its natural units. The Li
oncentration is already expressed as a dimensionless filling frac-
ion per channel c̄, which will depend on the dimensionless position

˜ = x/L and time t̃ = t/�. Position is scaled to a length L = Lx, which
haracterizes the size of the crystal surface along which the SRL
hase transformation propagates. The natural time scale from (27)

s

= �Ly

2�skins
, (28)

hich is the time required for the insertion reaction to fill a single
ast-diffusion channel in the crystal (from both sides). Note that this
ime scale is proportional to the depth of the crystal, Ly.

There are four dimensionless groups which govern the solution.
he first is the ratio of reaction-rate constants
= kext

kins
, (29)

hich measures asymmetry in the extraction and insertion reac-
ion kinetics. By scaling energy density to the thermal energy

o
t
f
e

cta 53 (2008) 7599–7613

ensity �kT , we arrive at three more dimensionless parameters:

˜ = a

�kT
, �̃e = �e

�kT
, (30)

nd

˜ =
√

Kx

�kTL2
= 	

L
. (31)

The latter formula makes it clear that the natural length scale for
he phase boundary thickness, set by the gradient penalty in the free
nergy, is 	 =

√
Kx/(�kT). Since 	 is an atomic length scale (1 Åto

0 nm) much smaller than the crystal size (10 nm to 10 �m), the
arameter 	̃ is typically small and lies in the range 10−5 < 	̃ < 1.

With these scalings and assuming Eq. (16) for the reaction rate,
he SRL phase-transformation Eq. (27) takes the dimensionless
orm

∂c̄

∂t̃
=

(
1 − c̄

c̄

)
e�̃e−ã(1−2c̄)+	̃2(∂2 c̄/∂x̃2)

− �

(
c̄2

1 − c̄

)
eã(1−2c̄)−�̃e−	̃2(∂2 c̄/∂x̃2), (32)

We will study solutions to this new nonlinear partial differential
quation in the following sections, but we already can gain some
nsight by considering the limit of a sharp phase boundary, 	̃ � 1, as
iscussed above. Expanding (32) for small 	̃, we obtain a reaction-
iffusion equation at leading order,

∂c̄

∂t̃
= 	̃2(R̃ins + R̃ext)

∂2c̄

∂x̃2
+ (R̃ins − R̃ext), (33)

here R̃ins and R̃ext are the dimensionless homogeneous reaction
ates

˜ ins =
(

1 − c̄

c̄

)
e�̃e−ã(1−2c̄) (34)

˜ext = �

(
c̄2

1 − c̄

)
eã(1−2c̄)−�̃e . (35)

Thus, we see that (32) has a direct analog to a reaction-diffusion
quation with a weak, concentration dependent diffusivity and
onlinear source term, in the appropriate physical limit of an atom-

cally sharp phase boundary. The detailed structure and dynamics
f the phase boundary, however, must be obtained by solving the
ull equation (32). Representative plots of the homogeneous net
nsertion rate R̃ins − R̃ext are shown in Fig. 3.

.3. Wave solutions

Eq. (32) admits traveling-wave solutions, which physically cor-
espond to phase-transformation waves, propagating through the
rystal with steadily translating depth-averaged concentration pro-
le. In Appendix B, we give technical arguments to show that Eq.
32) has solutions of the form

¯(x̃, t̃) = g(x̃ − ṽt̃), (36)

here g(
) is a steady depth-averaged concentration profile in
he variable 
 = x̃ − ṽt̃. A key conclusion is that the dimensionless
elocity ṽ is the same for all fully developed waves. As described
elow, the eventual shape and velocity of a wave depend only on
he physical parameters and not on the initial conditions.
To avoid mathematical complexity, in this section we focus
n numerical solutions of (32) to demonstrate how phase-
ransformation waves are triggered by concentration fluctuations
rom a globally unfavorable (but locally stable) configuration in the
xternal chemical potential. We solve (32) with an explicit finite
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Fig. 4. Numerically computed phase transformation waves during insertion and
extraction. Dashed lines show initial conditions; solid lines show concentration
profiles at uniformly spaced times, with arrows indicating direction of wave propa-
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ig. 3. Dimensionless homogeneous net insertion rate. (a) �̃e = 0, � = 1, ã =
, . . . , 5 as labeled in figure. (b) ã = 5, � = 1, �̃e = −2, . . . , 2 as labeled in figure.

ifference method, second order in space and time. Representative
hase transformation waves during Li insertion and extraction are
hown in Fig. 4. For these simulations, ã = 5 and 	̃ = 1, similar to
he values given in [19]. The choice of 	̃ corresponds to the dimen-
ional lengthscales 	 = L = 10 nm. Although there is no available
xperimental or simulational data on the rate coefficients kins and
ext, we expect that the insertion and extraction reactions occur on
he same timescale and therefore assume � = 1.

