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We develop a multiscale simulation method for dense granular drainage, based on the recently proposed
spot model, where the particle packing flows by local collective displacements in response to diffusing
“spots” of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000
spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many
features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs
two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or
optimization. We demonstrate extensions for modeling particle heaping and avalanching at the free surface,
and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are
robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep
approaches, and showing that the elastic relaxation step used in the model can be applied much less
frequently and still create good results.

Published by Elsevier B.V.

1. Introduction

Particle-based simulation of slow, dense granular flow is needed in
many engineering applications, but presents a difficult computational
challenge. One simulation approach is the discrete-element method
(DEM) [1], whereby individual particles are integrated according to
Newton's lawswitha contact forcemodel, but simulating realistic three-
dimensional flows still requires days to weeks on a parallel computer.
While this method is useful in-depth analysis, it is impractical in certain
situations, such as for process control, where it may be advantageous to
estimate features of aflowin real time, or for optimization,where a large
number of varying configurations may need to be considered.

In this paper, we develop amultiscale simulation technique that can
be used to rapidly simulate many features of dense granular drainage.
The model is simple and easy to implement, and can approximate both
microscopic andmacroscopicflow features, using two to three orders of
magnitude less computational power than DEM. A key strength of the
simulation is its ability to model granular mixing, for which relatively
few descriptions are available. In some industrial hopper flows, where
several granular materials of different compositions are draining
through a single hopper, it may be important to estimate in real time
how much mixing is taking place. One example of where this occurs is
the pebble-bed nuclear reactor concept [2,3], that features a reactor core

comprised of spherical fuel pebbles of diameter ∼6 cm that are slowly
cycled. Some designs, such as the MIT Modular Pebble-Bed Reactor
(MPBR) [4], feature an additional type of reflecting moderator pebbles,
and theamountofmoderator/fuel pebblemixinghas direct implications
on reactor power output and fuel burnup [5,6]. Mixing in this geometry
has been investigated using DEM [7], but even simulating a single cycle
of this large-scale, three-dimensional geometry took several weeks of
time on a parallel computer.

The physics of mixing in slow, dense granular flow is significantly
different from traditional models of diffusion of gases and liquids. In
these slow, dense flows, particles move quasi-statically and experience
long-lasting contacts with their neighbors. Kinetic stresses (based upon
the variance of particle velocities) are small in comparison to the static
stresses (based upon the particle contact forces). For spherical
monodisperse particles, this corresponds to packing fractions in the
approximate range of 57%–64%.Mixing in this regime been investigated
experimentally by Choi et al. [8] using 3 cm glass beads in a thin
rectangular silo. These experiments pointed to a rate-independence for
granular diffusion: if the total drainage rate was changed, then the
amount of mixing over the course of the run would remain the same,
thus being controlled by the total deformation, as opposed to time. It
was also observed that the total amount of particle mixing in these
experiments was very small, on a scale of two to three orders of mag-
nitude less than the system size. Particles have persistent cages of
neighbors, with a single particle keepingmore than 90% of its neighbors
even after a large amount of flow.

A number of lattice-based models have been proposed for
approximately simulating granular drainage. Perhaps the simplest is
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the void model [9–11] where particles lie on a hexagonal lattice, and
move in response to voids of empty space that are introduced at the
orifice that propagate upwards through the material according to a
random walk. Taking the continuum limit of this model shows that the
mean vertical velocity vz follows a diffusion equation of the form
∂zvz=b∂xxvz. The kinematic model [12,13] derives this same equation
purely from continuum considerations, and it leads to Gaussian velocity
profiles and a parabolic region offlow,which is in reasonable agreement
with experimental measurements [14–16]. More recently, similar ideas
have been employed in cellular automata models [17–19]. However, all
of these models have a fundamental problem when estimating mixing,
that whenever a particle moves from one lattice site to another, it
necessarily loses contact with many of its neighbors, violating the slow
cage-breaking seen in experiment. Indeed, a continuum analysis of
diffusion in the void model shows that the length scale associated with
particle diffusionwould exactlymatch the length scale of theflowwidth
b [20].

