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HOMOGENIZATION OF THE POISSON–NERNST–PLANCK
EQUATIONS FOR ION TRANSPORT IN CHARGED POROUS

MEDIA∗

MARKUS SCHMUCK† AND MARTIN Z. BAZANT‡

Abstract. Effective Poisson–Nernst–Planck (PNP) equations are derived for ion transport in
charged porous media under forced convection (periodic flow in the frame of the mean velocity)
by an asymptotic multiscale expansion with drift. The homogenized equations provide a model-
ing framework for engineering while also addressing fundamental questions about electrodiffusion in
charged porous media, relating to electroneutrality, tortuosity, ambipolar diffusion, Einstein’s rela-
tion, and hydrodynamic dispersion. The microscopic setting is a two-component periodic composite
consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous
dielectric matrix, which is impermeable to the ions and carries a given surface charge. As a first
approximation for forced convection, the electrostatic body force on the fluid and electro-osmotic
flows are neglected. Four new features arise in the upscaled equations: (i) the effective ionic diffu-
sivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity
is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye
screening length to the macroscopic length of the porous medium; (iii) the microscopic convection
leads to a diffusion-dispersion correction in the effective diffusion tensor; and (iv) the surface charge
per volume appears as a continuous “background charge density,” as in classical membrane models.
The coefficient tensors in the upscaled PNP equations can be calculated from periodic reference cell
problems. For an insulating solid matrix, all gradients are corrected by the same tensor, and the
Einstein relation holds at the macroscopic scale, which is not generally the case for a polarizable
matrix, unless the permittivity and electric field are suitably defined. In the limit of thin double
layers, Poisson’s equation is replaced by macroscopic electroneutrality (balancing ionic and surface
charges). The general form of the macroscopic PNP equations may also hold for concentrated solu-
tion theories, based on the local-density and mean-field approximations. These results have broad
applicability to ion transport in porous electrodes, separators, membranes, ion-exchange resins, soils,
porous rocks, and biological tissues.
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1. Introduction. The theory of electrochemical transport in free solutions is
well developed [90,99,107], but in many practical situations, ions move through porous
microstructures with internal surface charge. Important examples in biology include
nerve impulse propagation in the porous intracellular matrix of an axon [132], selec-
tive ion transport through protein-based ion channels in cell membranes [17, 32, 45,
55, 106, 127], and the electroporation of porous tissues for drug delivery and med-
ical diagnostics [131]. In chemical engineering, the selective transport of ions and
charged particles through membranes, gels, and porous media is widely used for par-
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ticle separations [56], desalination and ion exchange [64,99], characterization of porous
rocks [51, 109], energy conversion in fuel cells [44, 94, 118, 119], and energy storage in
batteries [89] and electrochemical supercapacitors [36]. Analogous nanoscale transport
phenomena are also beginning to be exploited in microfluidic devices [29, 120], which
involve artificial porous structures with precisely controlled geometries and surface
properties. Recently, also the extraction of renewable energy from salinity differences
is a promising research direction [105].

In microscopic continuum models of electrolytes, the ionic fluxes are given by
the Nernst–Planck equations describing diffusion and electromigration in the mean
electric field, which is determined self-consistently from the mean ionic charge density
via Poisson’s equation. The resulting Poisson–Nernst–Planck (PNP) system has been
studied extensively for the past century in the dilute solution approximation, not
only for electrolytes [19, 22, 47], but also for semiconductors, where electrons and
holes behave like anions and cations, respectively, [52, 81]. The dilute-solution PNP
equations can be derived rigorously from stochastic Langevin equations for the motion
of point-like ions [87, 106]. But the PNP system can also be derived by an energy
variational approach from a macroscopic thermodynamic free energy as performed
in [46,66]. A systematic and rigorous analysis of the PNP system based on energetic
principles for biological applications can be found in [75, 76], for instance.

Recently, a variety of modified PNP equations for concentrated solutions have
been developed to describe strong interactions of finite-sized ions with charged sur-
faces at the nanoscale, as reviewed by Bazant et al. [20]. A promising direction is also
the upscaling of stochastic interaction energies which do not require the description of
a porous medium as a perforated domain [117]. Hard-sphere density functional theory
[57,58] and simpler mean-field models [6,72,95] have been used to modify the Nernst–
Planck equations for ionic fluxes to account for steric hindrance. Poisson’s equation
has also been modified to account for electrostatic correlations [21,33,62,111,123], ex-
plicit treatment of solvent dipoles [73], and solvation energy variations due to nonuni-
form permittivity [130]. All these developments improve the microscopic description
of ion transport close to charged surfaces, but our focus here is on the homogenization
of such models over a charged microstructure to derive effective PNP equations valid
at the macroscopic scale.

There is a long history of heuristic models for macroscopic ion transport in charged
membranes, dating back at least to the 1930s [126]. A classical concept in membrane
science, which we place on a rigorous footing below for general porous media, is the
notion of a fixed “background charge” entering Poisson’s equation, due to the volume-
averaged surface charge of the porous medium [64]. In nanoporous membranes, the
double layers are thick compared to the pore thickness, so that there are only small
variations in diffuse ionic charge between the fixed surface or molecular charges. In
this regime, Poisson’s equation is replaced by macroscopic electroneutrality, includ-
ing both mobile ionic and fixed surface charges, in the classical membrane models
of Teorell [125], Meyer and Sievers [83], and Spiegler [122]. For most porous me-
dia, however, the double layers are assumed to be thin, leaving the pore spaces to
be mostly filled with neutral solution. The classical membrane models can also be
applied to such “leaky membranes” [2, 10, 41, 133, 134] used for desalination [39, 40]
and electrodeposition [61], where the extra conductivity associated with the fixed
background charge accounts for surface conduction though the thin double layers by
electromigration [42,78], while neglecting surface diffusion and surface electro-osmotic
convection [93].
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With thin double layers, however, it is far more common to neglect the surface
charge of the porous medium and replace Poisson’s equation by electroneutrality for
the ionic charge alone, without any fixed background charge. In electrochemistry,
this is a fundamental assumption of “porous electrode theory” (PET), introduced
by Newman and Tobias [91], which postulates electroneutrality within the pores and
effective Nernst–Planck equations of the same form as in the bulk solution, except
for an empiricial tortuosity factor multiplying the ionic diffusivities. This approach
has been applied extensively to batteries [37, 49, 74, 89, 90]. The nonlinear effects of
double-layer charging [22] and surface conduction [84] have also recently been incor-
porated into PET to model capacitive desalination and energy storage [24, 25]. The
assumptions of PET have been tested against large-scale numerical solutions of the
microscopic transport equations in certain cases of realistic microstructures [53, 54],
but mathematical derivations are still needed to predict the form of the macroscopic
equations and to provide a systematic method to calculate their coefficients. This is
the goal of the present work.

To the best of our knowledge, this seems to be the first attempt of systematically
deriving so-called diffusion-dispersion relations for fully nonlinear and time depen-
dent PNP equations in charged porous microstructures and of analyzing physical
implications of such effective macroscopic equations. In spite of the many important
applications listed above, there has only been recently increasing interest in the sys-
tematic upscaling of PNP equations. Up to now, most derivations [60, 65, 67] have
been formal in nature and require simplifying assumptions, such as a neutral bulk and
a linearized PNP problem or even the equilibrium Poisson–Boltzmann approximation,
for instance. Moyne and Murad [85] assume a Boltzmann equilibrium distribution of
ions in a binary electrolyte at the pore scale and perform a homogenization analysis
to derive effective equations for deformable porous media. For neutral species, the
homogenization of linear diffusion over porous microstructures is well developed, and
rigorous bounds are available for the effective macroscopic diffusivity tensor over all
possible microstructures [128]. Looker and Carnie [77] make the same approximation
of microscopic Boltzmann equilibrium and derive symmetric Onsager relations for lin-
ear response, without stating the general effective equations at the macroscopic scale.
Allaire, Mikelić, and Piatnitski [9] revisit the derivation of Looker and Carnie [77]
using two-scale convergence methods developed by Nguetseng [92] and Allaire [4] and
prove the positive definiteness of the Onsager tensor, which requires the explicit use
of an electroneutrality assumption and linearized equations. First bounds on the
error arising between the full, nonlinear, microscopic, periodic porous media prob-
lem and the upscaled/homogenized approximation can be found in [115]. One can
also find recent upscaling results for the full Navier–Stokes–PNP system [104, 114].
A related upscaling methodology is the periodic unfolding method [35], which has
recently been applied to upscaling protein channels in [127]. A metric-based upscal-
ing is suggested in [96] for a medium showing a continuum of scales. A selection
of more classical references on basic homogenization theory is [23, 30, 136], for in-
stance. For rigorous analytical results on the Nernst–Planck–Poisson equations we
refer to [52, 59], for the full Stokes–Nernst–Planck–Poisson system to [68, 113], and
for according reliable, efficient, and convergent numerical schemes and computational
methods to [48, 50, 100, 101]. For numerical upscaling approaches such as the hetero-
geneous multiscale method, we refer to [1, 43] and to [16], where fluctuations arising
in a heterogeneous multiscale finite element method are investigated. In the case of
heterogeneous and highly varying coefficients, a finite element basis has been proposed
in [86] based on a localization idea [15].
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In this article, we derive porous media PNP equations for charged microstructures
using the method of multiple scale expansion with drift. In contrast to [114, 115], we
account for the crucial, nonlinear influence of surface charge on the pore walls in the
PNP equations, which is the main focus of this work. As a first step toward rigorously
including fluid flow in the analysis, we also consider a periodic flow defined on a pe-
riodic reference cell leading to diffusion-dispersion relations, which have been studied
extensively for uncharged fluids in porous media [7, 12, 27, 28, 110], thus going well
beyond the analysis of [114]. In particular, we consider the effect of pressure-driven
convection in the porous media PNP equations, which leads to streaming current (con-
vection of charge) and hydrodynamic dispersion (convection-induced mixing). How-
ever, we neglect the electrostatic body force on the fluid as a first approximation, so
there is no electro-osmotic or diffusio-osmotic flow in the model. This means that the
model cannot satisfy the Onsager relations of linear response, in which the macro-
scopic streaming current and electro-osmotic flow have the same coupling coefficient,
but it could describe some situations of very fast pressure-driven flow, dominating
electro-osmotic flows. In any case, the derivation of dispersion relations is a signifi-
cant step beyond the homogenization of the PNP equations without flow in [114], and
the same diffusivity correction tensors may still hold even in the presence of strong
electrokinetic phenomena, as discussed in [135].