Insertion or extraction is forced by raising or lowering the
lectrolyte chemical potential �̃e to promote transfer in one direc-
ion and inhibit transfer in the other; �̃e = 0.5 for the insertion
rocess in Fig. 4 a, and �̃e = −1 for the extraction process in
ig. 4 b. The initial conditions for the insertion and extraction
aves, denoted by dashed lines in the plots, are Gaussian fluctu-

tions of the composition representing nucleations of the lithiated
nd unlithiated phases, respectively. For the insertion in Fig. 4
, c̄(x̃, 0) = 0.1 + 0.8 exp(−x̃2), and for the extraction in Fig. 4 b,

¯(x̃, 0) = 0.9 − 0.8 exp(−x̃2).
In the SRL regime, the initial composition fluctuation rapidly

evelops into two wavefronts bounded by the locally stable
quilibrium Li-poor and Li-rich concentrations c̄ = g1 and c̄ = g3,
espectively. This process is driven by the existence of an inter-
ediate, locally unstable equilibrium concentration, c̄ = g2, where
< g1 < g2 < g3 < 1. In strongly phase separating systems such as
iFePO4, which correspond to ã � 1 in our model, we have g1 ≈ 0,
2 ≈ 1/2, and g3 ≈ 1. (For definitions of g1, g2 and g3 and approxi-
ations for ã → ∞, see Appendix B.)
The development of a fully formed wave from a concentration

uctuation involves both insertion and extraction in the vicinity of

N
t
c
n
v

ation. For both insertion and extraction: ã = 5, � = 1, 	̃ = 1. (a) Insertion wave with
˜ e = 0.5, c̄(x̃, 0) = 0.1 + 0.8 exp(−x̃2). (b) Extraction wave with �̃e = −1, c̄(x̃, 0) =
.9 − 0.8 exp(−x̃2).

he wavefront. During the insertion process in Fig. 4 a, the max-
mum concentration of the initial fluctuation grows to g3, while
he low concentration baseline decays to g1. Conversely, for the
xtraction process in Fig. 4 b, the minimum concentration decays
o g1, and the high concentration baseline grows to g3. Once fully
eveloped wavefronts form, they propagate to the right and left
ith a constant velocity. We have verified that the velocity of a

ully developed wavefront is constant for all times in the numerical
imulations, as predicted by the analysis in Appendix B.

Not all initial conditions give rise to traveling waves, as shown
n Fig. 5. The key requirement for the formation of traveling waves
s that the initial condition supports both addition and removal of
i in the domain, that is R(x, 0) must change sign. The simultaneous
ddition and removal of material sharpen the initial composition
uctuation to a phase separating wavefront. In the failed inser-
ion event shown in Fig. 5 a, only extraction occurs, and the initial
omposition perturbation decays to a uniform concentration of g1.
imilarly, Fig. 5 b presents a failed extraction event where the ini-
ial composition depression fills up to a uniform concentration of g3.
ote that R(x, 0) depends on the Laplacian of the initial concentra-
ion profile c̄(x, 0), and thus different initial conditions with equal
omposition ranges but varying spatial distributions will or will
ot produce traveling waves. This behavior has been numerically
erified.
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Fig. 5. Numerically computed failed insertion and extraction events. Dashed lines
show initial conditions; solid lines show concentration profiles at uniformly spaced
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imes, with arrows indicating direction of profile movement. For both inser-
ion and extraction: ã = 5, � = 1, 	̃ = 1. (a) Failed insertion event with �̃e = 0.5,

¯(x̃, 0) = 0.1 + 0.1 exp(−x̃2). (b) Failed extraction event with �̃e = −1, c̄(x̃, 0) =
.9 − 0.1 exp(−x̃2).

The dependence of the formation of traveling waves on the ini-
ial condition relates to the nucleation of the phase separation.

hen a fluctuation is too small so that its amplitude does not reach
he spinodal limits or its spatial extent is too small, it will decay,
ut heterogeneous nucleation may change this behavior. During

nsertion, for example, the lithiated phase may first nucleate at
ome atomic scale inhomogeneity on the crystal surface where it is
nergetically favorable for Li atoms to collect. Our theory does not
ccount for such features. Moreover, as the FePO4/LiFePO4 phase
oundary width 	 is nearly at the atomic scale, applying a contin-
um equation for nucleation below this scale may not be physically
elevant. We note, however, that continuum nucleation could be
tudied in other SRL systems with larger 	.

.4. Scalings of the wave width and velocity

The crucial properties of an SRL wave are its velocity and width,
ach of which depend on physical parameters in ways that could
e experimentally accessible. The wave velocity is related to the
urrent versus time in response to an applied voltage, or vice versa,

s explained in the next section. The wave width could in principle
e observed by removing the driving force for the phase transfor-
ation and measuring the concentration profile.
The dependence of any quantity of interest on the physical

arameters can be obtained by dimensional analysis [32], sup-

w
l
f

ig. 6. Scaling of computed wave (a) width and (b) velocity with 	̃. Parameters:
˜ = 5, � = 1, �̃e = 0.5, c̄(x̃, 0) = 0.1 + 0.8 exp(−x̃2).

lemented by numerical simulations to calculate dimensionless
caling functions. For example, considering the units of the physical
arameters, the wave width can be written in the general form,

= LFw

(
	

L
,

a

�kT
,

�e

�kT
,

kext

kins

)
(37)

here Fw(	̃, ã, �̃e, �) is a scaling function. Since the width w should
ot depend on the size of the crystal L in the limit of a sharp phase
oundary, we must have w̃ = Fw ∼ 	̃fw or w ∝ 	 for 	̃ � 1, con-
istent with the numerical solutions above in Fig. 6 a. With units
estored, this simple argument shows that the width is set by the
ulk phase-boundary thickness

∼ 	 fw

(
a

�kT
,

�e

�kT
,

kext

kins

)
, where 	 =

√
Kx

�kT
(38)

s expected, although it may also depend weakly on ã, �̃e, and �. A
lice of the �̃e dependence is shown in Fig. 7 a.

