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A general continuum theory is developed for ion intercalation dynamics in a single crystal of rechargeable-
battery composite electrode material. It is based on an existing phase-field formulation of the bulk free
energy and incorporates two crucial effects: (i) anisotropic ionic mobility in the crystal and (ii) surface
reactions governing the flux of ions across the electrode/electrolyte interface, depending on the local free
energy difference. Although the phase boundary can form a classical diffusive “shrinking core” when the
dynamics is bulk-transport-limited, the theory also predicts a new regime of surface-reaction-limited
(SRL) dynamics, where the phase boundary extends from surface to surface along planes of fast ionic
diffusion, consistent with recent experiments on LiFePOj4. In the SRL regime, the theory produces a fun-
damentally new equation for phase transformation dynamics, which admits traveling-wave solutions.
Rather than forming a shrinking core of untransformed material, the phase boundary advances by filling
(or emptying) successive channels of fast diffusion in the crystal. By considering the random nucleation of
SRL phase-transformation waves, the theory predicts a very different picture of charge/discharge dynam-
ics from the classical diffusion-limited model, which could affect the interpretation of experimental data
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1. Introduction

LiFePOg4is widely considered to be a promising cathode material
for high-rate Li-ion rechargeable batteries, so it provides a natu-
ral setting to develop mathematical models of charge/discharge
dynamics. The high practical capacity and reasonable operating
voltage of the material, along with its nontoxicity and potential low
cost, make it well-suited for large-scale battery applications [1-3].
Unlike many other cathode materials that increase their Li concen-
tration in a continuous solid solution, LiyFePO4only exists for x ~ 0
and x ~ 1 [4] and charges or discharges with Li by changing the
fraction of phase with x ~ 0 and x ~ 1. This tendency for phase sep-
aration, coupled with strong crystal anisotropy, poses significant
challenges for any attempt to describe intercalation dynamics with
continuum models, which until now have been limited to isotropic
“shrinking-core” models [5,6].

In contrast to the simplicity of current continuum models,
rather complex phase-transformation and transport properties
have been revealed by atomistic simulations [7-10]. For example,
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first-principles calculations have shown that Li diffusion in the bulk
FePO4crystal is highly anisotropic [7,8]. Li is essentially constrained
to 1D channels in the (0 1 0) direction, as depicted in Fig. 1. The lat-
tice mismatch at the FePO4/LiFePO4phase boundary is significant
(5% in the x direction, shown in Fig. 1), and recent work has inves-
tigated the differences in elastic properties between the lithiated
and unlithiated material [11]. Atomistic simulations have also sug-
gested that electrons in the crystal may diffuse as small, localized
polarons confined to planes parallel to the Li channels [12-14].
Recent experiments have confirmed the anisotropic transport
and phase separation of Li in single crystal LiFePO4[15-17]. More-
over, detailed microscopy in these studies has revealed that the
FePO4/LiFePO4phase boundary is a well-defined interface that
extends through the bulk crystal to the surface. In experiments, the
phase boundary has a characteristic width of several nanometers
on the surface [16], although this width is probably broadened by
experimental resolution, and Li insertion and extraction seem to
be concentrated in this region, with negligible transfer occurring
in either the FePO4or LiFePO4phases. Notably, the phase boundary
moves orthogonally to the direction of the surface flux, indicating
that as Li insertion (extraction) proceeds, layers of the 1D channels
are progressively filled (emptied). The observation of surface cracks
and their alignment with the phase boundary [15] also reinforces
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Fig.1. Schematic of plate-like single crystals of LiFePO4. Li is confined to 1D channels
inthey direction, and channels are stacked in layers parallel to the yzplane, indicated
by the dotted lines. Typical dimensions of single crystals are 2 um x 0.2 um x 4 pwm
in the x, y, z dimensions, respectively [15]. For each direction, the corresponding
space group Pnma axis and Miller index are shown in parentheses.

the view that the FePO4/LiFePO, lattice mismatch plays an impor-
tantrole in the electrochemical function of the material, as may the
associated stress field [18].

In light of the understanding gained from these atomistic
and experimental studies, the continuum theory of transport and
phase separation in LiFePO4merits renewed attention. The prevail-
ing shrinking-core model can be traced to a qualitative picture
accompanying the first experimental demonstration of the material
as an intercalation electrode [1]. This model assumes a grow-
ing shell of one phase surrounding a shrinking core of the other
phase, with the shell and core phases determined by the direc-
tion of the net Li flux: a LiFePOg4shell surrounds an FePO4core
during Li insertion (battery discharging); an FePO4 shell sur-
rounds a LiFePO4 core during Li extraction (battery charging). It
is important to note that in such a model the boundary between
the shell and core phases is entirely contained within the bulk
of the material and moves parallel to the direction of the Li
flux, in contrast to the observations of the experiments cited
above.

The current state of mathematical modeling of ion intercala-
tion is based on the shrinking-core concept with some further
simplifying assumptions. In earlier work, a simplified version of
the model was mathematically formulated by Srinivasan and New-
man [5] and incorporated into an existing theory for transport in
composite cathodes [6]. In their model, FePO,is treated as a contin-
uous, isotropic material, and Li is inserted and extracted uniformly
over the surface of a spherical FePO4particle. The phase boundary
is defined as where the compositions LicFePO4/Li;_FePO4 coex-
ist, with € « 1 specifying the equilibrium composition between
the Li-poor and Li-rich phases, and no nucleation constraints are
included. Only Li transport in the shell is considered and modeled
by an isotropic, constant diffusivity diffusion equation, while the
velocity of the phase boundary is prescribed by a mass balance
across the boundary. Thus, for Li insertion (extraction), diffusion
in the growing shell occurs between the surface Li concentration
and 1 — € (¢€). The value of € is set as a parameter in the numerical
solution of the model.

In this paper, we develop a continuum theory for ionic trans-
port and phase separation in single-crystal rechargeable battery
materials, motivated by the special case of LiFePOy4, but also more
generally applicable. Our theory accounts for anisotropic ionic dif-
fusion in the bulk as well as the formation and dynamics of a
localized phase boundary, driven by surface reactions at the elec-
trolyte/electrode interface. We utilize an existing phase-field model
for the free energy of the system, which has been used to calculate
the Li chemical potential in FePO4[19]; the bulk transport equa-
tion and surface reaction rates for Li are then derived in terms of
this chemical potential. The phase-field approach provides a sound
thermodynamic basis for studying the system and also directly con-
nects our theory to first-principles atomistic modeling, which can

accurately compute chemical potentials in a wide range of interca-
lation compounds [20,21].

In this initial effort, we neglect the possibility of charge separa-
tion and assume that electrons are freely available in the material
to compensate ionic charges; the presence of multiple diffusing
and migrating charged species (interacting through an electrostatic
potential) can be modeled as an extension of the general framework
we present. We also avoid an explicit treatment of stresses gener-
ated by mismatch strain across the phase boundary, which could
play an important role in some processes. Instead, we indicate how
elastic energy could be added to the model and note that a term in
the phase-field formulation may serve as a local approximation of
the lattice-mismatch energy. In any case, we will see that this sim-
ple approach already suffices to explain some of unusual features
of phase-transformation dynamics in LiFePOy.

The paper is organized as follows. In Section 2, we begin by
developing a general model for intercalation dynamics, notably
taking into account crystal anisotropy and the tendency for phase
separation, as well as composition dependence of surface reac-
tions. That section concludes with a discussion of possible regimes
of phase-transformation dynamics in strongly phase separating
materials, including a new regime of surface-reaction-limited (SRL)
dynamics, where the flux is concentrated at a phase boundary
that extends to the surface along channels of fast bulk diffusion.
The SRL regime, which has obvious relevance for LiFePQy, is ana-
lyzed in detail in Section 3, where a reduced depth-integrated
model is derived and shown to have wave solutions, which
are characterized in detail. The fundamental implications of SRL
phase-transformation waves for current-voltage measurements
are discussed in Section 4, and we close with some general con-
clusions.

2. General mathematical model

In this section, we present a general continuum framework to
describe intercalation dynamics in rechargeable battery materials.
In principle, our model can be adapted to arbitrary intercala-
tion compounds, not only phase separating systems, such as
FePO4/LiFePOy4, but also materials forming solid solutions, such
as LixCoO,, depending on the parameters. For a given material,
depending on the chemical driving force and physical constants,
there can be different modes of phase-transformation dynam-
ics. In the next section, we will focus on a new dynamical
mode limited by surface reactions in a strongly anisotropic crys-
tal, which clearly could not be described by existing isotropic
models.