With these assumptions, the macroscopic transport equations have the following
general form:

Homogenized PNP System:

{
θ∂tc

±
0 = div

(
D̂(v)∇c0 + ez±c±0 M̂∇φ0

)
−div

(
ε̂0∇φ0

)
=
(
c+0 − c−0

)
+ ρs,

(1.1)

where c+0 and c−0 are the densities of positively and negatively charged ions, re-

spectively, e is the elementary charge, z± are the charge numbers (ion valences with
sign), φ0 is the electrostatic potential, θ is the porosity, and the effective porous me-
dia correction tensors D̂(v), M̂, and ε̂0 for the diffusivity, mobility, and permittivity,
respectively, are defined in (2.4). We note that convection by fluid flow enters in
two different ways in (1.1), i.e., in the form of a diffusion-dispersion relation, which
means D̂(v) (e.g., Taylor–Aris dispersion [11]) and in the form of a moving frame by
c±0 = c±0 (x − tv∗t/r, t), where v∗ represents a suitably averaged fluid velocity; see
also [7], for instance.

The case without fluid flow is obtained by setting v = 0.
In the limit of thin double layers for isotropic media, our equations are physically

equivalent to those proposed in recent work [40, 41, 42, 63, 79, 103, 124, 134] based
on intuitive and physical reasoning for nanochannels or porous media, where the
potential is determined implicitly by macroscopic electroneutrality, including not only
the ions, but also the surface charge. Here, we derive more general PNP equations,
valid for any double layer thickness, which preserve the form of Poisson’s equation
with a modified effective permittivity, where the electric field is produced by the
total charge density. Our multiscale approach allows us to systematically calculate
the tensorial coefficients in the macroscopic equations accounting for different pore
geometries defined by a periodic reference cell. By including locally periodic fluid
flow, we also obtain a set of diffusion-dispersion relations, which generalize in some
ways the classical approximation of Taylor–Aris dispersion [135]. The key assumption
of local diffusive quasi-equilibrium holds in many situations, but not at very high
currents (exceeding macroscopic diffusion limitation) where fast local convection leads
to incomplete mixing at the pore scale [40, 42, 108].
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In summary, our results show the following novel features:
• no linearization is used for the homogenization, only local thermodynamic
equilibrium, which is consistent with the scale separation property of the
material;

• the electric field is also considered to exist in a dielectric solid phase, which
allows us to study the additional limit of an insulating porous matrix (α → 0);

• the porous media correction tensors are identified based on systematic phys-
ical considerations as coordinate transformations which define a new type
of mean-field gradients rather than a diffusivity parameter that corrects the
diffusion constant from free space to the porous media case;

• an ambipolar diffusion equation (an effective diffusion equation for binary
salt) is derived for porous media by homogenization;

• diffusion-dispersion relations (mixing due to forced convection in a porous
medium) are derived for the PNP system.

The article is organized as follows. We begin in section 1.1 by recalling the PNP
equations for homogeneous bulk solutions. In section 1.2 we extend this coupled
system toward a microscopic formulation in porous media. We state our main result
of effective macroscopic (Stokes-)PNP equations in section 2. A formal proof by
the multiple scale method with drift follows in section 3. We investigate physical
implications of the new effective macroscopic Stokes-PNP system in section 4. That
means we briefly discuss the effective diffusivity and mobility tensors and investigate
the validity of Einstein’s relation between them. We state conditions under which our
results allow for an analytical computation of effective porous media coefficients in the
case of straight channels in section 4.3 and briefly exemplify irregular channels in the
same section. We discuss definitions of tortuosity in section 4.4 and derive the general
ambipolar diffusion equation for a binary electrolyte in a charged porous medium in
section 4.5. In section 4.6, we take the limit of thin double layers in the porous
media PNP equations. In section 4.7, we suggest an approximate microstructural
optimization of the effective conductivity of a symmetric binary electrolyte for parallel
straight channels. In section 5, we conclude by discussing possible extensions and
applications of our homogenized PNP equations.

1.1. Homogeneous media: Basic theory without fluid flow. We adopt
the well-studied mathematical framework for dilute binary electrolytes [20, 22, 34, 71,
72, 95]. For simplicity, we restrict ourselves to the symmetric case z = z+ = −z−,
D = D+ = D−, and M = M+ = M− during the upscaling. An extension toward
dilute, asymmetric binary electrolytes with arbitrary ionic charges q± = ±z±e, diffu-
sivitiesD±, and mobilitiesM± is subsequently considered in section 4.5. The variables
z, z+, and z− refer to valences of ions and e denotes the elementary charge. We mo-
tivate that generalizations toward incompressible fluid flow are studied analytically
and computationally in [68, 100, 101, 113]. All equations subsequently considered are
defined in a bounded, convex, and connected domain Ω ⊂ R

N with 1 ≤ N ≤ 3.
The concentrations of positively and negatively charged ions c±(x, t) evolve ac-

cording to mass conservation laws

∂tc
± = −div

(−c±M±∇μ±
)
,(1.2)
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where the classical Nernst–Planck fluxes (in parentheses) are expressed according to
linear irreversible thermodynamics in terms of the gradients of the diffusional chemical
potentials μ±, given by the

Dilute Solution Theory: μ± = kT ln c± ± z±eφ .(1.3)

The variable φ is the electrostatic potential, which describes the Coulomb interaction
in a mean-field approximation. k denotes the Boltzmann constant, T the absolute
temperature, and e the elementary charge. The coefficients D± are the (tracer) dif-
fusivities of the two ionic species. The mobilities, M±, which give the drift velocity

in response to an applied force, are then obtained by Einstein’s relation M± = D±
kT ,

which must hold for individual ions by the fluctuation-dissipation theorem. The total
mean ionic charge density ρ controls the spatial variation of the potential φ through
Poisson’s equation,

−εsΔφ = ρ := ze(c+ − c−) ,(1.4)

where εs is the dielectric permittivity of the solution (roughly equal to that of the
solvent), assumed to be a constant.

Next, we cast the equations in a dimensionless form using � as a reference length
scale and tD = �2/D as the reference time scale. We use the thermal voltage kT

ze as a
scale for the electric potential. We introduce the reduced variables

c̃+ =
c+

c
, c̃− =

c−

c
, φ̃ =

zeφ

kT
x̃ =

x

�
, t̃ =

t

tD
, ∇̃ = �∇ ,(1.5)

where c is a reference concentration of ions, such as the nominal salt concentration
of a quasi-neutral bulk electrolyte obtained from a large enough reservoir next to
Ω, i.e., prior to its perfusion in the porous medium Ω. The reference solution could
be removed or maintained in contact with the porous medium. We thus arrive at
dimensionless PNP equations containing only the dimensionless parameter ε = λD

� ,

∂
t̃
c̃+ = d̃iv

(
∇̃c̃+ + c̃+∇̃φ̃

)
,

∂t̃c̃
− = d̃iv

(
∇̃c̃− − c̃−∇̃φ̃

)
,

−ε2Δ̃φ̃ = c̃+ − c̃− ,

(1.6)

where ε := λD

� is a dimensionless parameter defined by the Debye screening length

λD := (
εfkT
2z2e2c )

1/2 for a symmetric binary electrolyte.
In our analysis below, we shall use dimensionless equations and drop the tilde

accents for ease of notation.

1.2. Porous media: Microscopic formulation for strong forced
convection. Here, we extend the system (1.6) toward fluid flow and perforated do-
mains Ωr ⊂ R

N instead of the homogeneous Ω ⊂ R
N from section 1.1. The dimen-

sionless parameter r > 0 is defined by r = l
L , where l represents the characteristic pore

size and L is the characteristic length of the porous medium; see Figure 1. The pores
are defined by a single, periodic reference cell Y := [0, l1]×[0, l2]×· · ·×[0, lN ], li ∈ R

N
≥0,

which defines the characteristic pore geometry of the porous medium. Herewith, the
characteristic pore size can be defined by l :=

√
l21 + l22 + · · ·+ l2N , for instance. A
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Fig. 1. Left, macro scale: Domain Ω := Ωr∪Br with the solid-liquid interface Ir := ∂Ωr∩∂Br.
Right, micro scale: Periodic reference cell Y := Y 1 ∪ Y 2 := [0, l1]× [0, l2] with solid-liquid interface
S := ∂Y 1 ∩ ∂Y 2. In case σs �= 0, S is assumed to be smooth. The scaling parameter r defines the
microscale by y = x/r and measures the characteristic size of the heterogeneities. The upscaling
then consists in passing to the limit r → 0, i.e., the electrolyte and the solid phase are homogeneously
mixed while keeping the corresponding volume fractions constant.

well-accepted approximation is to periodically cover the macroscopic porous medium
by the characteristic reference cell Y ; see Figure 1. The pore and the solid phase of
the medium are denoted by Ωr and Br, respectively. These sets are defined by

Ωr :=
⋃

z∈ZN

r
(
Y 1 + z

) ∩ Ω , Br :=
⋃

z∈ZN

r
(
Y 2 + z

) ∩ Ω = Ω \ Ωr ,(1.7)

where the subsets Y 1, Y 2 ⊂ Y are defined such that Ωr is a connected set. The
domain Ω ⊂ R

N in (1.7) is an open, bounded, connected, and convex subset for
1 ≤ N ≤ 3. We will frequently apply the notation ΩT := Ω×]0, T [. We denote by
Ir := Ωr ∩ Br the solid-liquid interface that is assumed to be smooth if there is no
surface charge σs present, i.e., σs = 0. Correspondingly, Y 1 stands for the pore phase
(e.g., liquid or gas phase); see Figure 1.