From dimensional analysis, the wave speed has a similar form,

= L

�
Fv

(
	

L
,

a

�kT
,

�e

�kT
,

kext

kins

)
(39)
here Fv(	̃, ã, �̃e, �) is another scaling function. Once again, the
imit of a sharp phase boundary requires, ṽ = Fv ∼ 	̃fv or v ∝ 	/�
or 	̃ � 1, consistent with the numerical solutions in Fig. 6 b.
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ig. 7. Dependence of computed wave (a) width and (b) velocity on �̃e. Parameters:
˜ = 5, � = 1, 	̃ = 1, c̄(x̃, 0) = g1(�̃e) + (1/2)(g3(�̃e) − g1(�̃e))(tanh(x̃) + 1).

Recalling the time unit, we obtain a general expression for the
ave speed in the limit of a sharp phase boundary,

∼ 	

�
fv

(
a

�kT
,

�e

�kT
,

kext

kins

)
, where 	 · �−1 =

√
Kx

�kT
· 2�skins

�Ly
.

(40)

Note that the wave speed decreases with increasing crystal
hickness, v ∝ (1/Ly) since it takes longer for reactions to fill each
ulk channel, as the SRL phase transformation sweeps across the
rystal. The speed is also proportional to the bulk concentration-
radient penalty Kx and the insertion rate constant kins. It also
hould decrease with the strength of the interaction between
ons in the crystal a, which drives phase separation. The wave
elocity can also be controlled externally by varying the chem-
cal potential of ions in the electrolyte �e, as shown in Fig. 7
.

The velocity formula (40) has a clear physical interpretation
n terms of the surface-reaction-limited current. In the limit of

sharp phase boundary, the velocity v ≈ 	/� is the product of
he typical reaction rate �−1 for filling or emptying ion chan-
els by surface reactions and the wave width w ≈ 	. The reaction

−1
ate � sets the magnitude of the current density at the sur-
ace, while the width 	 sets the scale for the (propagating) region
ver which the current density is localized. This interpretation
s consistent with the physical picture of the SRL dynamics in
ig. 2.

4

i
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.5. Numerical study of wave properties

The scalings above can be verified by numerical simulations,
hich also map out the dimensionless scaling functions for w̃ and

˜ as the dimensionless parameters are varied. The main parameter
ontrolling the wave width is 	̃, since it contains the gradient energy
oefficient Kx. As 	̃ is decreased, the energetic penalty for form-
ng gradients in the concentration is lowered, resulting in sharper
avefronts spanning the equilibrium phase compositions. Addi-

ionally, we find that sharper wavefronts move at a slower velocity.
he numerically computed dependence of the width and velocity
n 	̃ is shown in Fig. 6. It is apparent that both w̃ and ṽ scale linearly
ith 	̃ in the range of physical relevance, as predicted above for the

harp interface limit 	̃ � 1.
The electrolyte chemical potential �̃e is an experimentally

ccessible independent parameter, as it corresponds to the applied
otential of the system, forcing Li insertion or extraction to occur.
hus, it is important to consider the dependence of the wave width
nd velocity on this parameter, as a systematic study of this depen-
ence may eventually lead to an experimentally feasible method
f testing the SRL model. Fig. 7 shows the numerically determined
ependence of w̃ and ṽ on �̃e. As shown in Fig. 7 a, the wave width
xhibits a weak, nonlinear dependence on �̃e, embodied in the
caling function Fw defined above.

The velocity dependence in Fig. 7 b shows how the system tran-
itions from extraction waves to insertion waves as �̃e increases
rom negative to positive. Large negative values of �̃e strongly force
i removal, resulting in extraction waves with large velocities. As �̃e

ncreases, the extraction wave velocity declines steeply, until zero
elocity is obtained at �̃e ≈ −0.5. This point is the transition from
xtraction to insertion. Insertion waves with increasing velocities
re produced as �̃e increases beyond the transition point. Analo-
ously to the width, the velocity dependence is contained within a
caling function, Fv defined above.

Note that the width and velocity profiles in Fig. 7 are not sym-
etric about the transition point, and the minimum width does not

orrespond to zero velocity. The asymmetry in the width and veloc-
ty result from the asymmetry in the homogeneous net reaction
ate. As noted above, R̃ins − R̃ext must have three roots g1, g2 and g3
ver the composition range 0 < c < 1 in order for phase separation
o occur. This requirement imposes a restricted range �̃−

e < �̃e <
˜ +

e for SRL dynamics to be observed for a given set of parameters.
The critical values �̃±

e are derived in Appendix B, and here we
xplain the physical reason for such limits to exist for SRL waves. Of
ourse, phase transformation dynamics can be driven by an arbi-
rarily positive or negative �̃e, but there are transitions between the
ifferent fundamental modes illustrated in Fig. 2 and defined in Eqs.
21)–(25). A large electrochemical potential, �̃e < �̃−

e or �̃e > �̃+
e ,

ffectively increases the overall surface reaction rate k and pushes
he system out of the SRL regime (Day � 1) by making bulk trans-
ort in the Li channels rate limiting. Indeed, for sufficiently fast
urface reactions, the system becomes a BTL process (Day � 1) with
hase transformation governed by shrinking-core-type dynamics.
e leave a detailed analysis of this dynamical transition in our

eneral model for future work. This would be worthwile since
xperiments may be able to probe the transition by varying the
hemical potential or other parameters and observing changes in
urrent–voltage characteristics or concentration profiles.