2.1. Phase-field formulation

We follow the conventional Cahn-Hilliard phase-field model
[22] applied to an anisotropic intercalation compound, where the
total free energy of the system is expressed as a functional of the
local ionic concentration

F:/[f(c)—i—%VC-KVC dr, (1)

where c is the dimensionless, normalized concentration (0 < ¢ <
1), f(c) the homogeneous free energy density, and K is a symmet-
ric, positive definite tensor that represents the energy penalties for
maintaining concentration gradients of different orientations in the
system. Anisotropic version of this phase-field model with K;; = K§;;
(where §;; is the Kronecker delta function, or identity matrix) has
previously been developed for bulk transport in LiFePO4 with f(c)
fitted to atomistic simulations [19], although in this section we
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envision more general applications. (For a recent review of phase-
transformation modeling in solids, see Ref. [23].)

In strongly phase separating systems, the phase boundary usu-
ally coincides with the concentration gradient, so the gradient
penalty in (1) can be regarded as approximating related contri-
butions to the free energy. Phase-field models have also been
developed, which include long-range elastic contributions to the
free energy [24,25], but here we restrict ourselves to the sim-
pler formulation above in order to focus on other effects, namely
anisotropic transport and surface reactions. In this spirit, we also
ignore any surface contributions to the free energy, such as the
tension of the electrode/electrolyte interface.

In the simplest continuum approximation of intercalation into
a crystal lattice, the homogeneous, bulk free energy density takes
the form of a regular solution model

fc)=ac(1 —c)+ pkT [clnc+ (1 —c)In(1 = )], (2)
where a is the average energy density (in a mean field sense) of
the interaction between Li ions, p the number of intercalation sites
per unit volume, k the Boltzmann’s constant, and T is the temper-
ature. The first term in (2), the enthalpic contribution to the free
energy, promotes separation of the system to ¢ = 0 or 1, while the
second term, the entropic contribution, favors mixing of the system.
Therefore, the strength of the phase separation is characterized by
the dimensionless ratio a/ okT.

The chemical potential of an ion in the host crystal is calculated
as a variational derivative of the free energy

8F  _
p=5 ==V KV (3)
where we define fi as the homogeneous chemical potential
. of c
ju=-=a(1-2c)+ pkTIn (ﬁ) (4)

While in general, the two phase compositions in equilibrium
across the miscibility gap are determined by the common tangent
construction, in the symmetric free energy f of (2) these composi-
tions correspond to i = 0. These roots cannot be found analytically
from (4), but asymptotic approximations in the small parameter
pkT/a can be obtained; two term expansions are

~ e—4/pkT 94 a-a/pkT
c_~e <1 + kae ) , (5)

cr~1-c, (6)

where c_ is the root near ¢ = 0 and c, is the root near c = 1. As
may be expected, c. approach the concentration extremes expo-
nentially in a/(okT). While nucleation may be required to form a
second phase for compositions in the miscibility gap, spontaneous
phase separation occurs when the composition is within the spin-
odals. The spinodals correspond to the zeros of the curvature of the
free energy and can be determined from (2) as

1++/1-2pkT/a

Csp = - 3 (7)

We observe that a > 2pkT is required for distinct, physically
meaningful spinodal compositions.

2.2. Anisotropic bulk transport

Intercalation compounds typically have anisotropic layered
crystal structures, where ions diffuse much more easily in cer-
tain directions than others. In standard transition-metal (M) oxide
materials of the form Li\MO,, ions tend to move more freely
between oxide layers than in the transverse direction [26]. The
mobility of Li in FePO4is even more complicated. As described
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Fig. 2. Transport models obtained in different limits of the characteristic timescales
for bulk diffusion and surface reactions. Figures show xy cross sections of spherical
and plate-like single crystals during Li insertion, after phase nucleation has occurred.
Lithiated portions of the crystal are shaded, and points outside particles represent
flux of Li ions across the electrode/electrolyte interface (shown only for spheri-
cal particles). The FePO4/LiFePO4 phase boundary is denoted by the dashed line,
and arrows indicate movement of the boundary as insertion proceeds. (a) Isotropic

bulk transport limited. (b) Anisotropic bulk transport limited. (c) Anisotropic surface
reaction limited.
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above, Li migration in the bulk crystal is confined to 1D channels
in the (0 1 0) direction, labeled as y in Fig. 2. Some diffusion in
other directions may occur due to defects in the crystal lattice or
cracks caused by the FePO4/LiFePOg4lattice mismatch, as have been
observed experimentally [15,16]. Experiments [15,16] have found
that layers of stacked 1D channels in the z direction are progres-
sively filled or emptied as the phase boundary moves across the
layers in the x direction, indicating that transport in the z direction
is faster than transport in the x direction.

In general, therefore, we must postulate a tensorial relation for
the ionic flux

j=-cBVL, (8)

where we make the standard approximation of linear response to
chemical potential gradients with a symmetric, positive definite
mobility tensor B. In the common case of an orthorhombic crystal,
this tensor is diagonal, B; = b;dy;, but it is generally not isotropic. For
example, we have b1y « b33 « by, for Liin FePO4, where the indices
1, 2, 3 correspond to the x, y, z directions, respectively, defined in
Fig. 1. In commonly used intercalation oxides, such as CoO,(which
has hexagonal crystal structure), the mobility of Li in any direction
confined between oxide layers is likewise much greater than in any
out-of-plane direction.

With the ionic fluxes thus defined, the dynamics of the concen-
tration profile is governed by the mass conservation law

ac

pae+V:i=0, (9)
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where the factor of p (density of intercalation sites) is needed for
dimensional consistency.

The diffusivity tensor is determined from the mobility tensor by
the Einstein relation D = kTB. Note that D can, in general, depend on
position or concentration. Even if it is constant, the phase-field for-
mulation of the flux density (8) implies a concentration-dependent

chemical diffusivity,
D(l 2ac | _¢ ) (10)

CpkT " 1-c

which would enter into a nonlinear generalization of Fick’s Law, j =
—D™ 5 V¢ in the limit of negligible gradient penalty (|V - KVc¢| «
|f]). In this case, our use of the regular solution model (2) leads
to two concentration-dependent terms in (10): the first, enthalpic
term promoting phase separation and the second, entropic term
enforcing volume constraints. For the solid-solution compound
LixCoO,, first principles calculations have shown that the chemi-
cal diffusivity is a highly nonlinear function of the Li concentration,
varying by several orders of magnitude over the composition range
[26]. Such effects can be less dramatic in strongly phase separat-
ing materials, at least in the model. Even with the non-Fickian flux
from the gradient penalty term in (8), numerical solutions of the
same model applied to LiFePO4have shown that both potentiostatic
and galvanostatic response can be reasonably approximated by an
effective Fickian diffusion coefficient Deff,

chem _ Edj_
O pdc

2.3. Surface reactions

We assume that Arrhenius kinetics govern the insertion and
extraction rates of ions across the electrode/electrolyte interface,
where the activation energies are related to the difference in
chemical potential of ions across the interface, which provides
the thermodynamic driving force. In standard models of elec-
trochemical charge-transfer reactions, such as the Butler-Volmer
equation [27,28], activation energies depend only on the difference
in electrostatic potential, and concentration-dependent chemical
interactions of ions with other molecules in the two phases are
neglected. In our model, the overpotential biasing the reactions
could be explicitly described by adding electrostatic energy to the
chemical potentials, but here we choose to focus instead on novel
effects of compositional changes in the crystal on the local reaction
rate.

For simplicity, we assume that the chemical potential of ions
in the host crystal, x4 in Eq. (3), is valid everywhere on the elec-
trode surface where transfer reactions occur, (crucially) including
the gradient penalty term. By also using the bulk chemical potential
for ions at the crystal surface, we are neglecting the possibility of
any variation in the chemical potential at the electrode/electrolyte
interface, e.g. due to surface orientation or surface curvature, as
noted above [29]. In reality, electron-transfer reactions must also
occur at the intersection of three phases—the host crystal in contact
with composite matrix containing the electrolyte and an electron-
conducting phase, whose local structure we also neglect in our
simplified treatment.

With these assumptions, we postulate the following form for
the insertion rate density of ions into the host crystal

Rins = KinsCe e(ll-e—li)/(ﬂkT)’ (11)

where kj, is the insertion rate coefficient, and ce and p. are the
concentration and chemical potential of Liin the electrolyte, respec-
tively. Note that since ce is expressed as a dimensionless filling
fraction, Rips and ki, have dimensions of inverse time. In alter-
nate formulations of the model, different forms for the reaction rate
could be assumed (see below), but the key feature for our predic-
tions below is the Arrhenius dependence on the chemical potential

of intercalated ions in the crystal, given by the phase-field model
above.