We use dimensionless length and time variables (1.5) scaled to the length and
time scales for diffusion across a homogeneous medium of characteristic length � which
allows us to vary the Debye length independent of the upscaling/homogenization and
relative to a suitably chosen length scale such as the microscopic pore size l or the
macroscopic length L of the porous medium satisfying l ≤ � ≤ L and l � L. This
ensures that the porous media approximation (by homogenization) is not affected by
an additional thin or thick double-layer approximation.

We denote by v := ṽ
V the dimensionless fluid velocity for the reference velocity

V := |v| and p is the associated pressure. As noted above, we consider only forced
convection, so we assume a horizontal flow induced by e1 as in [7] for pure convection
diffusion problems. The periodicity Assumption (AII) induces that the fluid has
already reached equilibrium and does not allow for any net electro-osmotic flow. In
fact, for consistency with Assumption (AII) and Assumption (AI), the electrostatic
force on the fluid should be negligibly small compared to the constant driving force
e1. In this point we differ from [7], where charge transport is neglected.
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ννν denotes the normal on Ir pointing outward of the pore phase Ωr and σs(x/r)
is Y -periodic. We denote by c±r the trivial extension by zero of the concentrations
c± in the Poisson equation (1.16)7. j

±
r := ∇c±r ± c±r ∇φr −Peloc/r vc

±
r represents the

flux of positive and negatively charged species. Finally, we recall from [114,115] that
ε(x) := ε2χΩr (x)+αχΩ\Ωr (x) with the dimensionless dielectric permittivity α := εm

εf
,

where

χω(x) =

{
1, x ∈ ω,

0 else ,
(1.8)

for ω ∈ {Ωr, Br} and χω(x/r) = χω(y) is Y -periodic. The variables εm and εf are
the dielectric constants of the porous medium and of the electrolyte, respectively. For
simplicity, we consider no-flux boundary conditions with respect to ion densities.

Hence, in deriving effective macroscopic PNP equations we work with the follow-
ing macroscopic dimensionless variables:

(1.9) ε =
λD
�
, x =

x

�
, ∇ = �∇ , t =

tD

�2
.

Since we consider here the case of charged porous media, the reference bulk salt
concentration c will be replaced with the averaged surface charge

ρs :=
1

|Y |
∫
∂Y 1∩∂Y 2

σs(y) dσ(y),

where σs(y) is Y-periodic. As in the case without fluid flow [116], we assume scale
separated electrochemical potentials in the sense of the following.

Definition 1.1 (scale separation). We assume that the electrochemical potentials
μ+(c

+
0 (x, t), φ0(x, t)) and μ−(c−0 (x, t), φ0(x, t)) are scale separated, which means, for

every k ∈ N, 1 ≤ k ≤ N ,

∂μι(c
ι
0, φ0)

∂xk
=

{
0 on the reference cell Y ,
∂μι(c

ι
0,φ0)

∂xk
on the macroscale Ω ,

(1.10)

for ι = +,−, where c±0 (x, t) and φ0(x, t) are the upscaled/slow variables solving the
upscaled PNP system and do not depend on the fast microscale y here.

Remark 1 (local thermodynamic equilibrium). We note that Definition 1.1 char-
acterizes the well-established concept of local thermodynamic equilibrium which plays
a central role in the study of thermodynamic systems [38]. The physical meaning of
(1.10) is that the macroscopic process (upscaled variables) is so slow on the micro
scale Y that the (rapidly varying) local concentration and potential profiles are in
quasi-equilibrium, i.e., with approximately constant electrochemical potentials.

We additionally consider periodic fluid flow which is assumed to induce a domi-
nant convection by the following.

Assumption (AI) (large Péclet number). Suppose that the dimensionless Péclet
number satisfies

Pe ∼ Peloc
r

,(1.11)

where Pe := LV
D =: Peloc

r .
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Characterization (AI) describes the situation of dominant convection, i.e., V ∼
1/r. Before we can formulate our next assumption, we need to introduce the function
spaces

V 1(Ω) :=

{
u ∈ H1(Ω)

∣∣ ∫
Ω

u dx = 0

}
,

H1
	 (Y ) :=

{
u ∈ C∞(Y )

∣∣∣∣u(y) is Y − periodic and
1

|Y |
∫
Y

u(y) dy = 0

}H1

,

H1
	 (div, Y ) :=

{
u ∈ H1

	 (Y,R
N )

∣∣∣∣ divu = 0

}H1

,

(1.12)

where {·}H
1

denotes the closure with respect to the H1-norm. In a corresponding
way, we apply the notation L∞

	 (Y ) below.
Assumption (AII). The forced convection velocity

ur(x, t) = v(x/r)(1.13)

is periodic with a divergence-free vector field v(y) ∈ H1
	 (div, Y

1) satisfying

max
y∈Y 1

|v(y)| ≤ C , divy v(y) = 0 in Y 1 ,

v(y) · ννν(y) = 0 on S := ∂Y 1 ∩ ∂Y 2 .
(1.14)

We also assume that the interface is smooth enough in order to allow for a surface
two-scale limit [8]. Hence, we make the following assumption.

Assumption (AIII). We suppose that the interface Ir is smooth. Moreover,
the initial conditions for the concentrations satisfy the compatibility condition (global
electroneutrality) ∫

Ωr

c+ − c− dx =

∫
Ir
σs do(x) .(1.15)

We collect the macroscopic boundary conditions on ∂Ω in the next assumption.
Assumption (AIV) (academic boundary conditions). Let the field vector ur :=

[v, c+r , c
−
r , φr]

′, which solves (1.16), satisfy homogeneous Dirichlet boundary conditions
on ∂Ω for the quantities uιr with ι = 1, 2, 3 and no-flux boundary conditions for u4r.

Finally, Assumptions (AI)–(AIII) allow us to formulate the microscopic porous
media formulation as follows:

(micro)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δyv +∇yp = −e1 in Y 1 ,

divy v = 0 in Y 1 ,

v = 0 on S ,

v, q are Y -periodic ,
∂c±r
∂t = div

(∇c±r ± c±r ∇φr − Peloc
r v(x/r, t)c±r

)
in ΩrT ,

j±r · ννν = 0 on ∂ΩrT \ ∂Ω ,
−div (ε(x/r)∇φr) = c+r − c−r in ΩT ,

φr
∣∣
Ωr = φr

∣∣
Br on Ir×]0, T [ ,

[ε(x/r)(ννν · ∇)φr ] = rρs(x/r) on Ir×]0, T [ .

(1.16)
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(r → 0)�

Homogenous approximation

Fig. 2. Left: A composite material whose characteristic heterogeneity has the length r. Middle:
Passing to the limit r → 0 under constant volume fraction between circle and square. Right: The
limit problem is obtained by the method of an asymptotic multiscale expansion with drift.

Remark 2. We note that in (1.16)7, the concentrations c± are extended by zero
in the solid phase Br based on the physical grounds since we do not model charge
transport in the solid phase, which therefore becomes electrically neutral. In rigorous
mathematical studies, however, one generally applies an abstract extension operator
Ts as introduced in [3], for instance.

In the next section, we present our main result.

2. Main results: Effective macroscopic porous media approximation.
Based on the microscopic considerations in the previous section 1.2, we can state our
main result, which is the upscaling of (1.16) based on a multiscale expansion with
drift as depicted in Figure 2 and derived in section 3.

Theorem 2.1. Under Assumptions (AI)–(AIV) and for σs ∈ L∞
	 (Y ), the solu-

tion ur := [v, c+r , c
−
r , φr]

′ of problem (1.16) admits for ι = 2, 3, 4 the leading order
representation

uιr = uι0(x− tv∗/r, t)− r

N∑
j=1

ξιj (x/r)
∂uι0(x − tv∗/r, t)

∂xj
+O(r2) for ι = 2, 3, 4 ,

(2.1)

where ξιj (y) ∈ H1
	 (Y

1) for ι = 2, 3 and ξ4j (y) ∈ H1
	 (Y ) solve the following reference

cell problems in the distributional sense:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∑N
i,j=1

∂
∂yi

(
δij

∂
∂yj

ξιj (y)
)
+ Peloc(v · ∇y)ξ

ιj

= −∑N
i,j=1

∂
∂yi

(
δij

∂
∂yj

ξ4j (y)
)
+ (v∗j − Pelocvj) in Y 1 ,

ννν · ((∇yξ
ιj (y)− ei) +

(∇yξ
4j (y)− ei

)
+ Pelocvξ

ιj
)
= 0 on S ,

−∑N
i,j=1

∂
∂yi

(
ε(y)δij

∂
∂yj

ξ4j (y)
)
= 0 in Y ,

(2.2)

where δij stands for the Kronecker δ. The field u0 := [v, c+0 , c
−
0 , φ0]

′ ∈ H1
	 (div, Y

1)×
[H1

0 (Ω)]
2 × V 1(Ω) forms a solution of the following:

Upscaled System:

{
θ∂tu

ι
0 − div

(
D̂(v)∇uι0

)
− div

(
zιu

ι
0M̂∇u40

)
= 0 in ΩT ,

−div
(
ε̂0∇u40

)
=
(
u10 − u20

)
+ ρs in ΩT ,

(2.3)
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where θ :=
|Y 1|
|Y | defines the porosity, v solves (1.16)1–(1.16)4, and uι0 satisfies the

boundary conditions stated in Assumption (AIV). The diffusion-dispersion correc-
tion tensor D̂(v) := {dkl(vi)}1≤k,l≤N , the electroconvection correction tensor M̂ :=

{mkl}1≤k,l≤N , and the effective electric permittivity tensor ε̂0 :=
{
ε0kl
}
1≤k,l≤N are

defined by

dik(vi) :=
1

|Y |
∫
Y 1

(
δik (1 + Peloc(vi − vi)ξ

ιk)− δij∂yjξ
ιk
)
dy ,

mik :=
1

|Y |
∫
Y 1

{
δik − δij∂yjξ

4k(y)
}
dy ,

ε0ik :=
1

|Y |
∫
Y

ε(y)
{
δik − δij∂yjξ

4k(y)
}
dy ,

(2.4)

where

vi :=
1

|Y 1|
∫
Y 1

vi(y) dy =:
v∗i

Peloc
.(2.5)

Finally, the surface charge density per volume ρs is determined by

ρs :=
1

|Y |
∫
∂Y 1∩∂Y 2

σs(y) dy .(2.6)

Remark 3. (i) Theorem 2.1 can be immediately stated without fluid flow by
setting v = 0. We also emphasize that the upscaled quantities uι0 for ι = 2, 3, 4
have to be understood with respect to a frame moving with average velocity v∗, i.e.,
uι0(x − tv∗/r, t). This is also the reason why (2.3) does not show an advective term.