. Current in response to an applied voltage
.1. BTL versus SRL dynamics

Transport in electrode materials is often studied by measur-
ng the current response of the material to an applied potential.
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n an isotropic BTL process, a potential step induces a current
roportional to the diffusion limited flux of ions across the elec-
rode/electrolyte interface. The response time of any linear or
onlinear diffusion limited process, such as assumed in the shrink-

ng core model, is given by the characteristic time tD. The flux for
mall times, and hence the current, can be found analytically from
he similarity solution for diffusion in a semi-infinite domain. The
esulting expression for the current is known as the Cottrell equa-
ion,

Cottrell = neA�

√
D

�t
, t � tD, (41)

here n is the number of electrons transferred and A is the elec-
rode particle area. The Cottrell current response forms the basis
f the Potentiostatic Intermittent Titration Technique (PITT) that is
ommonly used to measure the diffusivity of materials [33]. How-
ver, cathodes that operate in a SRL transport regime where bulk
iffusion in a preferred direction is fast relative to ion transfer at the
lectrode/electrolyte interface cannot be assumed to follow Cottrell
ynamics.

In our model for single crystal LiFePO4, the chemical potential
f the electrolyte �e serves as the applied potential to the system.
or an appropriate �e, sharply defined waves of Li propagate across
he crystal surface as Li transfer occurs. A composition fluctuation
nitiates each wave, and all fully developed waves in the system
ravel with the same, constant velocity, in a flat plate-like particle.
he total flux of ions across the two xz surfaces of the crystal is
etermined by the integral of the net insertion rate, so the current
esponse of a single crystal is given by

= ne

∫ ∫
�sR dx dz, (42)

Note that since the reaction rate R is zero at the equilibrium
hase compositions g1 and g3, only localized wavefronts spanning
hese compositions contribute to the current.

The scaling of the SRL response is completely different from that
f the Cottrell BTL response. Ignoring geometrical effects and nucle-
tion (discussed below), the response time for a single crystal is
iven by the time Lx/v for a wave to cross it, which has the following
caling for thin interfaces:

v = Lx�

	
= Lx

√
�kT

Kx

�Ly

2�skins
. (43)

Note that the response time is proportional to two geometrical
engths, the depth of the channels Ly and the length Lx over which
he waves are propagating. More importantly, the time is deter-

ined by the surface reaction rate kins and not by the bulk diffusion
oefficient Dx. The ratio of the time scales for BTL dynamics and SRL
ynamics is an effective Péclet number,

ex = tD
x

tv
= vLx

Dx
=

√
Kx

�kT

2�skinsLx

�LyD
(44)

hich measures the importance of wave propagation at the diffu-
ive time scale. However, this is once again the Damkohler number,
ince the reaction time is set by wave propagation, tR

x = tv, in the
RL regime.

.2. Plate-like crystals
To develop a general picture of SRL phase transformation
ynamics in a rechargeable-battery intercalation material, we first
onsider the case of flat plate-like crystals of constant depth Ly ana-
yzed in the previous section. A fully developed wavefront moving

ith constant velocity supports a steady current, and there is a

h
a
s
o
c

f two impinging insertion waves. (a) Concentration profiles of impinging waves.
ashed line shows initial condition; solid lines show concentration profile at various

imes during impingement. (b) Flux response of impinging waves. Parameters: ã = 5,
= 1, 	̃ = 1, �̃e = 0.5, c̄(x̃, 0) = g1 + (g3 − g1)[exp(−(x̃ + 7)2) + exp(−(x̃ − 7)2)].

udden loss in the current when two wavefronts merge and are
eplaced by an equilibrium composition. Fig. 8 shows this declin-
ng staircase form for the current in a system with two impinging
aves. The spike in the current at the time of collision is due to

he gradient penalty term in the reaction rate acting on the sharp
omposition profile of the merging waves. We note that the magni-
ude of the spike is large in this simulation since there are only two
aves; in an actual system with many waves, the surge in current

rom any individual collision would be small relative to the total
urrent being sustained.

Therefore, the current response of LiFePO4 is governed by the
verall rate of its transformation through concurrent nucleation
nd growth of waves. Phase nucleation likely occurs by both het-
rogeneous and homogeneous mechanisms. Recent first principles
omputations have found that the chemical potential of Li varies
onsiderably over the surface of the equilibrium crystal shape [29].
onsequently, different crystal faces may be energetically favor-
ble for heterogeneous phase nucleation during Li insertion and
xtraction.