In a more complete battery model, c. and e would be deter-
mined by solving the appropriate transport equations for ions in the
electrolyte, as well as possibly electrons in the conducting phase.
However, since we focus here on ion transport in the intercala-
tion compound, we ignore variations in the electrolyte and take
ce and pe to be constants. Our formulation therefore describes
potentiostatic, or constant chemical equilibrium, conditions in the
electrolyte, with the interfacial transfer of ions as the rate limiting
process. Absorbing the (dimensionless) constant ce into k;,s then
gives

Rins = kins eﬂ(ﬂe*ﬂ) = Rins eﬁv'ch’ (12)

where 8 = 1/(pkT) and R;, is the homogeneous insertion rate
Rins = kins (] ; C) eﬂ[ue—ﬂ(1—2f)]. (13)

Similarly, the extraction rate is assumed to have the form
Rext = kextC eflu-ne) — Rext eiﬂVchy (14)

where Rey; is the homogeneous extraction rate
_ c2
Rext = Kext 1-¢ efla-20)-pe], (15)

Finally, the net rate of insertion is

R= Rins — Rext = Rins e,BV](VC — Rext e—,BV-KVC’ (16)

1-—
R = ki ( _ C) eBlite—a(1-20)+V KVC]

2
— Kext <]C C> eﬂ[a(]—ZC)—ue—V-l(VC]. (17)

Note that in this formulation there is broken symmetry about
¢ = 1/2 in the net reaction rate.

The boundary conditions for (9) on the crystal surface express
mass conservation at the electrode/electrolyte interface,

n-j=—psR, (18)

where n is the unit normal vector directed out of the crystal, and ps
is the number of intercalation sites per unit area, which depends on
the orientation of the surface. Consistent with our neglect of surface
excess chemical potential, we neglect the possibility of a surface
flux density js, whose surface divergence V; - j, would appear as an
extra term on the right hand side of (18).

Before continuing, it is worth emphasizing the unusual com-
positional dependence of these expressions. We are not aware of
any prior model of chemical reaction kinetics (not only in electro-
chemistry) where concentration gradients contribute to the activation
energy. This will turn out to be an essential ingredient for our pre-
diction of phase-transformation waves transverse to the lithium
flux in the following sections. Here such novel terms arise via the
gradient penalty in the chemical potential from a phase-field model
used on one side of the reaction interface.

As long as this crucial feature is maintained, we expect the
qualitative predictions below to be robust for a variety of differ-
ent models for the reaction rate. Here, we adopt Eq. (16) simply as
an example in this class, which leads to new modes of intercala-
tion dynamics. Alternate forms for the reaction rate can be derived
systematically from transition rate theory, assuming thermal acti-
vation over a chemical potential energy barrier [30]. For example,
if we define excess chemical potentials, u® = u — pkT log ¢ and
ne* = e — pkT logce, and shift the barrier in proportion to the
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thermodynamic driving force, Au® = ug* — u®, then the net
insertion rate is

R = Rins — Rext = ko (ce @®insP A1 — ¢ e=0reaP AL (19)

where kg is a rate constant and «;,s and aex; are (positive) transfer
coefficients, analogous to those standard models for electrochemi-
cal reactions [28], where A is simply a voltage difference, without
any compositional dependence. In contrast, in Eq. (16) we have arbi-
trarily replaced Ap® with Ap = e — 0 and set ®jps = Qext = 1
to avoid introducing additional parameters, but this modifies the
concentration dependence of Rj,; and Rext. In the context of transi-
tion rate theory, one would instead require ¢j,s + cext = 1 to satisfy
de Donder’s relation, Rj,s/Rext = eBAi | and different models of the
activation free energy could also be postulated. Exploring such
modifications of the reaction rate on phase-transformation dynam-
ics in our theory is a subject of current work in our group, beyond
the scope of this paper.

2.4. Fundamental regimes of phase-transformation dynamics

The general model from the preceding sections describes a
reaction-diffusion system with a composition-dependent reaction
rate R and an anisotropic chemical diffusivity D"*™. For strongly
phase-separating systems (our primary interest here), we can make
some simple scaling arguments to try to anticipate its basic dynam-
ical regimes, sketched in Fig. 2. For the purpose of these crude
estimates, we ignore composition dependence of the reaction rate,
except to note that it is focused on regions of varying composition
by the gradient term. Motivated by the simulations of Han et al.[19]
with the same bulk phase-field model, we assign a constant effec-
tive Fickian diffusivity D;?ff to each coordinate direction (i = x, y, z),
along which the crystal has a typical length scale L; and reaction
rate R;.

With these gross simplifications, in a given direction i, the char-
acteristic timescales for bulk diffusion and surface reactions are

tP=—_ and tR= = (20)

respectively. The dimensionless ratio of these timescales is a
Dambkohler number

tp Rlle
TR T peff”
1

(21)

Anisotropic bulk-transport-limited (BTL) process, where bulk dif-
fusion in all directions is much slower than surface reactions, is
characterized by

Day = Day = Da; > 1. (22)

In this regime, the phase boundary is entirely contained within
the material and moves along the direction of the ionic flux, as
shown in Fig. 2 a. In the special case of a spherical phase boundary
in a spherical, isotropic crystal, the phase boundary ressembles a
shrinking core [5].

Anisotropic BTL phase transformation dynamics involves much
faster diffusion in one or more crystal directions, while still slower
than surface reactions. For example, in layered intercalation com-
pounds, such as LiCoO,, diffusion is much faster between oxide
planes in parallel directions than in the perpendicular direction
across those planes. The case of fast one-dimensional diffusion
channels, examplified by LiFePOy, is depicted in Fig. 2 b. Here, dif-
fusion in the x and z directions is negligible, while diffusion in the
more accessible y direction is much slower than surface reactions:

Day, Da; > Day > 1, (23)

In this regime, the phase boundary still ressembles a shrinking
core in the bulk, but ions are confined to 1D channels in the y direc-
tion. Here, anisotropy alters the shape of the phase interface, but
not its basic diffusive dynamics.

In classical reaction-diffusion models, these dynamical regimes
are contrasted with isotropic surface-reaction-limited processes,
where surface reactions are slower than bulk transport in all direc-
tions:

Day, Day, Da; « 1 (24)

In this regime, bulk transport is fast enough equilibrate the con-
centration to a nearly constant value c(t) across the material, which
varies uniformly at the slowest reaction time scale. (This case of
spatially homogeneous dynamics is not shown in the figure.)

Motivated by the experiments and simulations of LiFePOy4
described above, we focus on a new dynamical regime where sur-
face reactions are much slower than diffusion in the y direction but
much faster than diffusion in the x and z directions. Thus, we study
the limit

Day, Da; »> 1> Day, (25)

illustrated in Fig. 2 c. The phase boundary in this regime extends
through the bulk of the material to the xzsurfaces, and thus allows
the dominant reaction-rate Ry to be focused there by the gradient-
penalty term. The phase boundary then moves in such a way that
each channel is almost completely lithiated (delithiated) before
insertion (extraction) progresses to an adjacent channel. For such
an anisotropic surface-reaction-limited process, our general model
reduces to a fundamentally new, depth-averaged equation gov-
erning the transport and phase separation dynamics. The reduced
model predicts phase transformation by nonlinear wave propaga-
tion, rather than a classical diffusive process.

Before analyzing this behavior in the next section, we stress that
transitions between the different dynamical regimes in our general
model can be induced by changing the applied potential, the size
and shape of the crystal and/or the diffusivities (e.g. by the forma-
tion of crystal defects [31]). For example, the SRL wave dynamics is
expected to breakdown and give way to a BTL regime if the depth L,
of the crystal becomes large enough or D;ff becomes small enough
that Day > 1. A similar transition occurs if the strength of the driv-
ing electrochemical potential |ue| is increased, due to enhanced
reaction rates, R;.

Of course, these reaction-diffusion arguments are oversimpli-
fied and only give a sense of possible dynamical regimes in the
general model. For example, the reaction rates R;, and thus the
reaction times th, are non-uniform in time and space and depend
on the evolving concentration profile in all regimes. The reaction
rates also depend on other physical parameters, such as the gradient
penalty tensor Kj; and phase-separation energy a. The same param-
eters affect bulk transport by introducing nonlinear concentration
dependence, as noted above. There may also be subtle differences
between potentiostatic and galvanostatic response [19]. A detailed
parametric study of dynamical transitions in our model is beyond
the scope of this paper and will be the subject of future work.