Motivated by these observations, Bazant proposed the spot model
for random packing dynamics [21,22]. In this approach, particles are
held off-lattice, and motion is mediated by “spots”, which represent a
region of free interstitial space spread across several particle
diameters, as shown by the blue circle in Fig. 1(A). When the spot
moves according to the blue arrow, it induces a small, correlated
motion of all particles within range in the opposite direction. This
model is simple enough for mathematical analysis [21], and predicts
the correct magnitude for particle diffusion: since spots cause
particles to move co-operatively with their neighbors, cage-breaking
occurs much less frequently. However, simulations based on Fig. 1(A)
do not enforce packing constraints, which, over time, result in
unphysical packings. In order to preserve valid packings, a second
step was proposed, whereby a small elastic relaxation is applied,
during which the particles and their nearest neighbors experience a
soft-core repulsion with each other, as shown in Fig. 1(B). This is done
on a purely geometrical basis, and no mechanical quantities such as
contact forces, energy, or momentum are considered. The net effect, as
shown in Fig. 1(C), is then a co-operative local deformation, whose
mean is roughly the original block motion.

This model formed the basis of a multiscale simulation technique
that was demonstrated by Rycroft et al. [22] to reproduce granular
drainage. A DEM drainage simulation in a rectangular silo was carried
out, and a systematic procedure was then derived to fit several free
parameters in the spot simulation, based upon physical measure-
ments from DEM (such as velocity correlation measurements, particle
diffusion, and total flow). A spot simulation was then run by intro-
ducing spots at the orifice, and having them propagate upwards
according to a random walk. The spot simulation reproduced many

features of the granular packing, including mean velocity profiles,
particle diffusion, and velocity correlations. In addition, the simulation
recreated statistical signatures of the particle packings, such as the
radial distribution function g(r) and the bond angle distribution
function g3(θ).

In order to simulate the flow of a given initial packing using the
spot model, all that remains is to specify the statistical dynamics of
spots. Although the microscopic deformation of the particle packing is
determined entirely by geometrical constraints, the mesoscale
dynamics of spots reflects overall mechanical response, specific to
the material. One such theoretical framework has recently been
developed by Kamrin and Bazant [23], based on the hypothesis of a
“stochastic flow rule” (SFR) for limit-state plasticity, where spots
perform random walks along slip lines biased by local stress
imbalances upon fluidization (localized yielding). In the case of
Mohr–Coulomb (MC) plasticity for two-dimensional granular mate-
rial at incipient yield, they derive a simple theory of spot drift, by
assuming that fluidization leads to a localized change in the friction
coefficient from the static value to a lower dynamic value, which
disrupts mechanical equilibrium; the resulting force on particles
affected by the spot causes them to move in a collective fashion,
thereby propelling the spot in the opposite direction.

The MC/SFR theory provides a possible mechanical basis for the
spot model, which can be implemented in (at least) two ways: (i) The
continuum limit can be taken to obtain a drift-diffusion (Fokker–
Planck) equation for the spot density, which closes the model by
connecting stresses to the mean velocity field and particle diffusion
[23], or (ii) the spot drift vector field obtained from the stresses can be
used in discrete spot-based multiscale simulations [24]. These
approaches provide an appealing, unified description of some
previously distinct granular flows, notably silo drainage under gravity
and shear flow in a Couette cell with a moving, rough inner cylinder
[23,24]. In the case of the continuummodel, these flows are accurately
predicted by introducing only one new parameter, the spot size (or
velocity correlation length), which is obtained from explicit measure-
ments and not adjusted to fit velocity profiles. A recent analysis of
continuum variables in a wide variety of DEM simulations, however,
casts doubt on the validity of certain hypotheses in the SFR theory [25]
and points toward some more complicated phenomena that may
eventually need to be incorporated into the theory.

Regardless of the generalmechanical basis, it is clear that the random
walk based spot algorithm provides a very efficient means of
approximately simulating a wide variety of hopper drainage problems.
The aim of Rycroft's study [22] was to validate the spot microscopic
mechanism as a model for flowing random packings. In this paper, we
focus instead ondeveloping aspects of themodel thatwould beuseful in

Fig. 1. The mechanism for structural rearrangement in the spot model. The random displacement of a diffusing spot of free volume (dashed circle) causes affected particles to move
as a block by an amount (A), followed by a relaxation under soft-core repulsion forces (B); the net co-operative motion combines these two steps (C). (Particle displacements are
exaggerated for clarity.)
Figure from Ref. [22].