An example of a single crystal undergoing heterogeneous and

omogeneous nucleation and growth is illustrated in Fig. 9. Fig. 9
shows xy cross sections of the crystal at a sequence of succes-

ive times t1, . . . , t6, and Fig. 9 b presents the corresponding profile
f the total current I. At time t1, heterogeneous nucleation at the
rystal edges has produced two fully developed wavefronts, each



G.K. Singh et al. / Electrochimica A

Fig. 9. Schematic diagram of overall phase transformation and current response of a
single plate-like crystal undergoing SRL transport. (a) Sequence of xy cross sections of
crystal at times t1, . . . , t6, illustrating phase transformation of material through con-
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urrent nucleation and growth of traveling waves. Each fully developed wavefront
oves with velocity v and sustains a constant current of unity. (b) Declining stair-

ase current response of crystal, with labeled times corresponding to illustrations
n (a).

oving with constant velocity v and sustaining a normalized cur-
ent of unity. Therefore, the crystal supports the total current I = 2
t this time. At some time between t1 and t2, heterogeneous nucle-
tion occurs at the two rightmost surface defects of the crystal,
ndicated by notches. Once these nucleation events grow into fully
eveloped waves, there are six propagating wavefronts carrying a
otal current of I = 6. The rightmost waves merge at time t3 such
hat four wavefronts are destroyed, and consequently, only two
raveling wavefronts remain and the current drops to I = 2. Homo-
eneous nucleation at some location in the untransformed fraction
f the material occurs at time t4, and the two additional wavefronts

reated increase the current to I = 4. The rightmost waves combine
t time t5, and as most of the material is transformed and only two
avefronts remain, the current again drops to I = 2. Finally, at time

6, the material is fully transformed and can no longer sustain a
urrent.
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.3. Other crystal shapes

The wave dynamics can depend sensitively on the crystal shape
n the SRL regime. This general fact can be easily seen from our
nalysis of a plate-like crystal: the wave velocity (40) depends on
he local depth Ly(x, z) of the fast diffusion channels in the bulk,
s well as the local surface orientation, through the surface-site
ensity �s(x, z). The analysis of SRL phase-transformation dynamics
or arbitrary crystal shapes is a challenging problem, left for future
ork.

Here, we simply indicate how scalings by considering the limit
f slowly varying depth, Ly(x), and assuming the 1D wave dynamics
or a flat surface are only slightly perturbed. The local wave velocity
s then

= dxw

dt
= Dw

Ly(xw)
(45)

here Dw = 2�s(xw)kins

√
Kx/(�3kT) ≈ constant. This ordinary dif-

erential equation can be solved for the position of the wave
w(t) from a given wave nucleation event for any slowly vary-
ng shape Ly(xw). For example, consider the case of a cylinder,

y(x) =
√

R2 − x2 (ignoring that the shape is not slowly varying at
he ends). In that case, the equation can be solved analytically, e.g.,
or nucleation at one edge x = −R. For early times, the wave veloc-
ty decays from its initial value as dxw/dt ∝ D2/3

w t−1/3, due to the
ncreasing depth of the bulk channels.

In spite of variable wave speed, however, the current remains
onstant during wave propagation in this approximation, as in the
ase of a flat plate, regardless of the crystal shape. The reason is that
ave propagation at speed v(xw) engulfs channels of length Ly(xw),

o the total current, proportional to vLy, remains constant according
o (45). The time for a wave to engulf the entire crystal thus scales
ith the total volume (in contrast to diffusive BTL dynamics, where

he time scales like the cross-sectional area). Physically, ions are
eing inserted or extracted at roughly a constant rate, since the
hase boundary is assumed to have a constant exposed length at
he surface for 1D dynamics.

For spheres and other 3D shapes, the wavefront will not remain
at, and the full 2D depth-integrated dynamics will need to be
olved with variable Ly(x, z) and �s(x, z). However, the current may
emains roughly constant during wave propagation, since the filling
ime for a channel is proportional to its length, at constant sur-
ace reaction rate. In that case, the results of the previous section
or current versus time in flat plate-like single crystals may not
e substantially modified with more complicated shapes, although
tatistical fluctuations due to random nucleation events will be
ifferent.

.4. Composite cathode response

It is important to note that Fig. 9 represents only one possi-
le realization of the transformation and current response of the
rystal. Heterogeneous nucleation may occur at different edges
r surface defects at different times for different insertion and
xtraction cycles. Homogeneous nucleation would be spatially dis-
ributed in some random fashion. Therefore, to determine the
verall current response of a composite cathode composed of many
ndividual crystals, we must consider the statistical distributions of
he nucleation events.
For homogeneous nucleation, we may assume that the nucle-
tion rate is uniform across the crystal surface. Nucleation events
n the untransformed material are independent, and the presence
f a previously nucleated wave does not influence the likelihood of
ucleation around that wave. With these assumptions, the nucle-
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ig. 10. Schematic illustration of composite cathode responses for Cottrell (BTL) and
RL phase transformation mechanisms.

tion events are distributed as a Poisson process in time, and we
ay invoke the Johnson–Mehl–Avrami equation for the overall

ransformation rate of the material [34]

= e−Gtm
, (46)

here � is the untransformed fraction of the material, G a fac-
or dependent on the dimensionality of the process, and the
nteger m > 1; for a 1D line nucleation process, Gtm ∼ t2. The
ohnson–Mehl–Avrami equation therefore specifies that the overall
ransformation rate of the material follows a sigmoidal shape. We
hus expect that the current also follows this sigmoidal response
or concurrent homogeneous nucleation and growth.

In the case of heterogeneous nucleation, we may assume that
or many defects in many particles, the heterogeneous nucleation
vents are distributed as a Poisson process in space. Thus, the qual-
tative form of the average response is expected to follow the same
igmoidal shape as homogeneous nucleation, assuming all elec-
rode particles are at the same potential (driving force), which may
nly be true under low rate conditions or for thin electrodes [4,35].