3. Surface-reaction-limited phase-transformation waves
3.1. Depth-integrated model

We now develop a special limit of the general model that
describes SRL phase-transformation dynamics, which is rele-
vant for strongly anisotropic phase-separating systems such as
LiFePO4/FePO4. We assume that fast diffusion in the y oriented
1D channels rapidly equilibrates the bulk Li concentration to the
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surface concentration. A depth-averaged concentration ¢ on the xz
surface can therefore be defined as

E— m/c(x,y,z, t)dy, (26)

where Ly(x, z) is the depth of the crystal in the y direction, from
surface to surface.

By depth-averaging the bulk transport Eq. (9), using the bound-
ary condition (18), we find that the dynamics of ¢ are governed
solely by the surface reaction rate R, acting as a source term on the
xzsurface,

pLy(x,z)\ oc o -
<W> = =R V-KV0), (27)

where ps(x, z) is the number of atoms per unit area, dependent
on the local orientation of the crystal surface. As noted above, a
surface diffusion term could also be explicitly added to (27), but we
shall see that the reaction rate R already produces weak xz diffusion
due to the gradient penalty, which suffices to propagate the phase
boundary along the surface.

Eq. (27) describes a fundamentally different type of phase
transformation dynamics. From a mathematical point of view, the
striking feature is that the Laplacian term V2 appears in a non-
linear source term, as opposed to the additive quasilinear term in
classical reaction-diffusion equations. We are not aware of any prior
study of this type of equation, so it begs mathematical analysis to
characterize its solutions.

Here, we begin this task by making some simplifying assump-
tions, which allow us to highlight new nonlinear wave phenomena
described by (27). As noted above, experiments indicate that lay-
ers of 1D channels along the yz plane are progressively filled or
emptied as Li transfer proceeds, so it is natural to neglect concen-
tration variations in the z direction as a first approximation, for a
planar phase boundary spanning the crystal. In that case, we only
need one component of the gradient penalty tensor in the phase
field model, Kx = K, in the x direction of wave propagation. We also
neglect depth variations, L, = constant, and assume constant sur-
face orientation, ps = constant, which corresponds to the common
case of a plate-like crystal.

3.2. Dimensionless formulation

A dimensionless form of the model, suitable for mathematical
analysis, is found by scaling each variable to its natural units. The Li
concentration is already expressed as a dimensionless filling frac-
tion per channel ¢, which will depend on the dimensionless position
% = x/L and time = t/7. Position is scaled to a length L = Ly, which
characterizes the size of the crystal surface along which the SRL
phase transformation propagates. The natural time scale from (27)
is

_ Py
2pskins ’

(28)

which is the time required for the insertion reaction to fill a single
fast-diffusion channel in the crystal (from both sides). Note that this
time scale is proportional to the depth of the crystal, L.

There are four dimensionless groups which govern the solution.
The first is the ratio of reaction-rate constants

o = Kext (29)

- 9
kins

which measures asymmetry in the extraction and insertion reac-
tion kinetics. By scaling energy density to the thermal energy

density pkT, we arrive at three more dimensionless parameters:

G @ g Me

a= OKT’ He = KT’ (30)

and

~ Ky A

A= =—. 31
pkTL2 L (31)

The latter formula makes it clear that the natural length scale for
the phase boundary thickness, set by the gradient penalty in the free
energy, is A = /Ky /(okT). Since X is an atomic length scale (1 Ato
10 nm) much smaller than the crystal size (10 nm to 10 um), the
parameter A is typically small and lies in the range 10~° < % < 1.

With these scalings and assuming Eq. (16) for the reaction rate,
the SRL phase-transformation Eq. (27) takes the dimensionless
form
& _ (17*5) efie—a(1-28)1+32(9%¢/32)
ot

c

e[ B eat-20- 2@ o) (32)
1-c¢ ’

We will study solutions to this new nonlinear partial differential
equation in the following sections, but we already can gain some
insight by considering the limit of a sharp ph~ase boundary, A « 1,as
discussed above. Expanding (32) for small A, we obtain a reaction-
diffusion equation at leading order,
oC =9, - .0%C o -

5 = )\Z(Rins + Rext)@ + (Rins — Rext), (33)
where Ri,; and Rex¢ are the dimensionless homogeneous reaction
rates

Rins = (L g"‘ ) efte=a(1-20) (34)

5 ¢ a(1-28)— i
Rew =i | 7—= | e e, (35)

Thus, we see that (32) has a direct analog to a reaction-diffusion
equation with a weak, concentration dependent diffusivity and
nonlinear source term, in the appropriate physical limit of an atom-
ically sharp phase boundary. The detailed structure and dynamics
of the phase boundary, however, must be obtained by solving the
full equation (32). Representative plots of the homogeneous net
insertion rate Rj,s — Rext are shown in Fig. 3.

3.3. Wave solutions

Eq. (32) admits traveling-wave solutions, which physically cor-
respond to phase-transformation waves, propagating through the
crystal with steadily translating depth-averaged concentration pro-
file. In Appendix B, we give technical arguments to show that Eq.
(32) has solutions of the form

C(%, T) = g(% — Vi), (36)

where g(¢) is a steady depth-averaged concentration profile in
the variable ¢ = X — V. A key conclusion is that the dimensionless
velocity ¥ is the same for all fully developed waves. As described
below, the eventual shape and velocity of a wave depend only on
the physical parameters and not on the initial conditions.

To avoid mathematical complexity, in this section we focus
on numerical solutions of (32) to demonstrate how phase-
transformation waves are triggered by concentration fluctuations
from a globally unfavorable (but locally stable) configuration in the
external chemical potential. We solve (32) with an explicit finite
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Fig. 3. Dimensionless homogeneous net insertion rate. (a) fie =0, k=1, d=
1,...,5aslabeled in figure. (b) & = 5,k = 1, fie = =2, ..., 2 as labeled in figure.

difference method, second order in space and time. Representative
phase transformation waves during Li insertion and extraction are
shown in Fig. 4. For these simulations, & = 5 and X = 1, similar to
the values given in [19]. The choice of A corresponds to the dimen-
sional lengthscales A = L = 10 nm. Although there is no available
experimental or simulational data on the rate coefficients k;,; and
kext, we expect that the insertion and extraction reactions occur on
the same timescale and therefore assume « = 1.

Insertion or extraction is forced by raising or lowering the
electrolyte chemical potential jie to promote transfer in one direc-
tion and inhibit transfer in the other; fie = 0.5 for the insertion
process in Fig. 4 a, and ji. = —1 for the extraction process in
Fig. 4 b. The initial conditions for the insertion and extraction
waves, denoted by dashed lines in the plots, are Gaussian fluctu-
ations of the composition representing nucleations of the lithiated
and unlithiated phases, respectively. For the insertion in Fig. 4
a, ¢(%,0)=0.1+0.8exp(—&2), and for the extraction in Fig. 4 b,
¢(%,0) = 0.9 — 0.8 exp(—&2).

In the SRL regime, the initial composition fluctuation rapidly
develops into two wavefronts bounded by the locally stable
equilibrium Li-poor and Li-rich concentrations ¢ = g; and ¢ = g3,
respectively. This process is driven by the existence of an inter-
mediate, locally unstable equilibrium concentration, ¢ = g, where
0 < g1 < & < g3 < l.Instrongly phase separating systems such as
LiFePO4, which correspond to @ > 1 in our model, we have g; ~ 0,
g2 ~ 1/2, and g3 ~ 1. (For definitions of g, g, and g3 and approxi-
mations for @ — oo, see Appendix B.)

The development of a fully formed wave from a concentration
fluctuation involves both insertion and extraction in the vicinity of
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Fig. 4. Numerically computed phase transformation waves during insertion and
extraction. Dashed lines show initial conditions; solid lines show concentration
profiles at uniformly spaced times, with arrows indicating direction of wave propa-
gation. For both insertion and extraction: d = 5,k = 1, X = 1.(a) Insertion wave with
fle =0.5, &(X, 0) = 0.1 + 0.8 exp(—&?). (b) Extraction wave with fte = —1, &(%, 0) =
0.9 — 0.8 exp(—X2).

the wavefront. During the insertion process in Fig. 4 a, the max-
imum concentration of the initial fluctuation grows to gz, while
the low concentration baseline decays to gq. Conversely, for the
extraction process in Fig. 4 b, the minimum concentration decays
to g1, and the high concentration baseline grows to gz. Once fully
developed wavefronts form, they propagate to the right and left
with a constant velocity. We have verified that the velocity of a
fully developed wavefront is constant for all times in the numerical
simulations, as predicted by the analysis in Appendix B.