(ii) We note that it is not possible to derive (2.3) by volume-averaging or the
representative volume method, since the system (1.6) is nonlinear. Moreover, these
approaches cannot account for possible source terms or boundary conditions.

We prove this theorem by the multiscale expansion method with drift [7,82]. The
strength of this method is that it allows us to systematically derive the physically
relevant diffusion-dispersion relations (Taylor–Aris dispersion). We discuss this result
and its physical implications in section 4.

3. Formal derivation of Theorem 2.1. Following along the lines of [115],
we first define spatial differential operators arising by the multiscale approach inde-
pendent of fluid flow. As a consequence, variables depending on the heterogeneity
parameter r depend on the macroscale x as well as the microscale y := x/r. We
define the operators

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Arψr(x) := −∑N
i,j=1

∂
∂xi

(
ε(x/r)δij

∂ψr

∂xj

)
=
[(
r−2A0 + r−1A1 +A2

)
ψ
]
(x, x/r) ,

Brψr(x) := −∑N
i,j=1

∂
∂xi

(
δij

∂ψr

∂xj

)
=
[(
r−2B0 + r−1B1 + B2

)
ψ
]
(x, x/r) ,

B4
rψr(x) := −∑N

i,j=1
∂
∂xi

(
zιψrδij

∂u4
r

∂xj

)
=
[(
r−2Bι0 + r−1Bι1 + Bι2

)
ψ
]
(x, x/r) for ι = 1, 2 ,

(3.1)
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where Ai are related to the Poisson equation and for i = 0, 1, 2 defined by

A0 := −
N∑

i,j=1

∂

∂yi

(
ε(y)δij

∂

∂yj

)
,

A1 := −
N∑

i,j=1

∂

∂xi

(
ε(y)δij

∂

∂yj

)
−

N∑
i,j=1

∂

∂yi

(
ε(y)δij

∂

∂xj

)
,

A2 := −
N∑

i,j=1

∂

∂xi

(
ε(y)δij

∂

∂xj

)
,

(3.2)

The operators Bi and B4
i related to the Nernst–Planck equations are defined for i =

0, 1, 2 by

B0 := −
N∑

i,j=1

∂

∂yi

(
δij

∂

∂yj

)
,

B1 := −
N∑

i,j=1

∂

∂xi

(
δij

∂

∂yj

)
−

N∑
i,j=1

∂

∂yi

(
δij

∂

∂xj

)
,

B2 := −
N∑

i,j=1

∂

∂xi

(
δij

∂

∂xj

)
,

B4
0 := −zι

N∑
i,j=1

∂

∂yi

(
δij
∂u40
∂yj

)
,

B4
1 := −zι

N∑
i,j=1

∂

∂xi

(
δij
∂u40
∂yj

)
− zι

N∑
i,j=1

∂

∂yi

(
δij
∂u40
∂xj

)
− zι

N∑
i,j=1

∂

∂yi

(
δij
∂u41
∂yj

)
,

B4
2 := −

N∑
i,j=1

∂

∂xi

(
δij
∂u40
∂xj

)
− zι

N∑
i,j=1

∂

∂xi

(
δij
∂u41
∂yj

)

− zι

N∑
i,j=1

∂

∂yi

(
δij
∂u41
∂xj

)
− zι

N∑
i,j=1

∂

∂yi

(
δij
∂u42
∂yj

)
.

(3.3)

The definitions (3.1), (3.2), and (3.3) allow us to obtain the following sequence of
problems for periodic flow as described in (1.16) by equating terms of equal power
in r:

O(r−2) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B0u

ι
0 + B4

0u
ι
0 + Peloc(v · ∇y)u

ι
0 = 0 in Y 1 ,

uι0 is Y 1-periodic ,

A0u
4
0 = 0 in Y ,

u40 is Y -periodic ,

(3.4)
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O(r−1) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(B0 + B4
0

)
uι1 + Peloc(v · ∇y)u

ι
1

= − (B1 + B4
1

)
uι0 + (v∗ − Pelocv) · ∇xu

ι
0 in Y 1 ,

uι1 is Y 1-periodic ,

A0u
4
1 = −A1u

4
0 in Y ,

u41 is Y -periodic ,

(3.5)

O(1) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B0 + B4
0

)
uι2 + Peloc(v · ∇y)u

ι
2

= − (B1 + B4
1

)
uι1 + Peloc(v − v) · ∇xu

ι
1

− (B2 + B4
2

)
uι0 − ∂tu

ι
0 in Y 1 ,

uι2 is Y 1-periodic ,

A0u
4
2 =

(
u10 − u20

)−A1u
4
1 −A2u

4
0 in Y ,

u42 is Y -periodic .

(3.6)

Using (3.2), (3.3), and the interfacial boundary conditions, we can rewrite (3.4) more
intuitively by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−Δyu
1
0 − divy

(
z1u

1
0∇yu

4
0

)
+ Peloc(v · ∇y)u

1
0 = 0 in Y 1 ,

ννν · (∇yu
1
0 + z1u

1
0∇yu

4
0 + Pelocv · u10

)
= 0 on S ,

−Δyu
2
0 − divy

(
z2u

2
0∇yu

4
0

)
+ Peloc(v · ∇y)u

2
0 = 0 in Y 1 ,

ννν · (∇yu
2
0 + z2u

2
0∇yu

4
0 + Pelocv · u20

)
= 0 on S ,

−divy
(
ε(y)∇yu

4
0

)
= 0 in Y .

(3.7)

It is now standard to deduce from (3.7) that u10(x, y, t) = u10(x, t) and u20(x, y, t) =
u20(x, t). Next, we search for the explicit form of (3.5), i.e.,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−Δyu
ι
1 − divy

(
zιu

ι
0∇yu

4
1

)
+ Peloc(v · ∇y)u

ι
1

= divy∇xu
ι
0 + divy

(
zιu

ι
0∇xu

4
0

)
+ (v∗ − Pelocv) · ∇xu

ι
0 in Y 1 ,

ννν · ∇y

(
uι1 + zιu

ι
0∇yu

4
1 + Pelocvu

ι
1

+∇xu
ι
0 + zιu

ι
0∇xu

4
0

)
= 0 on S ,

−divy
(
ε(y)∇yu

4
1

)
= divx

(
ε(y)∇yu

4
0

)
+ divy

(
ε(y)∇xu

4
0

)
in Y ,

(3.8)

where ι = 2, 3. For ι = 2, 3, 4, we make the ansatz [7, 82]

uι1 =

N∑
j=1

∂uι0
∂xj

(x − tv∗/r, t)ξιj(y) ,(3.9)

which allows us to rewrite (3.8)1 and (3.8)2 as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∑N
i,j=1

∂
∂yi

(
δij

∂
∂yj

ξιj (y)
)
+ Peloc(v · ∇y)ξ

ιj

= −∑N
i,j=1

∂
∂yi

(
δij

∂
∂yj

ξ4j (y)
)
+ (v∗j − Pelocvj) in Y 1 ,

ννν · ((∇yξ
ιj(y)− ei) +

(∇yξ
4j (y)− ei

)
+ Pelocvξ

ιj
)
= 0 on S ,

ξιj (y) is Y -periodic in y and
∫
Y 1 ξ

ιj(y) dy = 0 ,

−∑N
i,j=1

∂
∂yi

(
ε(y)δij

∂
∂yj

ξ4j (y)
)
= 0 in Y ,

ξ4j (y) is Y -periodic in y and
∫
Y ξ

4j (y) dy = 0 ,

(3.10)
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where we used the local thermodynamic equilibrium property introduced in Definition
1.1. Next, we guarantee the solvability of (3.10) via the following Fredholm alternative
(see [7], for instance): Up to an additive constant, the boundary value problem

⎧⎪⎨
⎪⎩
Peloc(v · ∇y)w −Δyw = h(y) in Y 1 ,

ννν · ((∇yw − ej) + Pelocvw) = g(y) on S ,

w is Y 1-periodic ,

(3.11)

has a unique solution w ∈ H1(Y 1) if and only if the following compatibility condition
holds:

∫
Y 1

h(y) dy =

∫
∂Y 1

g(y) do(y) ,(3.12)

where do(y) denotes the surface measure on S.

Via (3.10) we recognize that

h(y) := −Δyξ
4j + (v∗j − Pelocvj) ,

g(y) := −ννν (∇yξ
4j − ej

)
,

(3.13)

such that the compatibility condition (3.12) becomes

v∗j :=
Peloc
|Y 1|

∫
Y 1

vj(y) dy ,(3.14)

which is slightly different from [7] since we do not consider reactions. Let us turn now
to the last reference cell problem (3.6) which has the explicit form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δyu
ι
2 + Peloc(v · ∇y)u

ι
2

= divy∇xu
ι
1 + divx∇yu

ι
1 + divy

(
zιu

ι
1∇xu

4
0

)
+ divy

(
zιu

ι
1∇xu

4
1

)
+Peloc(v − v) · ∇xu

ι
1 +Δxu

ι
0 + divx

(
zιu

ι
0∇xu

4
0

)
+ divx

(
zιu

ι
0∇yu

4
1

)
+divy

(
zιu

ι
0∇xu

4
1

)
+ divy

(
zιu

ι
0∇yu

4
2

)− ∂tu
ι
0 in Y 1 ,

ννν · (∇yu
ι
2 − Pelocvu

ι
2) = 0 on S ,

uι2 is Y -periodic in y ,

−Δyu
4
2 = (u10 − u20) + divx∇yu

4
1 + divy∇xu

4
1 +Δxu

4
0 in Y ,

u42 is Y -periodic in y .