Thus, we have found that individual crystals have a declining
taircase form for their current response to an applied electrolyte
otential �e if a substantial number of nucleation events occur on
he timescale of complete transformation. For many crystals, we

ay consider that the homogeneous and heterogeneous nucleation
vents are Poisson processes in time and space, respectively. The
verall transformation and current response of the material is then
iven by the average of many distinct staircase responses, resulting
n a characteristic sigmoidal curve

∝ e−Gtm
, (47)

hich is strikingly different from the Cottrell response that is
ommonly assumed. Fig. 10 compares the sigmoidal and Cottrell
esponses. We conclude that PITT measurements in material under-
oing SRL transport do not measure the diffusivity. Rather, these
easurements provide some measure of the kinetic parameters in

he surface reaction rates that are controlling the overall rate of the
aterial transformation.

.5. Discussion
The model we propose is based on a few key experimental and
heoretical findings. (i) Li migrates rapidly in the (0 1 0) direction
y in Fig. 1) creating either filled or empty channels that completely
enetrate the material. This makes it possible to coarse-grain to a

t
p
T
s
a

cta 53 (2008) 7599–7613

wo-dimensional model in which the surface concentration defines
he concentration in a channel. (ii) A linear interface exists on the
article surface between filled and unfilled sites, and growth of
ne phase at the expense of the other occurs by displacement of
his interface. Such one-dimensional growth is supported by exper-
mental observations [15] and by a recent Johnson–Mehl–Avrami
nalysis of the growth exponents [36]. Since one would expect two-
imensional growth on the surface for an isotropic material, the
ne-dimensional growth has to find its origin in the crystallogra-
hy of the material. Undoubtedly, it is either the anisotropy of the

nterfacial strain energy—due to different coherence strains or elas-
ic constants [11], or the anisotropy of the interfacial energy which
auses the system to prefer a single interface plane. The most likely
nterface plane has been deduced from TEM observations of cracks
n electrochemically cycled particles indicating that for platelet
haped particles with large (0 1 0) surface area, the (1 0 0) interface
rientation is preferred.

In our model the Li current distribution on the (0 1 0) surface
s localized at the LiFePO4/FePO4interface region because the fully
de)lithiated regions provide either no Li(vacant sites) or cannot
ucleate the other phase upon charge(discharge). The interfacial
idth and the free energy of the Li ions at the interface thus play

ey roles in the current rate that can be sustained. As the inter-
ace becomes wider, more sites on the surface can participate in
he transfer reaction to(from) the electrolyte and the interface
elocity increases, as can be observed in Fig. 6. As long as this inter-
ace remains unchanged as it moves across the particle surface,
he transformation rate is nominally constant, until the particle is
ither fully transformed, new nucleation events occur, or two wave
ronts impinge. This is fundamentally different from the core–shell

odel in which the ability of the particle to take up current declines
s the transformation proceeds. Note that such transformation
inetics is also fundamentally different from Cottrell-like behavior,
hich may demand reinvestigation of how one extracts atomistic

evel parameters from rate measurements.
How this new phase-transformation kinetics manifests itself in

he observable voltage-current response may depend very much
n the structure of the macroscopic electrode in which the active
iFePO4particles are embedded. In addition to the active material,
typical electrode contains about 5–10 wt% polymeric binder and
–15 wt% carbon black to enhance electronic conductivity through
he electrode. Some porosity is also created in the electrode to allow
he electrolyte to penetrate and transport the Li+ ions to and from
he active material. If the conductive pathways for the Li+ ions and
lectrons are sufficient, all particles will be at the same potential
nd experience a similar driving force for transformation. Under
hese conditions, and assuming stochastic nucleation, we expect
hat the overall current response to a potential pulse is sigmoidal.
ecent work indicates that such equipotential conditions across
he electrode only apply at rather low charge and discharge rates,
r for very thin electrodes [35]. If such electrical resistance along
he thickness of the electrode plays a role, the collective current
esponse of the system could be viewed as of a sum of sigmoidals,
ach with a different driving force, but time-dependent screening
ffects would also need to be taken into account.

. Conclusion

We have proposed a general continuum theory for phase-

ransformation dynamics in single-crystal intercalation com-
ounds, such as those used in rechargeable battery electrodes.
he bulk transport model is based on a thermodynamically
ound phase-field formulation of the free energy. Unlike standard
pproaches to electrochemical kinetics, the chemical potential from
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he phase-field model, including the gradient energy penalty, also
nfluences surface reaction rates. The general theory may be useful
n modeling a range of battery electrode materials, including inter-
alation compounds that form solid solutions, with rate-limiting
low diffusion.

In cases of strong phase separation, the general theory describes
everal types of dynamics for a sharp phase boundary, depend-
ng on the characteristic timescales for bulk transport and surface
eactions (or Damkohler numbers) in different crystal directions.
or example, in cases of fast reactions, the theory captures the
xisting spherical shrinking-core picture, as well as more general
ulk-transport-limited models. In the limit where fast diffusion

n one direction equilibrates the bulk concentration to the sur-
ace concentration, the same general model reduces to a new type
f equation describing anisotropic surface-reaction-limited phase-
ransformation dynamics. We find that this reduced model exhibits
raveling-wave solutions, which qualitatively agree with the exper-
mental observations of the phase boundary in LiFePO4/FePO4. The
RL model may also have relevance for other materials (not only in
attery electrodes) where surface transfer effects are rate limiting,
uch as nanoporous materials.