Not all initial conditions give rise to traveling waves, as shown
in Fig. 5. The key requirement for the formation of traveling waves
is that the initial condition supports both addition and removal of
Li in the domain, that is R(x, 0) must change sign. The simultaneous
addition and removal of material sharpen the initial composition
fluctuation to a phase separating wavefront. In the failed inser-
tion event shown in Fig. 5 a, only extraction occurs, and the initial
composition perturbation decays to a uniform concentration of g;.
Similarly, Fig. 5 b presents a failed extraction event where the ini-
tial composition depression fills up to a uniform concentration of g.
Note that R(x, 0) depends on the Laplacian of the initial concentra-
tion profile ¢(x, 0), and thus different initial conditions with equal
composition ranges but varying spatial distributions will or will
not produce traveling waves. This behavior has been numerically
verified.
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Fig. 5. Numerically computed failed insertion and extraction events. Dashed lines
show initial conditions; solid lines show concentration profiles at uniformly spaced
times, with arrows indicating direction of profile movement. For both inser-
tion and extraction: @ =5, k = 1, A = 1. (a) Failed insertion event with fle = 0.5,
€(%,0)=0.1+0.1 exp(—&?). (b) Failed extraction event with fi. =—1, ¢(%,0)=
0.9 — 0.1 exp(—X2).

The dependence of the formation of traveling waves on the ini-
tial condition relates to the nucleation of the phase separation.
When a fluctuation is too small so that its amplitude does not reach
the spinodal limits or its spatial extent is too small, it will decay,
but heterogeneous nucleation may change this behavior. During
insertion, for example, the lithiated phase may first nucleate at
some atomic scale inhomogeneity on the crystal surface where it is
energetically favorable for Li atoms to collect. Our theory does not
account for such features. Moreover, as the FePO4/LiFePO4 phase
boundary width X is nearly at the atomic scale, applying a contin-
uum equation for nucleation below this scale may not be physically
relevant. We note, however, that continuum nucleation could be
studied in other SRL systems with larger A.

3.4. Scalings of the wave width and velocity

The crucial properties of an SRL wave are its velocity and width,
each of which depend on physical parameters in ways that could
be experimentally accessible. The wave velocity is related to the
current versus time in response to an applied voltage, or vice versa,
as explained in the next section. The wave width could in principle
be observed by removing the driving force for the phase transfor-
mation and measuring the concentration profile.

The dependence of any quantity of interest on the physical
parameters can be obtained by dimensional analysis [32], sup-
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Fig. 6. Scaling of computed wave (a) width and (b) velocity with . Parameters:
@=5k=1,fte =0.5(& 0)=0.1+0.8 exp(—&2).

plemented by numerical simulations to calculate dimensionless
scaling functions. For example, considering the units of the physical
parameters, the wave width can be written in the general form,

A oa  He kext
W = LFy (Z’W’W’E) (37)
where Fy (X, @, fle, k)is a scaling function. Since the width w should
not depend on the size of the crystal L in the limit of a sharp phase
boundary, we must have W = F, ~ Afyy or w oc A for A <« 1, con-
sistent with the numerical solutions above in Fig. 6 a. With units
restored, this simple argument shows that the width is set by the
bulk phase-boundary thickness

Ky
PkT

W~Afw( 4 Me ke"‘), where A = (38)

PKT” KT King

as expected, although it may also depend weakly on @, fie, and «. A
slice of the fi. dependence is shown in Fig. 7 a.
From dimensional analysis, the wave speed has a similar form,

_L A a He  Kext
V—;Fv (Z’W’W7E) (39)

where FV(X, a, fle, k) is another scaling function. Ogce again, the
limit of a sharp phase boundary requires, ¥ = F, ~ Afy or v AT
for A « 1, consistent with the numerical solutions in Fig. 6 b.
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Fig. 7. Dependence of computed wave (a) width and (b) velocity on jie. Parameters:

a=51k=11=1,C& 0)=gi(fe) +(1/2)(g3(/Le) — g1(jLe))(tanh(X) + 1).

Recalling the time unit, we obtain a general expression for the
wave speed in the limit of a sharp phase boundary,

A a e Kext 1 | Ko 2psking
v ?fv (m, ka,m), where A .77 = ka- oL,

(40)

Note that the wave speed decreases with increasing crystal
thickness, v « (1/Ly) since it takes longer for reactions to fill each
bulk channel, as the SRL phase transformation sweeps across the
crystal. The speed is also proportional to the bulk concentration-
gradient penalty Ky and the insertion rate constant kj,s. It also
should decrease with the strength of the interaction between
ions in the crystal a, which drives phase separation. The wave
velocity can also be controlled externally by varying the chem-
ical potential of ions in the electrolyte i, as shown in Fig. 7
b.

The velocity formula (40) has a clear physical interpretation
in terms of the surface-reaction-limited current. In the limit of
a sharp phase boundary, the velocity v ~ A/t is the product of
the typical reaction rate t—! for filling or emptying ion chan-
nels by surface reactions and the wave width w ~ A. The reaction
rate t—! sets the magnitude of the current density at the sur-
face, while the width A sets the scale for the (propagating) region
over which the current density is localized. This interpretation
is consistent with the physical picture of the SRL dynamics in
Fig. 2.

3.5. Numerical study of wave properties

The scalings above can be verified by numerical simulations,
which also map out the dimensionless scaling functions for w and
¥ as the dimensionless parameters are varied. The main parameter
controlling the wave widthis A, since it contains the gradient energy
coefficient Ky. As A is decreased, the energetic penalty for form-
ing gradients in the concentration is lowered, resulting in sharper
wavefronts spanning the equilibrium phase compositions. Addi-
tionally, we find that sharper wavefronts move at a slower velocity.
The numerically computed dependence of the width and velocity
on X is shown in Fig. 6. It is apparent that both W and ¥ scale linearly
with X in the range of physical relevance, as predicted above for the
sharp interface limit & « 1.

The electrolyte chemical potential fi. is an experimentally
accessible independent parameter, as it corresponds to the applied
potential of the system, forcing Li insertion or extraction to occur.
Thus, it is important to consider the dependence of the wave width
and velocity on this parameter, as a systematic study of this depen-
dence may eventually lead to an experimentally feasible method
of testing the SRL model. Fig. 7 shows the numerically determined
dependence of W and ¥ on jie. As shown in Fig. 7 a, the wave width
exhibits a weak, nonlinear dependence on ji., embodied in the
scaling function F,, defined above.

The velocity dependence in Fig. 7 b shows how the system tran-
sitions from extraction waves to insertion waves as fi. increases
from negative to positive. Large negative values of fi. strongly force
Li removal, resulting in extraction waves with large velocities. As fie
increases, the extraction wave velocity declines steeply, until zero
velocity is obtained at fi. ~ —0.5. This point is the transition from
extraction to insertion. Insertion waves with increasing velocities
are produced as fie increases beyond the transition point. Analo-
gously to the width, the velocity dependence is contained within a
scaling function, F, defined above.

Note that the width and velocity profiles in Fig. 7 are not sym-
metric about the transition point, and the minimum width does not
correspond to zero velocity. The asymmetry in the width and veloc-
ity result from the asymmetry in the homogeneous net reaction
rate. As noted above, Ri,s — Rext must have three roots g1, g, and g3
over the composition range 0 < ¢ < 1 inorder for phase separation
to occur. This requirement imposes a restricted range fiz < fle <
fid for SRL dynamics to be observed for a given set of parameters.

The critical values ji are derived in Appendix B, and here we
explain the physical reason for such limits to exist for SRL waves. Of
course, phase transformation dynamics can be driven by an arbi-
trarily positive or negative fie, but there are transitions between the
different fundamental modes illustrated in Fig. 2 and defined in Egs.
(21)-(25). A large electrochemical potential, fie < figz Or fle > jid,
effectively increases the overall surface reaction rate k and pushes
the system out of the SRL regime (Day « 1) by making bulk trans-
port in the Li channels rate limiting. Indeed, for sufficiently fast
surface reactions, the system becomes a BTL process (Day > 1) with
phase transformation governed by shrinking-core-type dynamics.
We leave a detailed analysis of this dynamical transition in our
general model for future work. This would be worthwile since
experiments may be able to probe the transition by varying the
chemical potential or other parameters and observing changes in
current-voltage characteristics or concentration profiles.