2 C.H. Rycroft et al. / Powder Technology 200 (2010) 1–11



a practical context. We introduce the simulation method in Section 2,
and then demonstrate extensions that can be used tomodel free surface
behavior (Section 3) and boundary layer behavior (Section 4). We also
demonstrate that the spot-based simulations are robust and flexible,
showing that they can be used in both event-driven and fixed timestep
approaches, and demonstrating that the elastic relaxation step can be
applied much less frequently and while still creating very good results
(Section 5).

2. Simulation overview

The simulations in this paper are carried out using monodisperse
spheres of mass m and diameter d in a thin three-dimensional
rectangular container, that makes use of the same geometry as in Ref.
[22]. The container is constructed with walls at x=±25d, y=±4d,
and z=0. Gravity g acts in the negative z direction, which defines a
natural time unit τ =

ffiffiffiffiffiffiffiffiffiffi
d= g

p
.

As a baseline for comparison, a DEM simulation was first carried
out in this geometry, making use of the LAMMPS software package
developed at Sandia National Laboratories [26]. In this simulation,
particles interact according to the Cundall–Strack contact model [27]
for cohesionless particulates that makes use of Hertzian, history-
dependent contact forces. If a particle and its neighbor are separated
by r→, and they are in compression, so that δ=d− | r→|>0, then they
experience a force F

→
=F
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Here, n→=r→/ | r→|, and v→n and v→t are the normal and tangential
components of the relative surface velocity.Δs→t is the elastic tangential
displacement between spheres, obtained by integrating tangential
relative velocities during elastic deformation for the lifetime of the
contact. If | F

→
t|>μ| F

→
n|, so that a local Coulomb yield criterion is

exceeded, then F
→

t is rescaled so that it has magnitude μ| F
→

n| and Δs→t is
modified so that Eq. (2) is upheld. Particle–wall interactions are handled
with the same model, although the friction coefficient μw is set
independently. The contact model is integrated using the Velocity
Verlet scheme with timestep Δt, and the parameters used in the
simulation are given in Table 1(a). The normal spring constant we use is
four tofive orders ofmagnitude smaller thanwhatwould be realistic for
typical hard materials such as sand or glass, but is chosen this way for
computational efficiency, since a significantly higher spring constant
would need a much smaller timestep to be modeled effectively. It has
been shown that the value of knwe employ is a reasonable compromise,
capturing the dynamics of the hard particles without too many
detrimental elastic effects. For more detailed information, see Refs.
[22,28,29].

An initial packing was created by pouring in 55,000 particles from
z=160d and allowing them to come to rest, filling the container up to
z=110d. A drainage simulation was then carried out by opening a
circular orifice of diameter 8d in the center of the container base, with
snapshots of all particle positions being recorded at fixed intervals of
2τ. To effectively model hard particles, the normal spring interaction
in these simulations is very stiff, requiring small timesteps to run, and
thus the computations were carried out in parallel on 24 processors,
taking three days to simulate the complete drainage of the packing.
The DEM simulations have been shown to be in very good agreement
with experimental data [30] for a wide variety of microscopic and
macroscopic measurements.

The spot simulation was implemented in C++, with the main
routine being written as part of a class that represents the entire
simulation domain. For efficiency, the class divides the simulation up
into a rectangular subgrid of regions, and keeps a separate list of
position vectors of particles within each region. When particles are
added to the container, they are sorted into the correct region. Two
key routines are used to implement the spot microscopic mechanism.
The first, spot (p→,v→,rs) applies the spot motion, by displacing all
particles within a distance rs of p

→ by an amount v→.
The second, relax (p→,re) applies the elastic relaxation procedure

to all particles within a distance re of p
→. Suppose that the positions of

particles within re of p→ are labeled x1
→, x→2,…,x→m and that all

remaining particles are labeled x→m+1, x→m+2,…,x→n. For a given
particle i, a displacement Δx→i