(3.15)

The Fredholm alternative implies the following compatibility condition on (3.15)1:

∫
Y 1

Peloc(v − v) · ∇xu
ι
1 + divx∇yu

ι
1 +Δxu

ι
0

− ∂tu
ι
0 + divx

(
zιu

ι
0∇xu

4
0

)
+ divx

(
zιu

ι
0∇yu

4
1

)
dy = 0 .

(3.16)
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We rewrite (3.16) by its components such that we can determine the upscaled diffusion
and mobility tensors. We obtain∣∣Y 1

∣∣
|Y | ∂tu

ι
0 −

N∑
i,j,k=1

(
1

|Y |
∫
Y 1

{
δik − δij

∂ξιk

∂yj

}
dy

)
∂2uι0
∂xi∂xk

−
N∑

i,k=1

(
1

|Y |
∫
Y 1

Peloc(vi − vi)ξ
ιk dy

)
∂2uι0
∂xi∂xk

−
N∑

i,k,j=1

1

|Y |
∫
Y 1

∂

∂xi

(
zιu

ι
0

{
δik − δij

∂ξ4k

∂yj

})
dy = 0 .

(3.17)

The structure of (3.17) suggests that we define the following diffusion-dispersion cor-
rection tensor D̂ := {dik}1≤i,k≤N and mobility correction tensor M̂ := {mik}1≤i,k≤N :

dik :=
1

|Y |
∫
Y 1

(
δik (1 + Peloc(vi − vi)ξ

ιk)− δij
∂ξιk

∂yj

)
dy ,

mik :=
1

|Y |
∫
Y 1

⎛
⎝δik − N∑

j=1

δij
∂ξ4k

∂yj

⎞
⎠ dy .

(3.18)

The nonstandard form of the effective diffusion coefficient requires to verify the pos-
itive definiteness of the tensor D̂. In fact, it is enough to show the nonnegativity of

∫
Y 1

Peloc(vj − vj)δjkξ
ιk dy =

N∑
i,j=1

∫
Y 1

δij
∂

∂yj
ξιj

∂ξιk

∂yi
dy + Peloc

∫
Y 1

v · ∇yξ
ιj dy

−
N∑

i,j=1

∫
Y 1

δij
∂

∂yj
ξ4j

∂

∂yi
ξιk dy

=

N∑
i,j=1

∫
Y 1

δij
∂

∂yj
ξιk

∂ξιk

∂yi
dy = ‖∇yξ

ιk‖2L2(Y 1) ≥ 0 .

(3.19)

Hence, if we define the porosity as θ :=
|Y 1|
|Y | and apply the definitions (3.18) in (3.17),

then we end up with effective macroscopic Nernst–Planck equations

θ
∂

∂t
uι0 − div

(
D̂∇uι0

)
− div

(
zιu

ι
0M̂∇u40

)
= 0 .(3.20)

It remains to upscale the contributions of the surface charge (1.16)9. A similar problem
in a different context has been studied by the surface two-scale convergence result
established in [8,88]. Hence, we write problem (1.16)7–(1.16)9 in integrated form, i.e.,

−
∫
Ω

div (ε(x/r)∇φr) dx =

∫
Ω

c+r − c−r dx−
∫
Ir
ε̂(x/r)∇φrn do(x) .(3.21)

With the boundary condition (1.16)9, (3.21) reduces to

−
∫
Ω

div (ε(x/r)∇φr) dx =

∫
Ω

c+r − c−r dx+ r

∫
Ir
σs do(x) ,(3.22)
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where the boundary conditions on Ir need to be scaled by r as motivated in [8, 88].
Next, we pass to the limit r → 0 in the first two terms in (3.22) as in [114]. Hence,
the remaining term has the usual homogenization property

r

∫
Ir
σs(x/r)ϕr do(x) → 1

|Y |
∫
∂Y 1∩∂Y 2

σs(y) do(y)(3.23)

in the limit r → 0. This finally leads to the upscaled Poisson equation (1.16)9.

4. Physical aspects of the effective porous media system (2.3).

4.1. Einstein’s relation and the mean-field approximation. The upscaled
PNP equations demonstrate that Einstein’s relation between diffusion D and mobility
M coefficient, i.e., M = D

kT , which holds for the microscopic equations, does not hold

with respect to the porous media correction tensors D̂ and M̂, except in the special
case of an insulating solid matrix without fluid flow (discussed below). At first, this
may appear to be physically inconsistent, since we seem to lose the gradient flow
structure (1.2), as well as the Boltzmann distribution for ion densities in thermody-
namic equilibrium with the electrostatic potential. However, there are several ways
to understand this mathematical result and its validity in physical terms.

One physical interpretation is that the tensors D̂ and M̂ are not corrections of
the transport coefficients, as generally assumed and proclaimed in homogenization
theory, but rather corrections of the gradient operators. This view is consistent with
the engineering notion of tortuosity (discussed below) as a rescaling of the physical
length for transport, only we see that for the full PNP equations, there is a separate
correction tensor to define each “mean-field gradient.” To clarify this perspective, we
may define the mean-field approximations

∇lnc± := D̂∇lnc± =
1

c±
D̂∇c± =:

1

c±
∇c± ,

∇φ := M̂∇φ ,
(4.1)

which lead in the dimensional case to

D±D̂∇c± + kTz±c±M±M̂∇φ = c±
(
D±∇lnc± + kTz±M±∇φ

)
= kT c±M±∇μ± .

(4.2)

Moreover, via (4.1) we define the mean-field gradient of the chemical potential by

∇μ± :=
1

kT

δμ±
δc±

∇c± +
δμ±
δφ

∇φ =
1

kT

δμ±
δc±

D̂∇c± +
δμ±
δφ

M̂∇φ ,(4.3)

where δμ±
δφ and δμ±

δc± denote the variational derivatives of μ±. This allows us to recover

the gradient flow (1.2) for dimensional quantities, i.e.,

∂tc
± = −div

(−c±D±∇μ±
)
,(4.4)

where M± = D±
kT . We remark that the mean-field approximation (4.3) only makes

sense with respect to the gradient of the chemical potential. This fact is a direct
consequence of the asymptotic two-scale expansion method. Therefore, the chemi-
cal potentials μ± remain unchanged, and hence Boltzmann’s distribution for the ion
densities still holds in thermodynamic equilibrium for the assumed dilute solution.
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Formula (4.3) also provides a general framework for obtaining mean-field approxima-
tions of arbitrary diffusional chemical potentials that are defined variationally from
free energy functionals for concentrated solutions [18, 49].

It may still seem problematic that the upscaled equations do not always pre-
dict Boltzmann’s distribution in steady state, but this finding also makes sense from
the perspective of statistical averaging. If a nonlinear relationship such as Boltz-
mann’s distribution, c = exp(−zeφ/kT ), holds at every microscopic point, then there
is no guarantee that the same relationship holds for various reasonable definitions
of spatially averaged variables, 〈c〉 �= exp(−ze〈φ〉/kT ). Insisting that this relation-
ship holds (along with Einstein’s relation) at the macroscopic scale is a particular
mean-field approximation, which happens to differ from that provided by mathemat-
ical homogenization theory. The distinction lies in the way the statistically averaged
concentration and potential variables and their gradients are defined.

Einstein’s relation holds (by construction) whenever the electrostatic potential is
defined as the “potential of mean force.” The total ionic flux can then be written as
the gradient of an electrochemical potential, which has the following general definition
in a concentrated solution:

(4.5) μ = μref + kT ln a+ zeΦ,

where a is the chemical activity, measuring the free energy change from a reference
state of chemical potential μref when Φ = 0. This form is the only one consistent with
thermodynamics and leads to the Donnan equilibrium potential across a membrane
between two electrolytes and the Nernst equation for the equilibrium voltage of a
Faradaic charge-transfer reaction at an electrode [18]. Equilibrium corresponds to
μ = constant with the generalized Boltzmann distribution, a ∝ exp(−zeΦ/kT ). In
a uniform dilute solution, concentration replaces activity, and Φ = φ is electrostatic
potential of mean force.

After homogenization in a dielectric porous medium, the apparent breakdown of
Einstein’s relation implies the need to redefine either the chemical activity a or the
mean potential Φ, so that (4.5) and the Einstein relation still hold. In the general case
where the diffusivity and mobility tensors are different, this cannot be accomplished
simply by redefining the activity, because it is a scalar. However, it can be done by
redefining the mean electric field,

(4.6) E′
0 = −∇φ′0 ≡ −D̂−1M̂∇φ0 = D̂−1M̂E0.

Here, Φ = φ′0 is a proper potential of mean force because the total ionic flux can now
be written as −D̂c0∇μ0, where μ0 = kT ln c0 + zeφ′0, as in (4.5), and the Einstein
and Boltzmann relations are satisfied. Inserting this transformation into the upscaled
Poisson equation and its boundary conditions implies the redefinition of the effective
electric permittivity tensor

(4.7) ε̂0′ = ε̂0M̂−1D̂

so that the upscaled Maxwell displacement field remains unchanged,

(4.8) D0 = −ε̂0∇φ0 = −ε̂0′∇φ′0 = D′
0.

The displacement vector is the fundamental quantity appearing in Maxwell’s equa-
tions for the homogenized porous medium. (The magnetic field is negligible in most
electrochemical problems, since the ionic currents are relatively small.)