4. Current in response to an applied voltage
4.1. BTL versus SRL dynamics

Transport in electrode materials is often studied by measur-
ing the current response of the material to an applied potential.
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In an isotropic BTL process, a potential step induces a current
proportional to the diffusion limited flux of ions across the elec-
trode/electrolyte interface. The response time of any linear or
nonlinear diffusion limited process, such as assumed in the shrink-
ing core model, is given by the characteristic time tp. The flux for
small times, and hence the current, can be found analytically from
the similarity solution for diffusion in a semi-infinite domain. The
resulting expression for the current is known as the Cottrell equa-
tion,

| D
Icottrenn = neAp =t t <L tp, (41)

where n is the number of electrons transferred and A is the elec-
trode particle area. The Cottrell current response forms the basis
of the Potentiostatic Intermittent Titration Technique (PITT) that is
commonly used to measure the diffusivity of materials [33]. How-
ever, cathodes that operate in a SRL transport regime where bulk
diffusionin a preferred direction is fast relative to ion transfer at the
electrode/electrolyte interface cannot be assumed to follow Cottrell
dynamics.

In our model for single crystal LiFePOy,, the chemical potential
of the electrolyte pe serves as the applied potential to the system.
For an appropriate (e, sharply defined waves of Li propagate across
the crystal surface as Li transfer occurs. A composition fluctuation
initiates each wave, and all fully developed waves in the system
travel with the same, constant velocity, in a flat plate-like particle.
The total flux of ions across the two xz surfaces of the crystal is
determined by the integral of the net insertion rate, so the current
response of a single crystal is given by

I:ne//,ostxdz, (42)

Note that since the reaction rate R is zero at the equilibrium
phase compositions g; and g3, only localized wavefronts spanning
these compositions contribute to the current.

The scaling of the SRL response is completely different from that
of the Cottrell BTL response. Ignoring geometrical effects and nucle-
ation (discussed below), the response time for a single crystal is
given by the time Ly /v for a wave to cross it, which has the following
scaling for thin interfaces:

Lt PkT  pLy
=" =k \ K 2pskins” (43)

Note that the response time is proportional to two geometrical
lengths, the depth of the channels L, and the length Ly over which
the waves are propagating. More importantly, the time is deter-
mined by the surface reaction rate k;,s and not by the bulk diffusion
coefficient Dy. The ratio of the time scales for BTL dynamics and SRL
dynamics is an effective Péclet number,

D vy [ Ky 2pskinslx
Pex=4, =D, ~\ kT pLD (a4)

which measures the importance of wave propagation at the diffu-
sive time scale. However, this is once again the Damkohler number,
since the reaction time is set by wave propagation, tR = t,, in the
SRL regime.

4.2. Plate-like crystals

To develop a general picture of SRL phase transformation
dynamics in a rechargeable-battery intercalation material, we first
consider the case of flat plate-like crystals of constant depth L, ana-
lyzed in the previous section. A fully developed wavefront moving
with constant velocity supports a steady current, and there is a
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Fig. 8. Numerically computed phase transformation dynamics and flux response
of two impinging insertion waves. (a) Concentration profiles of impinging waves.
Dashed line shows initial condition; solid lines show concentration profile at various
times during impingement. (b) Flux response of impinging waves. Parameters: i = 5,
K=1,k=1,fle =0.5&&%0) = g1 + (g5 — &1 )[exp(—(X + 7)) + exp(—(X — 7))].

sudden loss in the current when two wavefronts merge and are
replaced by an equilibrium composition. Fig. 8 shows this declin-
ing staircase form for the current in a system with two impinging
waves. The spike in the current at the time of collision is due to
the gradient penalty term in the reaction rate acting on the sharp
composition profile of the merging waves. We note that the magni-
tude of the spike is large in this simulation since there are only two
waves; in an actual system with many waves, the surge in current
from any individual collision would be small relative to the total
current being sustained.

Therefore, the current response of LiFePO, is governed by the
overall rate of its transformation through concurrent nucleation
and growth of waves. Phase nucleation likely occurs by both het-
erogeneous and homogeneous mechanisms. Recent first principles
computations have found that the chemical potential of Li varies
considerably over the surface of the equilibrium crystal shape [29].
Consequently, different crystal faces may be energetically favor-
able for heterogeneous phase nucleation during Li insertion and
extraction.

An example of a single crystal undergoing heterogeneous and
homogeneous nucleation and growth is illustrated in Fig. 9. Fig. 9
a shows xy cross sections of the crystal at a sequence of succes-
sive times tq, ..., tg, and Fig. 9 b presents the corresponding profile
of the total current I. At time t;, heterogeneous nucleation at the
crystal edges has produced two fully developed wavefronts, each
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Fig.9. Schematic diagram of overall phase transformation and current response of a
single plate-like crystal undergoing SRL transport. (a) Sequence of xy cross sections of
crystal attimes ty, ..., tg, illustrating phase transformation of material through con-
current nucleation and growth of traveling waves. Each fully developed wavefront
moves with velocity v and sustains a constant current of unity. (b) Declining stair-
case current response of crystal, with labeled times corresponding to illustrations
in (a).

moving with constant velocity v and sustaining a normalized cur-
rent of unity. Therefore, the crystal supports the total current = 2
at this time. At some time between t; and t,, heterogeneous nucle-
ation occurs at the two rightmost surface defects of the crystal,
indicated by notches. Once these nucleation events grow into fully
developed waves, there are six propagating wavefronts carrying a
total current of I = 6. The rightmost waves merge at time t3 such
that four wavefronts are destroyed, and consequently, only two
traveling wavefronts remain and the current drops to I = 2. Homo-
geneous nucleation at some location in the untransformed fraction
of the material occurs at time t4, and the two additional wavefronts
created increase the current to I = 4. The rightmost waves combine
at time ts5, and as most of the material is transformed and only two
wavefronts remain, the current again drops to I = 2. Finally, at time
ts, the material is fully transformed and can no longer sustain a
current.

4.3. Other crystal shapes

The wave dynamics can depend sensitively on the crystal shape
in the SRL regime. This general fact can be easily seen from our
analysis of a plate-like crystal: the wave velocity (40) depends on
the local depth Ly(x, z) of the fast diffusion channels in the bulk,
as well as the local surface orientation, through the surface-site
density ps(x, z). The analysis of SRL phase-transformation dynamics
for arbitrary crystal shapes is a challenging problem, left for future
work.

Here, we simply indicate how scalings by considering the limit
of slowly varying depth, L,(x), and assuming the 1D wave dynamics
for a flat surface are only slightly perturbed. The local wave velocity
is then

dxw Dw

V=T T L) (45)

where Dy = 20s(Xw )kins / Kx/(03kT) ~ constant. This ordinary dif-
ferential equation can be solved for the position of the wave
xw(t) from a given wave nucleation event for any slowly vary-
ing shape L,(xw). For example, consider the case of a cylinder,

Ly(x) = v/ R% — x2 (ignoring that the shape is not slowly varying at
the ends). In that case, the equation can be solved analytically, e.g.,
for nucleation at one edge x = —R. For early times, the wave veloc-
ity decays from its initial value as dx, /dt o D%>t-1/3, due to the
increasing depth of the bulk channels.

In spite of variable wave speed, however, the current remains
constant during wave propagation in this approximation, as in the
case of a flat plate, regardless of the crystal shape. The reason is that
wave propagation at speed v(xy ) engulfs channels of length Ly (x ),
so the total current, proportional to vL, remains constant according
to (45). The time for a wave to engulf the entire crystal thus scales
with the total volume (in contrast to diffusive BTL dynamics, where
the time scales like the cross-sectional area). Physically, ions are
being inserted or extracted at roughly a constant rate, since the
phase boundary is assumed to have a constant exposed length at
the surface for 1D dynamics.

For spheres and other 3D shapes, the wavefront will not remain
flat, and the full 2D depth-integrated dynamics will need to be
solved with variable Ly(x, z) and ps(x, z). However, the current may
remains roughly constant during wave propagation, since the filling
time for a channel is proportional to its length, at constant sur-
face reaction rate. In that case, the results of the previous section
for current versus time in flat plate-like single crystals may not
be substantially modified with more complicated shapes, although
statistical fluctuations due to random nucleation events will be
different.

4.4. Composite cathode response

It is important to note that Fig. 9 represents only one possi-
ble realization of the transformation and current response of the
crystal. Heterogeneous nucleation may occur at different edges
or surface defects at different times for different insertion and
extraction cycles. Homogeneous nucleation would be spatially dis-
tributed in some random fashion. Therefore, to determine the
overall current response of a composite cathode composed of many
individual crystals, we must consider the statistical distributions of
the nucleation events.