Our model has fundamental implications for the interpretation
f experimental data for rechargeable batteries. For example, the
ottrell equation of isotropic BTL dynamics is commonly used to

nfer the bulk diffusivity from the current response to an applied
oltage, and this is indeed one simple limit of our general model.
owever, using the same model, we show that in the SRL regime,

uch a measurement could infer only the surface reaction rate, and
ot the bulk diffusivity. These new concepts may be crucial for
xperimental studies of LiFePO4in particular, since recent obser-
ations of the phase boundary in this material are consistent with
RL waves and not BTL shrinking-core dynamics.

Our work also focuses attention to the importance of the Li+ and
lectron delivery to the proper surface of LiFePO4 in order to achieve
ast charge absorption. While much effort in the experimental lit-
rature has focused on electron delivery (e.g. by carbon coating
r conductive Fe2P contributions) [37,38], little emphasis seems
o have been placed on rapid transport of Li+towards the surface
here it can penetrate. The model presented here may thus serve

s a simple starting point to guide the development of improved
lectrode materials.
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ppendix A. Nomenclature

average energy density of ion interaction [E/ L3]
˜ dimensionless interaction coefficient a

host material surface area [L2]
mobility tensor [L2/(ET)]
dimensionless, normalized ion concentration

¯ depth-averaged Li concentration
e ion concentration in the electrolyte

sp spinodal compositions
± equilibrium phase compositions of homogeneous free

energy f̄
diffusivity tensor [L2/T]

w constant entering the wave position [L2/T]

ı
�


�
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eff
i

effective Fickian diffusivities [L2/T]
chem chemical diffusivity tensor [L2/T]
ax, Day, Daz Damkohler numbers = tD

i
/tR

i
v reduced scaling function for wave velocity
w reduced scaling function for wave width
¯ homogeneous free energy density [E/ L3]

total free energy of the intercalation crystal [E]
v scaling function for wave velocity
w scaling function for wave width

Li concentration in traveling wave solution
1, g3 equilibrium phase compositions of traveling wave solu-

tion
2 unstable intermediate composition of traveling wave

solution
± composition extrema of (52)

dimensionality factor in Johnson–Mehl–Avrami equation
[1/Tm]
derivative of g in traveling wave solution
current response [C/T]

Cottrell Cottrell current [C/T)
bulk ion flux [1/(L2T)]

s surface ion flux density [1/(LT)]
Boltzmann’s constant [E/ TK]

ext extraction rate coefficient [1/T]
ins insertion rate coefficient [1/T]

phase-field gradient-penalty tensor [E/L]
i characteristic lengthscales of the crystal [L]
y y direction depth profile [L]

integer exponent in Johnson–Mehl–Avrami equation
number of electrons transferred across elec-
trode/electrolyte interface
unit normal vector out of crystal

e Péclet number
net ion insertion rate [1/T]

ext ion extraction rate [1/T]
¯ ext homogeneous ion extraction rate [1/T]
˜ext dimensionless homogeneous Li extraction rate

i characteristic reaction rates [1/T]
ins ion insertion rate [1/T]

¯ ins homogeneous ion insertion rate [1/T]
˜ ins dimensionless homogeneous Li insertion rate

dimensionless time
v characteristic time for SRL phase transformation [T]
D
i

timescales for bulk diffusion (i = x, y, z) [T]
R
i

timescales for surface reactions [T]
absolute temperature [TK]
dimensional velocity of traveling wave [L/T]

˜ dimensionless constant velocity of traveling wave solu-
tion
dimensional width of traveling wave [L]

˜ dimensionless width of traveling wave
ion filling fraction

, y, z crystal directions defined in Fig. 1
˜ dimensionless length

w wave position [L]

reek letters
1/(�kT) [L3/E]
dimensionless parameter introduced in (52)
ij Kronecker delta function
equilibrium composition in the shrinking-core model
reduced coordinate of traveling wave solution
dimensionless rate coefficient
characteristic lengthscale of phase boundary [L]
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˜ dimensionless gradient energy coefficient
chemical potential of ions in the host crystal [E/ L3]

¯ homogeneous chemical potential [E/ L3]
e chemical potential of ions in the electrolyte [E/ L3]

˜ e dimensionless chemical potential of Li in the electrolyte
˜ ∓

e bounding values of �̃e for traveling wave solutions
s surface gradient [1/L]

untransformed fraction of material
number of intercalation sites per unit volume [1/L3]

s surface intercalation sites per unit area [1/L2]
characteristic timescale for SRL waves [T]

ppendix B. Existence of SRL waves

In this section, we provide some mathematical details regard-
ng the dynamics of the depth-averaged concentration c̄ in the SRL
egime of our general phase-transformation model. In particular,
e study the existence of traveling-wave solutions to Eq. (32) of

he form

¯(x̃, t̃) = g(x̃ − ṽt̃), (48)

here g(
) is a steady depth-averaged concentration profile in the
ariable 
 = x̃ − ṽt̃ propagating at a constant dimensionless velocity

˜. Substituting Eq. (48) into Eq. (32), the partial differential equa-
ion is reduced to a second-order, nonlinear ordinary differential
quation for g(
).