Remark 4 (insulating porous matrix without flow). The preceding discussion of
the mean-field approximation becomes more clear in the special case of an insulating
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porous matrix without flow (v = 0). In that case, formally passing to the limit α→ 0,
the porous media correction ε̂(ε, α) for the Poisson equation can be reduced to the
classical diffusion (Laplace) corrector D̂, and the correction tensors for the mobility
M̂ := {mkl}1≤k,l≤N and D̂ := {dkl}1≤k,l≤N are also the same. As a result, Einstein’s
relation holds for the upscaled equations, and Boltzmann’s distribution is recovered
in equilibrium. This makes sense physically since the electric field and ionic fluxes are
confined to the same tortuous pore space, where the assumed microscopic model of
dilute solution theory upholds these relations.

In contrast, if the porous matrix is a dielectric or conducting material, then
the electric field spills into the matrix and leaves from the pores where the ions are
confined. As such, the ions only sample part of the electrostatic potential in a given
volume, and gradients of the upscaled electrostatic potential that averages over both
the pores and the matrix do not properly capture the mean electrostatic forces on
the ions. This is the simple physical reason that upscaling violates Einstein’s relation
and Boltzman’s distribution in the general situation and requires redefinition of the
potential and permittivity tensor in order to recover these basic relationships at the
macroscopic scale.

4.2. Material tensor. As in the context of composite materials, we recall in
this section the material tensor, introduced in [114, equation (3.14)] for v = 0 and
motivate that its effective upscaled form is related to a coordinate transformation. It
is shown for v = 0 that the definitions in (2.4) represent a so-called effective material
tensor,

Ŝ(u) := Sikjl(u) :=

⎡
⎣ dkl 0 u1mkl

0 dkl −u2mkl

0 0 ε0kl(ε, α)

⎤
⎦ ,(4.9)

for the field vector u := [c+, c−, φ]′ and the right-hand side I(u) := [0, 0, u1 − u2]′ by

∂∂∂tu− div
(
Ŝ(u)∇∇∇u

)
= I(u) ,(4.10)

where ∂∂∂t is the operator

∂∂∂t :=

⎡
⎣∂t 0 0
0 ∂t 0
0 0 0

⎤
⎦ ,(4.11)

and also ∇∇∇ and divdivdiv are correspondingly defined.
In the case of an insulating matrix, the material tensor (4.9) simplifies to

Ŝ := Sikjl(u) :=

⎡
⎣ dkl 0 u1dkl

0 dkl −u2dkl
0 0 ε2dkl

⎤
⎦ .(4.12)

In this case, it becomes clear that upscaling is equivalent to rescaling of the coordi-
nates, as in the engineering concept of tortuosity discussed below in section 4.4.

Let us introduce the coordinate tranformation

D̂1/2x̃ := x ,(4.13)

where components of x̃ admitting “∞” are subsequently to be treated as parameters.
We remark that the transformation (4.13) accounts for a finite separation of scales
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and can be generalized to the case of a continuum of scales by the idea of metric-based
upscaling introduced in [96]. With (4.13) the gradient∇x and the divergence operator
divx change with respect to the new coordinates as follows:

∇x = D̂−1/2∇x̃ and divx = (∇x)
′ = divx̃D̂

−1/2 ,(4.14)

where D̂−1/2 denotes the matrix square root of D̂−1. Via (4.14), the tensor (4.12) can
be written in these new coordinates x̃ in the case of an insulating porous matrix, i.e.,
α = 0, by

Ŝ(ũ) := Ŝikjl(ũ) :=
⎡
⎣ 1 0 ũ1

0 1 −ũ2

0 0 ε2

⎤
⎦ ,(4.15)

where ũι(t, D̂1/2x̃) = uι(t, x) for ι = 1, 2, 3. Hence, the material tensor (4.12) takes the
same form in the new coordinates x̃ as the classical PNP equations for homogeneous
media in the case of an insulating porous matrix. Moreover, the porous media equation
(4.10) reads in the new coordinates as

∂∂∂tũ− divx̃

(
Ŝ(ũ)∇∇∇x̃ũ

)
= I(ũ) .(4.16)

4.3. Solutions to particular reference cell problems: Straight and per-
turbed channels. The main purpose of this section is to demonstrate that under
restrictive conditions one can apply available results from the literature on homog-
enization of diffusion equations in order to compute the correction tensors of the
upscaled and more complex PNP system. To this end, we need to assume that the
electric potential φ only exists in the electrolyte phase like the salt and charge concen-
trations and that the pores form straight channels. This is the case of an insulating
porous matrix (i.e., α → 0) as studied in Remark 4. Hence, we know that the com-
plex correction tensor ε̂(ε, α) simplifies to the corrector ε2D̂, where D̂ is defined by
the classical reference cell problem of the diffusion equation.

We consider the reference cell depicted in Figure 3, left (in two dimensions).
The porous media correction with respect to the diffusion can be written in the two-
dimensional case as follows:

D̂ =

[
d11 0
0 d22

]
.(4.17)

Obviously, in the case considered we have, as in [13], d11 = θ and d22 = 0 since there
is no transport possible in the y2-direction in Figure 3. A strightforward extension of
the straight channel to dimension three is depicted in Figure 3, right.

As opposed to straight channels, the case of perturbed straight channels requires
the numerical calculation of the components dii for i = 1, 3 of the effective diffusion
tensor D̂, and for mathematical well-posedness we have to set σs = 0, since S = Ir∩rY
is not smooth in this case. The component d22 is 0 as one would intuitively expect.
We restate here briefly numerical results obtained by finite element computations
in [14] for the reader’s convenience, i.e.,

D̂ = θ

⎡
⎣ 0.3833 0 0

0 0 0
0 0 1

⎤
⎦ .(4.18)

In the special case of linearized and stationary PNP equations, a numerical study of
effective tensors can be found in [5].
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Fig. 3. Example of straight channels. Left: Two-dimensional case (pore phase is red). Right:
Three-dimensional case.

Fig. 4. Perturbed straight channels in three dimensions (see [14]). Left: Reference cell geome-
try. Right: Cross-section of the period.

4.4. Tortuosity and effective diffusivity: A critical survey. In the follow-
ing, we motivate that homogenization allows us to validate current tortuosity relations
and to give directions toward refinements of such relations. The explicit examples
from section 4.3 allow us to systematically understand the influence of the geometric
structure on the tortuosity. Sometimes, the so-called diffusibility Q is introduced to
relate the molecular diffusion constant D and the effective diffusion constant Dp of a
porous medium, i.e.,

Dp = QD .(4.19)

The expressions for Q available in the literature can be divided into three classes
(see [129]): (1) empirical correlations, which express Q as a function of the porosity
θ, i.e., Q = f(θ); (2) semiempirical equations based on a pore model where Q is
defined by the special class of functions f(θ) = γθμ, where the term θμ is generally
said to account for the influence of the smaller cross-sectional surface available for
diffusion; and (3) theoretical expressions for Q derived for dispersed solids in the form
of spheres.
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We first begin with a historical overview. In any porous system, the presence of
solid particles/material causes the diffusion paths of species to deviate from straight
lines. Consequently, the diffusion coefficients of species must be corrected. One tries
to capture this deviation from straight lines in a porous medium by a term called
tortuosity τ , whose suitable definition is still an actual research topic.

By theory and dimensional reasoning, Petersen [97] suggested that the diffusion
coefficient is scaled by tortuosity as

Dp =
D

τ2
,(4.20)

which implies Q = 1/τ2. A similar relationship is introduced by Aris [11] and Satter-
field [112], i.e.,

Dp =
θ

τ
D ,(4.21)

and hence Q = θ/τ . The simplest and most intuitive method to estimate τ (in the
two-dimensional case of a single particle) is the ratio between the length of the real
diffusion path Lγ and the shortest distance of its end points Lab, i.e.,

τ :=
Lγ
Lab

.(4.22)

In van Brakel and Heertjes [129], a slight generalization of (4.20) is considered by

a constrictivity parameter κ := (
Dp

θD )τ=1, which accounts for the fact that the cross
section of a segment varies over its length. Hence, (4.20) changes to

Dp =
θκ

τ2
D ,(4.23)

so in this case, Q = θκ
τ2 .

Further, van Brakel and Heertjes [129] argued that for porous materials a function
of the type Q = f(θ) does not exist. Moreover, they emphasized that the pragmatic
value of the available Q− θ relations is not very good. Recently, Shen and Chen [121]
gave a critical review of the current impact of tortuosity on diffusion. Therefore, we
motivate our discussion and study of Q in this section by suggesting a theoretically
obtained Q with the help of homogenization theory. The diffusibility Q could turn
out as a relevant parameter to compare empirical measurements with theoretically
obtained effective quantities.

To this end, we first extend the above relations to tensorial versions, i.e., we denote
by D̂p the effective diffusion tensor in a porous environment and by D̂ := {Dδij}ij
the molecular diffusion tensor in free space, where δij denotes the Kronecker delta
function. First, we extend (4.20) to

D̂1/2
p τ̂ := D̂1/2 ,(4.24)

where D̂p := DD̂ and the diffusion corrector D̂ is obtained by homogenization. We
point out that the tensorial relation (4.24) also implies a tensorial diffusibility, i.e.,
Q̂ = τ̂−2.

Equation (4.24) has the following interesting interpretation in the case of an insu-
lating porous matrix and for normalized molecular diffusion D = 1 (see also Remark
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4): The tortuosity τ̂ in (4.24) corresponds then to the coordinate transformation
(4.13), i.e., x̃ = τ̂x.