For homogeneous nucleation, we may assume that the nucle-
ation rate is uniform across the crystal surface. Nucleation events
in the untransformed material are independent, and the presence
of a previously nucleated wave does not influence the likelihood of
nucleation around that wave. With these assumptions, the nucle-
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Fig.10. Schematic illustration of composite cathode responses for Cottrell (BTL) and
SRL phase transformation mechanisms.

ation events are distributed as a Poisson process in time, and we
may invoke the Johnson-Mehl-Avrami equation for the overall
transformation rate of the material [34]

£oe G (46)

where & is the untransformed fraction of the material, G a fac-
tor dependent on the dimensionality of the process, and the
integer m > 1; for a 1D line nucleation process, Gt™ ~ t2. The
Johnson-Mehl-Avrami equation therefore specifies that the overall
transformation rate of the material follows a sigmoidal shape. We
thus expect that the current also follows this sigmoidal response
for concurrent homogeneous nucleation and growth.

In the case of heterogeneous nucleation, we may assume that
for many defects in many particles, the heterogeneous nucleation
events are distributed as a Poisson process in space. Thus, the qual-
itative form of the average response is expected to follow the same
sigmoidal shape as homogeneous nucleation, assuming all elec-
trode particles are at the same potential (driving force), which may
only be true under low rate conditions or for thin electrodes [4,35].

Thus, we have found that individual crystals have a declining
staircase form for their current response to an applied electrolyte
potential pe if a substantial number of nucleation events occur on
the timescale of complete transformation. For many crystals, we
may consider that the homogeneous and heterogeneous nucleation
events are Poisson processes in time and space, respectively. The
overall transformation and current response of the material is then
given by the average of many distinct staircase responses, resulting
in a characteristic sigmoidal curve

[ e Ct", (47)

which is strikingly different from the Cottrell response that is
commonly assumed. Fig. 10 compares the sigmoidal and Cottrell
responses. We conclude that PITT measurements in material under-
going SRL transport do not measure the diffusivity. Rather, these
measurements provide some measure of the kinetic parameters in
the surface reaction rates that are controlling the overall rate of the
material transformation.

4.5. Discussion

The model we propose is based on a few key experimental and
theoretical findings. (i) Li migrates rapidly in the (0 10) direction
(y in Fig. 1) creating either filled or empty channels that completely
penetrate the material. This makes it possible to coarse-grain to a

two-dimensional model in which the surface concentration defines
the concentration in a channel. (ii) A linear interface exists on the
particle surface between filled and unfilled sites, and growth of
one phase at the expense of the other occurs by displacement of
this interface. Such one-dimensional growth is supported by exper-
imental observations [15] and by a recent Johnson-Mehl-Avrami
analysis of the growth exponents [36]. Since one would expect two-
dimensional growth on the surface for an isotropic material, the
one-dimensional growth has to find its origin in the crystallogra-
phy of the material. Undoubtedly, it is either the anisotropy of the
interfacial strain energy—due to different coherence strains or elas-
tic constants [11], or the anisotropy of the interfacial energy which
causes the system to prefer a single interface plane. The most likely
interface plane has been deduced from TEM observations of cracks
on electrochemically cycled particles indicating that for platelet
shaped particles with large (0 1 0) surface area, the (1 00) interface
orientation is preferred.

In our model the Li current distribution on the (010) surface
is localized at the LiFePO4/FePO4interface region because the fully
(de)lithiated regions provide either no Li(vacant sites) or cannot
nucleate the other phase upon charge(discharge). The interfacial
width and the free energy of the Li ions at the interface thus play
key roles in the current rate that can be sustained. As the inter-
face becomes wider, more sites on the surface can participate in
the transfer reaction to(from) the electrolyte and the interface
velocity increases, as can be observed in Fig. 6. As long as this inter-
face remains unchanged as it moves across the particle surface,
the transformation rate is nominally constant, until the particle is
either fully transformed, new nucleation events occur, or two wave
fronts impinge. This is fundamentally different from the core-shell
model in which the ability of the particle to take up current declines
as the transformation proceeds. Note that such transformation
kinetics is also fundamentally different from Cottrell-like behavior,
which may demand reinvestigation of how one extracts atomistic
level parameters from rate measurements.

How this new phase-transformation kinetics manifests itself in
the observable voltage-current response may depend very much
on the structure of the macroscopic electrode in which the active
LiFePO4particles are embedded. In addition to the active material,
a typical electrode contains about 5-10 wt% polymeric binder and
5-15 wt% carbon black to enhance electronic conductivity through
the electrode. Some porosity is also created in the electrode to allow
the electrolyte to penetrate and transport the Li* ions to and from
the active material. If the conductive pathways for the Li* ions and
electrons are sufficient, all particles will be at the same potential
and experience a similar driving force for transformation. Under
these conditions, and assuming stochastic nucleation, we expect
that the overall current response to a potential pulse is sigmoidal.
Recent work indicates that such equipotential conditions across
the electrode only apply at rather low charge and discharge rates,
or for very thin electrodes [35]. If such electrical resistance along
the thickness of the electrode plays a role, the collective current
response of the system could be viewed as of a sum of sigmoidals,
each with a different driving force, but time-dependent screening
effects would also need to be taken into account.

5. Conclusion

We have proposed a general continuum theory for phase-
transformation dynamics in single-crystal intercalation com-
pounds, such as those used in rechargeable battery electrodes.
The bulk transport model is based on a thermodynamically
sound phase-field formulation of the free energy. Unlike standard
approaches to electrochemical kinetics, the chemical potential from



G.K. Singh et al. / Electrochimica Acta 53 (2008) 7599-7613 7611

the phase-field model, including the gradient energy penalty, also
influences surface reaction rates. The general theory may be useful
in modeling a range of battery electrode materials, including inter-
calation compounds that form solid solutions, with rate-limiting
slow diffusion.

In cases of strong phase separation, the general theory describes
several types of dynamics for a sharp phase boundary, depend-
ing on the characteristic timescales for bulk transport and surface
reactions (or Damkohler numbers) in different crystal directions.
For example, in cases of fast reactions, the theory captures the
existing spherical shrinking-core picture, as well as more general
bulk-transport-limited models. In the limit where fast diffusion
in one direction equilibrates the bulk concentration to the sur-
face concentration, the same general model reduces to a new type
of equation describing anisotropic surface-reaction-limited phase-
transformation dynamics. We find that this reduced model exhibits
traveling-wave solutions, which qualitatively agree with the exper-
imental observations of the phase boundary in LiFePO4/FePOg4. The
SRL model may also have relevance for other materials (not only in
battery electrodes) where surface transfer effects are rate limiting,
such as nanoporous materials.

Our model has fundamental implications for the interpretation
of experimental data for rechargeable batteries. For example, the
Cottrell equation of isotropic BTL dynamics is commonly used to
infer the bulk diffusivity from the current response to an applied
voltage, and this is indeed one simple limit of our general model.
However, using the same model, we show that in the SRL regime,
such a measurement could infer only the surface reaction rate, and
not the bulk diffusivity. These new concepts may be crucial for
experimental studies of LiFePO4in particular, since recent obser-
vations of the phase boundary in this material are consistent with
SRL waves and not BTL shrinking-core dynamics.

Our work also focuses attention to the importance of the Li* and
electron delivery to the proper surface of LiFePO4 in order to achieve
fast charge absorption. While much effort in the experimental lit-
erature has focused on electron delivery (e.g. by carbon coating
or conductive Fe,P contributions) [37,38], little emphasis seems
to have been placed on rapid transport of Li*towards the surface
where it can penetrate. The model presented here may thus serve
as a simple starting point to guide the development of improved
electrode materials.
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Appendix A. Nomenclature

a average energy density of ion interaction [E/ L]

a dimensionless interaction coefficient a

A host material surface area [L?]