P is computed based upon particle
overlaps, and a displacement Δx→i

W is computed based upon wall
overlaps. For two particles i and j, the amount of particle overlap is
defined as δij=min{d− | x→i−x→j|,0}. If →nij is the normal vector
pointing from x→j to x→i, then the particle relaxation displacement
experienced by i is given by

Δ→x
P
i =

1
2

∑
m

j=1;j≠i
αδij

→nij + ∑
n

j=m + 1
αδij

→nij: ð3Þ

Similarly the contribution fromthewalls can be computed according
to

Δ→xW
i = ∑

w

k=1
αδWik

→nW
k ð4Þ

where the walls are labeled from 1 tow,→n
W
k is the outwards pointing

normal for wall k, and δikW is the amount that particle i overlaps with
wall k. Once all particles have been considered, the total displace-
ments Δx→i

P+Δx→i
W are applied simultaneously. For this paper, we

make use of α=0.8, but previous studies have shown that the
physical results are largely insensitive to this parameter [22].
Typically, the particle displacements caused by a single spot operation
are on the order of 10−3d or less. Hence only a very small relaxation
displacement is needed and the details of its operation are relatively
unimportant. Also, throughout this paper, we carry out the relaxations
within a radius re= rs+d. After a spot event, the majority of the
particle overlaps caused by a spot will be at the interface between the
displaced particles and those not displaced. A displaced particle could

Table 1
(a) The parameters used in the DEM simulation. (b) The five parameters used in the
spot model simulations that were fitted from DEM simulation.
All values are taken from Ref. [22].

(a)

Parameter Value

Normal elastic constant kn 2×105 mg/d
Tangential elastic constant kt 2kn/7
Normal viscoelastic constant γn 50τ−1

Tangential viscoelastic constant γt 50τ−1

Integration timestep Δt 10−4τ
Friction coefficient μ 0.5
Wall friction coefficient μw 0.5

(b)

Parameter Value Fitting method

Spot diffusion length, b 2.28d The width of the DEM flow profile
Spot/particle
displacement ratio, w

399 A single particle diffusion measurement in
the top center of the container

Spot radius, rs 2.60d Fitting a length scale to the DEM spatial
velocity correlation function

Spot insertion rate, λ 375τ−1 Overall DEM flow rate
Spot move rate, μ 28.0τ−1 Density drop during flow
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potentially touch a particle up to one diameter away, so making use of
the above value of re will account for these interactions. Since the
spot and relax operations are both local, they can be carried out
very efficiently, by only testing the regions of the container which
they overlap. The operations take care of cases when particles move
from one region into another.

To carry out the spot simulation of the granular drainage process,
an initial packing of particles is copied from the DEM simulation. The
drainage process is then implemented as an event-driven simulation,
whereby individual spots are introduced and moved according to
exponential waiting time distributions with parameters λ and μ
respectively. Spots initially start at the orifice at s→=0→. When a spot at
position s→moves, its displacement v→ is randomly chosen from one of
the four vectors in V={(±Δx, ±Δy, Δz)}. If a spot's displacement
would cause it to come within a buffer distance dw of a wall, then v→ is
truncated so that its position after the displacement would lie exactly
dw from the wall. The spot's position is updated to s→+v→, and the
microscopic mechanism is applied at the midpoint of this step, by
calling spot ( s→+v→ /2,−v→ /w,rs) and then relax ( s→+v→/2, re).
When a spot reaches a height zmax above the top of the packing, it is
removed from consideration. This simulation approach is detailed in
the following algorithm, where the current position vectors of spots is
held in a list S that is initially set to empty:

t=0,S={}
while t< tfinal do
t→ t− log(rand())/(λ+|S|μ)
if rand()<λ/(λ+|S|μ) then

choose s→ from S
if sz<zmax then

choose v→ from V
truncate v→ if within dw of a wall
spot ( s→+v→/2, −v→/w,rs)
relax ( s→+v→/2,re)
s→→s→+v→