In view of (4.21) and (4.23), we motivate further the extensions of (4.21) to

D̂1/2
p τ̂ := θD̂1/2(4.25)

with corresponding Q̂τ̂ = θ and the extension of (4.21)

D̂1/2
p τ̂ :=

(
θκ̂D̂1/2

)
(4.26)

with Q̂τ̂2 = θκ̂, that is, we extended κ toward a tensorial constrictivity κ̂.
Comparison of the phenomenological relations (4.20), (4.21), and (4.23) with the

homogenized relations (4.24)–(4.26). Let us apply Definition (4.24) to the examples
from section 4.3. In the case of straight channels (see Figure 3 on the right-hand side),
the Definition (4.24) implies the following tortuosity tensor:

τ̂ =

⎡
⎣ 1/

√
θ 0 0

0 0 0

0 0 1/
√
θ

⎤
⎦ .(4.27)

We point out that the porosity θ with respect to straight channels corresponds to the
channel height on the unit reference cell. Let us compare (4.27) with the intuitive
definition (4.22). If we apply definition (4.22) in a straightforward manner, then
τ = 1. However, in the two- or three-dimensional case it is not clear which path γ
represents the actual fluid path of a particle. Let us check, for example, the tortuosity
defined by the average path length

Lγ =
1

n

n∑
i=1

Lγi ,(4.28)

where n ∈ N. We test actual path length defined as the average (4.28) with respect
to the straight channel shown in Figure 3, where we denote the channel height by θ.
With (4.28), n = 3, the path lengths Lγ1 := Lab = 1 (where γ1 is the shortest path),

Lγ2 :=
√
L2
ab + θ2 =

√
1 + θ2 (where γ2 is the diameter of the associated rectangle

for the porosity θ which represents the channel height), and Lγ3 :=
√
2 + θ2 (i.e.,

the diameter), we get τ = Lγ where Lγ = 1
3

(√
1 + θ2 + 1 +

√
2 + θ2

)
. In following

Boudreau [26, section 2], the tortuosity must approach unity for θ → 1. This does

not hold by definition (4.22) together with (4.28) since limθ→0 τ(θ) = 2+
√
2

3 . But
the tortuosity (4.27) defined via the homogenization process perfectly satisfies this
condition; see [26, section 2]. Accordingly, in the case of perturbed straight channels
as considered in section 4.3, the tortuosity tensor (4.24) becomes

τ̂ =

⎡
⎣ 1/

√
0.3833θ 0 0
0 0 0

0 0 1/
√
θ

⎤
⎦ .(4.29)

One immediately recognizes that τ̂11 in (4.29) is > 1 in the limit θ → 1. Hence
Boudreau [26, section 2] doesn’t hold. These two contradictions advise caution when
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using definitions (4.20) and (4.24). Next, we examine the definition (4.25), which
becomes for the case of straight channels

τ̂ =

⎡
⎣ 1 0 0

0 0 0
0 0 1

⎤
⎦ .(4.30)

A comparison of (4.30) with (4.22) shows perfect agreement, i.e., (τ(4.30))11 = 1 =
τ(4.22). However, in the case of perturbed straight channels, we depend on the nu-

merical accuracy. Since the mesh in [14] is not very fine, we cannot necessarily expect
equality. In fact, we obtain (τ(4.30))11 = 2.6 and τ(4.22) = 4·4+1

9 = 1.9. How-

ever, these discrepancies also motivate the critical statements of [121, 129] about the
pragmatic value of tortuosity as mentioned above. We leave the investigation of the
definition (4.26) to the interested reader, since the definition of the constrictivity
parameter in [129] is a delicate point and again a new source for modeling errors.

As a conclusion of this discussion, we motivate that homogenization theory allows
us to derive effective equations which do not require a questionable tortuosity or
diffusivity parameter. Moreover, these correction tensors provide a tool to check
available tortuosity or diffusivity definitions and might suggest directions on how to
improve their consistency. In view of section 4.1, it seems also relevant to recall that
homogenization corrects not the diffusion constant but rather the spatial derivatives,
i.e., the gradients.

4.5. Ambipolar diffusion equation for a binary electrolyte. Motivated
by results obtained in Mani and Bazant [78] by volume-averaging, we show here
that we recover, in the special case where pores are straight or perturbed straight
channels and where fluid flow is neglected, i.e., v = 0, the results from [78] by our
upscaled/homogenized equations (2.3), which are valid for general pore geometries.
The advantage of homogenization theory relies on the fact that we are able to accu-
rately treat nonlinear terms in difference to volume-averaging approaches requiring
still linear equations. We already saw that the physics and the form of the upscaled
system (2.3) include explicit parameters/tensors which are not present in the free
space case. Despite these additional features, it is straightforward to derive the am-
bipolar diffusion equations, which account for arbitrary ionic valences, by starting
with the effective macroscopic PNP system (2.3).

To this end, we extend the porous media approximation (2.3) to a dilute, asym-
metric binary electrolyte with arbitrary ionic charges, q± = ±z±e in this section. For
simplicity, we assume constant diffusivities D± in the microstructure and denote the
corresponding upscaled diffusivities and mobilities by D± = D±D̂ and M± = M±D̂.
Without loss of generality, we consider a negative surface charge, i.e., ρs < 0. More-
over, we work in the context of an insulating porous matrix (α = 0) and v = 0 such
that the porous media correction tensors satisfy M̂ = D̂ and ε̂ = ε2D̂; see Remark 4.
We simplify now the PNP system by applying the usual conventions

0 = θe (z+c+ − z−c−) + ρs ,

θc := θ (z+c+ + z−c−) +
ρs
e
,

(4.31)

where the first relation expresses quasi neutrality for the case of surface charge. This
assumption naturally arises here in view of the derived effective equations (2.3) for
fixed surface charge. However, in [80, 102, 124] such a neutrality condition has been
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suggested by pure physical reasoning. Furthermore, we will not make use of the
Nernst–Einstein equation (or simply Einstein relation) between the diffusivion ten-
sors D± = D±D̂ and mobility tensors M± = M±D̂. Hence, the ambipolar diffusion
equation derived under the above assumptions takes the form

θ∂tc = Ddiv
(
D̂∇c

)
− z

e
div

(
ρsD̂∇φ

)
− D+z

kT ez+M+
div

(
D̂∇ρs

)
,(4.32)

where we used the relations

D :=
z+M+D− + z−M−D+

z+M+ + z−M−
and z :=

2z+z−M+M−kT
z+D−M+ + z−D+M−

.(4.33)

We remember that D̂ is defined by (2.4) for v = 0, see Remark 4.
The correction tensors D̂ for straight channels and for perturbed straight channels

(in section 4.3) allow us to accordingly rewrite the ambipolar diffusion equation (4.32),
which describes a porous material for a surface charge density σs. In view of the
volume-averaged straight channels studied in [78], we only consider in the following
the example from section 4.3. With (4.17), (4.32) immediately takes the form

∂tc = D∂2x1
c− z

e
∂x1 (ρs∂x1φ)−

D+z

kT ez+M+
∂2x1

ρs .(4.34)

Interestingly, the porosity parameter θ cancels out in (4.34).

4.6. Thin double layers at macroscopic scale. Recently, the thin-double-
layer formulation for microchannels at the microscopic (channel or pore) scale has
been formally extended to porous media by Mani and Bazant [78] by including the
surface charge as a homogeneous background charge in the electroneutrality condition.
The same approximation for thin double layers at the macroscopic scale can be found
in classical membrane models [83, 122, 125] for the limit of large background charge,
which corresponds to strong counter-ion selectivity. In the opposite limit of thin
double layers at the pore scale, the porous medium is weakly charged and behaves like
a “leaky membrane” [41, 134], whose ion concentrations can be significantly depleted
and enriched by the passage of current, since only a small fraction of the ions are
involved in screening the surface charge.

Without restricting the relative thickness of the double layers λD relative to the
pore scale �, we consider here the general limit of thin double layers compared to
the macroscopic scale L of the porous medium. A systematic analysis of this limit
involves homogenization theory to accurately treat the nonlinear terms in (1.6) and
to account for fluid flow in (1.16). A further advantage of the homogenization method
is that the resulting system (2.3) is not restricted to a special geometry and is rather
valid for general porous structures defined by a periodic reference cell, e.g., Figure
1, which induces tensors (2.4) defining mean-field gradients as the main part of the
upscaling. In the case of straight channels, an insulating porous matrix (i.e., α = 0),
and v = 0, the correction tensor D̂ can be analytically obtained, as in section 4.3,
although for more complicated geometries, such as irregular channels, the correction
tensor D̂ must be calculated numerically.

In order to describe situations with thin electrical double layers compared to the
macroscopic length of the porous medium, we consider the thin double-layer limit in

(2.3) rewritten for the salt c := c++c−
2c and charge ρ := c+−c−

2c variables. In the general
case of a polarizable solid matrix, one immediately sees that the limit ε→ 0 does not
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reduce the complexity of the macroscopic formulation, i.e., formally by setting ε = 0
in ε̂(ε, α). However, if we pass to the joint limit ε, α → 0, where the solid matrix is
electrically insulating and v = 0, then the porous media PNP system behaves like
the classical PNP for ε → 0. That means we obtain the following leading order bulk
approximation for salt density c, charge density ρ, and electric potential φ:

0 = div
(
cD̂∇φ

)
,

θ∂tc = div
(
D̂∇c

)
− div

(
ρsD̂∇φ

)
,

0 = ρ+ ρs .

(4.35)

The first equation expresses charge conservation in the quasi-neutral bulk solution
by setting the divergence of the current to zero. The second equation expresses to-
tal salt conservation. This description of bulk electrolytes with thin double layers is
very well known and forms the basis for classical theories of electrochemical trans-
port [90], based on the assumption of quasi electroneutrality in the electrolyte, ρ = 0.
The third equation, however, is different and expresses quasi electroneutrality of the
entire porous composite, including not only the diffuse ionic charge ρ but also the
homogenized surface charge, ρs.