B mobility tensor [L? /(ET)]

c dimensionless, normalized ion concentration

c depth-averaged Li concentration

Ce ion concentration in the electrolyte

Csp spinodal compositions

Ct equilibrium phase compositions of homogeneous free
energy f

D diffusivity tensor [L? /T]

Dy constant entering the wave position [L?/T]

Deff effective Fickian diffusivities [L? /T]

D™ chemical diffusivity tensor [L?/T]

Day, Day, Da; Damkohler numbers = tP /tR

fv reduced scaling function for wave velocity

fw reduced scaling function for wave width

f homogeneous free energy density [E/ L]

F total free energy of the intercalation crystal [E]

Fy scaling function for wave velocity

Fw scaling function for wave width

g Li concentration in traveling wave solution

21,83 equilibrium phase compositions of traveling wave solu-
tion

53 unstable intermediate composition of traveling wave
solution

g+ composition extrema of (52)

G dimensionality factor in Johnson-Mehl-Avrami equation
[1/T"]

h derivative of g in traveling wave solution

I current response [C/T]

Icottren  Cottrell current [C/T)

j bulk ion flux [1/(L?T)]

Js surface ion flux density [1/(LT)]

k Boltzmann'’s constant [E/ T]

Kext extraction rate coefficient [1/T]

Kins insertion rate coefficient [1/T]

K phase-field gradient-penalty tensor [E/L]

L; characteristic lengthscales of the crystal [L]

Ly y direction depth profile [L]

m integer exponent in Johnson-Mehl-Avrami equation

n number of electrons transferred across elec-
trode/electrolyte interface

n unit normal vector out of crystal

Pe Péclet number

R net ion insertion rate [1/T]

Rext ion extraction rate [1/T]

Rext homogeneous ion extraction rate [1/T]

Rext dimensionless homogeneous Li extraction rate

R; characteristic reaction rates [1/T]

Rins ion insertion rate [1/T]

Rins homogeneous ion insertion rate [1/T]

Rins dimensionless homogeneous Li insertion rate

t dimensionless time

ty characteristic time for SRL phase transformation [T]

tP timescales for bulk diffusion (i = x, y, z) [T]

th timescales for surface reactions [T]

T absolute temperature [Tg]

v dimensional velocity of traveling wave [L/T]

v dimensionless constant velocity of traveling wave solu-
tion

w dimensional width of traveling wave [L]

w dimensionless width of traveling wave

X ion filling fraction

XY,z crystal directions defined in Fig. 1

X dimensionless length

Xw wave position [L]

Greek letters

1/(okT) [L?/E]

dimensionless parameter introduced in (52)
Kronecker delta function

equilibrium composition in the shrinking-core model
reduced coordinate of traveling wave solution
dimensionless rate coefficient

characteristic lengthscale of phase boundary [L]

&N

> ® v~ ™
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X dimensionless gradient energy coefficient
1% chemical potential of jons in the host crystal [E/ L?]
7 homogeneous chemical potential [E/ L3]
Ue chemical potential of ions in the electrolyte [E/ L*]
fle dimensionless chemical potential of Li in the electrolyte
nE bounding values of fi. for traveling wave solutions
Vs surface gradient [1/L]

untransformed fraction of material
P number of intercalation sites per unit volume [l/L3]
Os surface intercalation sites per unit area [1/L?]
T characteristic timescale for SRL waves [T]

Appendix B. Existence of SRL waves

In this section, we provide some mathematical details regard-
ing the dynamics of the depth-averaged concentration ¢ in the SRL
regime of our general phase-transformation model. In particular,
we study the existence of traveling-wave solutions to Eq. (32) of
the form

c(, t) = g(X — V), (48)

where g(¢) is a steady depth-averaged concentration profile in the
variable ¢ = X — ¥t propagating ata constant dimensionless velocity
V. Substituting Eq. (48) into Eq. (32), the partial differential equa-
tion is reduced to a second-order, nonlinear ordinary differential
equation for g(¢).

In order to investigate its possible solutions, it is convenient to
rewrite it as a system of two nonlinear first-order equations,

dg

@ h, (49)
dh 1 | =Vh++/(Vh)* +4kg

" l 2Rins(2) ]’ 0

which defines a vector “velocity field” (dg/d{, dh/dg) for solu-
tion trajectories in the (g, h) “phase plane” (not to be confused
with chemical phases described in the main text), where ¢ acts
as “time”. From this standard mathematical perspective, the qual-
itative behavior of solutions is controlled by critical points of the
vector field in the phase plane. In this case, there are stationary
points given by

h=0, (51)
g3/2
a(1-2g)+1In (l—g) +Inl"=0, (52)

where we have defined another dimensionless constant I =
e~ e /. By studying solutions to this algebraic equation, we can
establish general features of solutions of the original problem with-
out actually solving for g(¢).

The solutions of (52) correspond to the roots of the spatially
homogeneous source Rj; — Rext and therefore determine the equi-
librium phase compositions of the system. Explicit expressions
for the solutions are not possible, though at least one solution
must exist, since the left hand side changes sign over the inter-
val 0 < g < 1. However, phase separation into Li-poor and Li-rich
phases requires three solutions g; < g, < g3, where g; and g3z are
the equilibrium compositions bounding the moving wavefront, and
g is an unstable intermediate composition. We observe that the
phase compositions are independent of the dimensionless gradient
penalty A2. At the threshold where (52) transitions from one solu-
tion to three, the solutions and extrema of the equation coincide.

The extrema occur at the compositions

(1 +4a)++/16a2 — 404+ 1

g+ = 3G s (53)

and as two distinct extrema are needed for three solutions of
(52), phase separation requires d > (5/4)+ /3/2 ~ 2.47. If the
minimum d is exceeded, (52) can be used to compute the rate coef-
ficients and electrolyte chemical potential, expressed through the
combination I”, that will make either g the critical composition at
threshold. For strongly phase separating systems, such as LiFePOy,
we find asymptotic approximations of the solutions of (52) in the
small parameter 1/d. Two term expansions for each root are

a 1 4ae2i3

o2z L Aaehe
g~e (1“2/3Jr 31473 ) (54)

1 1, (v2\[1, 5
&“z‘zm<r)[a+mﬂ’ 53)
gs~1-e@(I+2al?e’). (56)

The existence of traveling waves and the selection of the wave
velocity in a phase separated system can be understood by a linear
stability analysis of (49) and (50) about the three stationary points
(gi, 0)fori =1, 2, 3. Wefind that(g;, 0) and (g3, 0) are saddle points
for all velocities, and (g, 0) is either a stable node or stable spi-
ral, depending on the velocity. Monotonic wavefronts between the
equilibrium Li-poor and Li-rich phases correspond to trajectories
in the (g, h) phase space that connect (g1, 0) and (g3, 0), bypassing
(g2, 0). Following the continuity arguments presented in [39], there
is a unique velocity v such that the orientation of the eigenvectors
at (g1, 0) and (g3, 0) allow a single trajectory joining these points.
Thus, for a given set of parameters, all fully developed waves in a
system propagate at the same velocity.

A rigorous mathematical analysis of the traveling-wave solu-
tions of (27), including their formal existence, stability, and velocity
is beyond the scope of this work. Although analytical methods for
studying traveling waves in parabolic systems are available [40],
they are usually developed for systems where there is a diffusion
term plus a source independent of derivatives of the solution, as in
(33). To the best of our knowledge, (27) represents a different type
of equation admitting traveling-wave solutions, where the curva-
ture dependence of the source precludes the need for an explicit
diffusion term.

The nanoscale dimensions of the physical domain also compli-
cate the analysis of (27). In other reaction diffusion equations, such
as the Fisher equation, the wave velocity is determined by assuming
an exponential decay of the leading edge of the wavefrontas X — oo
[39]. A finite cutoff in the leading edge is known to significantly
alter the velocity [41]. Such cutoffs are present in nanoparticles of
LiFePQy, as the xz surface is bounded on the scale of the wave width.
Moreover, the nanometer wave width describes the Li concentra-
tion across only a few atomic layers of the crystal, with each 1D
channel in the layer holding a single file of Li atoms. Therefore, ¢
may be discontinuous for small particles.

In spite of these difficulties, we close by predicting bounds on
the external chemical potential required for the existence of SRL
waves in our model. As discussed in the main text, large chemi-
cal potentials exceeding these bounds increase surface reactions to
the point where bulk transport becomes rate limiting. The extreme
negative and positive values of ie in Fig. 7 represent these bounds
in the numerical simulations; there are no traveling wave solutions
beyond them.

The bounding values of fi. can be determined analytically by
solving (52) for the fid corresponding to the extrema g, given by
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(53), as these compositions define the limits of the phase separation
range. We obtain

gl

1-g.

ag =a(l 2gt)+lrl< >+lnﬁ, (57)

where ji. is the minimum allowable potential for extraction waves,
and jif is the maximum allowable potential for insertion waves.
The notational + signs of g, and fif are reversed since g_ is the
minimum extremum at which there is almost only insertion, hence
corresponding to the maximum allowable potential fi}, and con-
versely for g, and fi;.
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