In order to investigate its possible solutions, it is convenient to
ewrite it as a system of two nonlinear first-order equations,

dg

d

= h, (49)

dh

d

= 1

	̃2
ln

[
−ṽh +

√
(ṽh)2 + 4�g

2R̃ins(g)

]
, (50)

hich defines a vector “velocity field”
(

dg/d
, dh/d

)

for solu-
ion trajectories in the (g, h) “phase plane” (not to be confused
ith chemical phases described in the main text), where 
 acts

s “time”. From this standard mathematical perspective, the qual-
tative behavior of solutions is controlled by critical points of the
ector field in the phase plane. In this case, there are stationary
oints given by

= 0, (51)

˜(1 − 2g) + ln

(
g3/2

1 − g

)
+ ln 
 = 0, (52)

here we have defined another dimensionless constant 
 =
−�̃e

√
�. By studying solutions to this algebraic equation, we can

stablish general features of solutions of the original problem with-
ut actually solving for g(
).

The solutions of (52) correspond to the roots of the spatially
omogeneous source R̃ins − R̃ext and therefore determine the equi-

ibrium phase compositions of the system. Explicit expressions
or the solutions are not possible, though at least one solution

ust exist, since the left hand side changes sign over the inter-
al 0 < g < 1. However, phase separation into Li-poor and Li-rich
hases requires three solutions g1 < g2 < g3, where g1 and g3 are

he equilibrium compositions bounding the moving wavefront, and
2 is an unstable intermediate composition. We observe that the
hase compositions are independent of the dimensionless gradient
enalty 	̃2. At the threshold where (52) transitions from one solu-
ion to three, the solutions and extrema of the equation coincide.

n
i
b

s

cta 53 (2008) 7599–7613

he extrema occur at the compositions

± = (1 + 4ã) ±
√

16ã2 − 40ã + 1
8ã

, (53)

nd as two distinct extrema are needed for three solutions of
52), phase separation requires ã > (5/4) +

√
3/2 ≈ 2.47. If the

inimum ã is exceeded, (52) can be used to compute the rate coef-
cients and electrolyte chemical potential, expressed through the
ombination 
 , that will make either g± the critical composition at
hreshold. For strongly phase separating systems, such as LiFePO4,
e find asymptotic approximations of the solutions of (52) in the

mall parameter 1/ã. Two term expansions for each root are

1 ∼ e−2ã/3

(
1


 2/3
+ 4ã e−2ã/3

3
 4/3

)
, (54)

2 ∼ 1
2

− 1
2

ln

(√
2




)[
1
ã

+ 5
2ã2

]
, (55)

3 ∼ 1 − e−ã
(


 + 2ã
 2 e−ã
)

. (56)

The existence of traveling waves and the selection of the wave
elocity in a phase separated system can be understood by a linear
tability analysis of (49) and (50) about the three stationary points
gi, 0) for i = 1, 2, 3. We find that (g1, 0) and (g3, 0) are saddle points
or all velocities, and (g2, 0) is either a stable node or stable spi-
al, depending on the velocity. Monotonic wavefronts between the
quilibrium Li-poor and Li-rich phases correspond to trajectories
n the (g, h) phase space that connect (g1, 0) and (g3, 0), bypassing
g2, 0). Following the continuity arguments presented in [39], there
s a unique velocity v such that the orientation of the eigenvectors
t (g1, 0) and (g3, 0) allow a single trajectory joining these points.
hus, for a given set of parameters, all fully developed waves in a
ystem propagate at the same velocity.

A rigorous mathematical analysis of the traveling-wave solu-
ions of (27), including their formal existence, stability, and velocity
s beyond the scope of this work. Although analytical methods for
tudying traveling waves in parabolic systems are available [40],
hey are usually developed for systems where there is a diffusion
erm plus a source independent of derivatives of the solution, as in
33). To the best of our knowledge, (27) represents a different type
f equation admitting traveling-wave solutions, where the curva-
ure dependence of the source precludes the need for an explicit
iffusion term.

The nanoscale dimensions of the physical domain also compli-
ate the analysis of (27). In other reaction diffusion equations, such
s the Fisher equation, the wave velocity is determined by assuming
n exponential decay of the leading edge of the wavefront as x̃ → ∞
39]. A finite cutoff in the leading edge is known to significantly
lter the velocity [41]. Such cutoffs are present in nanoparticles of
iFePO4, as the xz surface is bounded on the scale of the wave width.
oreover, the nanometer wave width describes the Li concentra-

ion across only a few atomic layers of the crystal, with each 1D
hannel in the layer holding a single file of Li atoms. Therefore, c̄
ay be discontinuous for small particles.
In spite of these difficulties, we close by predicting bounds on

he external chemical potential required for the existence of SRL
aves in our model. As discussed in the main text, large chemi-

al potentials exceeding these bounds increase surface reactions to
he point where bulk transport becomes rate limiting. The extreme

egative and positive values of �̃e in Fig. 7 represent these bounds

n the numerical simulations; there are no traveling wave solutions
eyond them.

The bounding values of �̃e can be determined analytically by
olving (52) for the �̃∓

e corresponding to the extrema g± given by
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53), as these compositions define the limits of the phase separation
ange. We obtain

˜ ∓
e = ã(1 − 2g±) + ln

(
g3/2

±
1 − g±

)
+ ln

√
�, (57)

here �̃−
e is the minimum allowable potential for extraction waves,

nd �̃+
e is the maximum allowable potential for insertion waves.

he notational ± signs of g± and �̃∓
e are reversed since g− is the

inimum extremum at which there is almost only insertion, hence
orresponding to the maximum allowable potential �̃+

e , and con-
ersely for g+ and �̃−

e .
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