Mani and Bazant [78] recently argued that the macroscopic electroneutrality con-
dition, (4.35), generally holds in the limit of thin double layers at the pore scale.
The physical reason is that the counter ions screening the surface charge in a thin
double layer provide an extra surface conductivity, proportional to the total diffuse
double-layer charge, which is acted on by the same tangential electric field as in the
nearby bulk solution. If the double layers were not thin, the electric field would be
strongly perturbed by the diffuse charge throughout the pore, and the extra counter
ions could not be viewed as simply providing extra conductivity for bulk ion trans-
port. It would be interesting, but beyond the scope of this paper, to study this limit
λ� � systematically in the framework of homogenization theory.

4.7. Effective and optimal conductivity in straight channels. We show
in this section how the effective PNP equations (2.3) allow us to find the effective
conductivity tensor σ̂(x) of a binary symmetric electrolyte inside of a porous domain
Ω, which includes the solid and pore space and whose upscaled/outer boundary is
denoted by ∂Ω. This provides a convenient and systematic way for the optimization
of the conductivity with respect to the pore geometry. In this context, one generally
differs the analytical forward optimization that we propose here from the computation-
ally more expensive backward optimization strategies such as topology optimization
or trust region methodologies. For an electrochemical definition of conductivity for
general electrolytes we refer to [98]. In the following, we formally combine necessary
physical equations and mathematical tools in order to obtain a conductivity tensor σ̂
that depends on geometrical parameters. The ideas presented here should serve as a
first motivation for deeper physical insights and for future research directions toward
more rigorous definitions and theorems.

We assume that the domain Ω is a porous medium with porosity θ. For simplicity,
we consider the pores to be straight (cylindrical) channels where the solid forms an
insulating porous matrix with v = 0, that is, D̂ = M̂ = ε̂0; see Remark 4. For a
current density J together with the electrostatic equations div J = 0 and rotE = 0,
where E = ∇φ and φ is a solution of (2.3)2, it holds that

div (σ̂∇φ) = 0 ,(4.36)
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where the constitutive relation J = σ̂E entered. Moreover, the upscaled Nernst–
Planck equations (2.3)1 provide the current density J for a binary symmetric elec-
trolyte, i.e.,

J := D̂∇ρ+ cD̂∇φ ,(4.37)

where we use the salt c and charge ρ formulation from section 4.6. Next, we deter-
mine the conductivity σ̂ of the electrolyte based on the Nernst–Planck flux (4.37).
Therefore, we replace ρ in (4.37) by the Poisson equation (2.3)2 with ε2D̂ instead of
ε̂0(ε, α) as explained in Remark 4. We obtain

J = −D̂∇
(
div

(
ε2D̂∇φ

)
+ ρs

)
+ cD̂∇φ .(4.38)

The structure of (4.38) motivates us to consider the eigenvalue problem for the Laplace
operator, i.e., {

−Δyui(y) + λiui(y) = 0 in Y 1 ,

ui(y) = 0 on ∂Y 1 ∩ ∂Y 2 .
(4.39)

We remark that it is not immediately clear what kind of boundary conditions are
required in (4.39). The boundary condition (4.39)2 has the advantage that it gives a
lower bound [31,69] on the first eigenvalue λ1 in (4.39) for the geometry defined by the
pore phase Y 1. We point out that instead of using the macroscopic Laplace operator
div(D̂∇φ), we apply the microscopic Laplace operator Δy = r2divx(D̂∇)x on the
pore phase of the reference cell Y 1. This allows us to add information about the pore
geometry to the problem. Hence, the eigenvalue λ1 depends on the pore geometry
which is the striking point for our optimization goal. Since the self-adjoint eigenvalue
problem (4.39) is a regular Sturm–Liouville problem, we can use its solutions {ui}i to
generate an orthonormal basis in L2(Ω). Thus, for any function f ∈ L2(Ω) we have

f =

∞∑
i

〈f, ui〉ui ,(4.40)

where equality is in the sense of L2.
Now, we can choose D̂ as in section 4.3 for straight channels if we additionally

assume that the electrostatic potential exists only in the electrolyte phase. Hence,
after choosing f = ∂x1φ, the relation (4.38) becomes

J1 = θ

( ∞∑
i

(
ε2

r2
Δy + c

)
〈∂x1φ, ui〉ui − ∂x1ρs

)
,(4.41)

where equality holds again in the L2-sense. We can now approximate (4.41) by only
considering the first eigenvalue λ1 of (4.39). That means we obtain

J1 ≈ θ

((
ε2

r2
λ1 + c

)
〈∂x1φ, u1〉u1 − ∂x1ρs

)
.(4.42)

Since ρs is independent of x1, we get the following approximations for the conductivity,
i.e.,

σ11 := σ11(θ, λ1, ε, r, c) ≈ θ

(
ε2

r2
λ1 + c

)
.(4.43)
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The dimensionless Debye length ε in (4.43) indicates that surface conduction plays a
central role in ion transport through porous structures. Hence, materials with higher
heterogeneities improve the ionic conductivity in view of this equation.

This means that the optimization of the conductivity in direction of the straight
pores is achieved by increasing ε and λ1 for given θ, c, and r. With the help of
Cheeger’s number h(Ωr), we have an additional tool for optimizing the conductivity
with respect to geometry. Due to Cheeger [31] and Kawohl and Fridman [69], it holds
that

λ1 ≥
(
h(Ωr)

2

)2

.(4.44)

Example 1 (square). For a square Sa := [−a, a]2, Cheeger’s number can be deter-
mined explicitely by h(Sa) =

4−π
(4−2

√
π)a

. Moreover, we know that the first eigenvalue

is λ1(S1) = 2π2. This indicates that the lower bound given by estimate (4.44) is not
too sharp. However, it allows us at least to obtain first insights for possible directions
toward optimization of the conductivity (4.43).

Example 2 (rectangle). For a rectangle Ra,b := [−a, a]× [−b, b], one immediately
gets the following Cheeger constant (see [70]):

h(Ra,b) =
4− π

a+ b−√
(a− b)2 + πab

.(4.45)

Hence, in order to optimize the conductivity (4.43) for a rectangle-shaped pore Ra,b,
we have to maximize h(Ra,b), which is equivalent to the minimization of a and b. If
we assume that we are given a porous material of characteristic length b = l, then it
immediately follows that h is maximal after minimizing the channel hight a > 0.

5. Conclusion. We have applied a systematic, formal homogenization proce-
dure for the PNP equations (1.16) for ion transport in charged porous media. The
resulting upscaled macroscopic equations (2.3) have a similar form as the microscopic
equations, except for three fundamental modifications: (i) the ionic diffusivities and
mobilities, as well as the effective medium permittivity, become tensorial coefficients,
which are explicitly connected to the microstructure by solving the periodic reference
cell problem; (ii) the total surface charge per volume appears as an extra “background
charge” in the upscaled Poisson equation; and (iii) the diffusion corrector accounts
for so-called diffusion-dispersion relations induced by a dominant periodic fluid flow.
The porous-medium PNP equations may find many applications in electrochemical
and biological systems involving ion transport in charged porous media, where effects
of fluid flow can be neglected. Simplified equations for the limits of thin or thick
double layers may also be appropriate in many cases.

There are many interesting avenues for future work, building on these results.
There is a substantial literature on rigorous bounds and approximations for the effec-
tive diffusivity or conductivity of a composite medium [128], related to solutions of
Laplace’s equation with flux matching interfacial conditions. It would be challenging
and useful to derive analogous mathematical bounds and approximations for the effec-
tive diffusivities and mobilities of ions in a charged composite medium, which appear
as tensorial coefficients in our porous-medium PNP equations. One might expect ana-
logues of the Wiener bounds for anisotropic composites to hold for striped microstruc-
tures and analogues of the Hashin–Shtrikman bounds for isotropic microstructures to
hold for space-filling random sphere packings, although the appearance of an internal



1396 MARKUS SCHMUCK AND MARTIN Z. BAZANT

length scale for electrostatic interactions (the Debye screening length) complicates
such simple geometrical constructions.

It would also be valuable to find simple ways to approximate the solution to
the reference-cell problem and thus derive simplified expressions for the tensorial
diffusivities and mobilities. In the limit of thin double layers, this could be done using
surface conservations laws, which are effective boundary conditions on the neutral
solution obtained by singular perturbation methods [24, 34]. In the opposite limit of
thick double layers, regular perturbation methods might be applied to capture effects
of diffuse charge variations in the microstructure.

We close by emphasizing the open challenge of deriving effective ion transport
equations in more general situations using homogenization theory. We have already
commented on the extension to concentrated solution theories based on the local den-
sity approximation (for chemical interactions) and the mean-field approximation (for
electrostatics) [20]. Going beyond these approximations in the microscopic equations
can lead to nonlocal Nernst–Planck integral equations [57,58] or higher-order Poisson
equations [21], whose upscaled form remains to be determined. Perhaps even more
challenging, and more important for many applications, would be to predict the effects
of general, nonperiodic fluid flow on the homogenized PNP equations, coupled to the
Navier–Stokes equations with electrostatic body forces. When large currents exceed-
ing diffusion limitation are applied to charged porous media, it has been predicted
theoretically [42] and confirmed experimentally [40] that complex nonlinear electroki-
netic phenomena arise, which cannot be described by Taylor–Aris dispersion [135], or
our homogenization approximation, due to the formation of nonequilibrium “fingers”
of high and low salt concentration at the pore scale [108].
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and selectivity in nanopores with spatially inhomogeneous, Ion Channels, 126 (2007),
pp. 1–9.

[103] P. Ramirez, S. Mafe, V. M. Aguilella, and A. Alcaraz, Synthetic nanopores with fixed
charges: An electrodiffusion model for ionic transport, Phys. Rev. E, 68 (2003), pp. 1–8.

[104] N. Ray, A. Muntean, and P. Knabner, Rigorous homogenization of a Stokes-Nernst-
Planck-Poisson system, J. Math. Anal. Appl., 390 (2012), pp. 374–393.

[105] R. A. Rica, R. Ziano, D. Salerno, F. Mantegazza, R. van Roij, and D. Brogioli,
Capacitive mixing for harvesting the free energy of solutions at different concentrations,
Entropy, 15 (2013), pp. 1388–1407.
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