else
delete s→ from S

end if
else
add 0→ to S

end if
end while

In the same manner as the DEM simulation, snapshots of the
particles are saved at intervals of 2τ. The parameters {Δx,Δy,Δz,w, rs, λ,
μ} control the speed and characteristics of the flow, and in general,
appropriate values can be determined from DEM simulation or
experimental data, that can be carried out once and then used in
many simulations. Ref. [22] describes a systematic process for fitting
these parameters from the DEM simulation based upon physical
considerations. In the current paper, we do not concentrate on the
fitting process, andmake use of the same parameters from the previous
study that are summarized inTable 1(b). Thefive parameters listed here
control five independent degrees of freedom governing the main
physical characteristics of the bulk flow. In addition, we make use of
dw=1d from Ref. [22], although this only affects particle motion near
the walls. The vertical step size Δz determines how accurately the
diffusing spots are modeled, but does not strongly affect the results.
Here, we choose Δz=0.1d; smaller steps have been investigated, but
increase the total simulation time with little change in the physical
results. Once the vertical step size is chosen, the horizontal displace-
ments must be set to Δx=Δy=0.676d so that the spot diffusion rate b
satisfies the relationship 2bΔz=Δx2=Δy2.

Since the spot simulation is based on geometry alone and does not
have to accurately model individual particle contacts, it runs much

faster than DEM: draining the entire packing takes approximately
eight hours to run as a serial code on a Mac Pro system with a
2.67 GHz dual-core Intel Xeon processor. The elastic relaxation
process is the most time-intensive part of the simulation, with a
typical relax call taking 115 μs, which is about sixteen times slower
than a spot call, that takes 7.15 μs to run.

Fig. 2 shows snapshots of the DEM and spot simulations at t=60τ.
Despite the two simulations being very different in running times, the
overall agreement is very high, with the colored bands of particles
deforming similarly. It should be borne in mind that the total flow rate
and overall width of the spot simulationwere fitted fromDEM, but the
shape of the velocity profile, and the individual particle mixing and
rearrangement are reproduced well. Although not discussed here, a
quantitative study of these two simulations showed good matches for
velocity profiles, particle diffusion, spatial velocity correlation func-
tions, radial distribution functions, and bond angle distribution
functions [22].

Since spots can be thought of as carrying negative volume, it is
interesting to examine the local changes in packing fraction that
occur during the simulation. Fig. 3(A) and (B) shows plots of the
local packing fraction in the DEM and spot simulations respectively,
computed using the Voronoi cell software library Voro++ [31].
Initially the packing fraction is approximately 64% but during flow
this decreases to below 60%. The snapshots at t=20τ show that the
front of lower densities propagates at a similar speed in the two
simulations. However, in DEM the areas of largest density drop are
located at the sides, in regions of highest shear, whereas in the spot
model, the areas of highest density drop are located the center, in
regions of highest spot density and velocity. However, it is
interesting to observe that at later times when the flow is developed,
the regions of lower packing fraction are similar between spot and
DEM simulations.

2.1. Fixed timestepping

Since the spot model microscopic mechanism is local, it offers the
possibility of being coded efficiently in parallel, by carrying out many
spot motions in different parts of the container simultaneously. Several
possible algorithms have been implemented [20] that display modest
parallel efficiency. However, the main hurdle to these algorithms is to
correctly implement the event-driven nature of the spot motion: there
are caseswhen a single spotmaymove several times in quick succession,
or where several spots may overlap with each other, in which case the
motionsmust be applied serially and theparallel efficiency is diminished.
Similarly, if the simulation is divided into separate regions, each ofwhich
is controlled by a different processor that handles spots and particles in
that area, there are difficulties with correctly synchronizing the time.

Because of these difficulties, we therefore investigated whether the
event-driven spot motion could be replaced with a fixed timestep,
where all spots move after an interval Δt. To match the event-driven
simulation, this timestepwas chosen to be themean time between spot
move events, 1/λ, and the number of spots introduced at the orifice at
each timestep followed a Poisson distribution with parameter μ/λ. In
this approach there is some freedom inwhat order the spotmotions are
applied, and we considered two different methods: (a) applied in a
random ordering at each timestep, and (b) ordered according to the
time they were inserted, applying the newest spots first. The ordering
of the spots could potentially have a small effect on the particle
motion. Method (a) is similar to the event-driven procedure where the
spot motions occur randomly. Method (b) could potentially result in
slightly different behavior, since by applying the newer, lower spots
first, there is slightly more free space available for the particles above to
move into. Simulations with both of these methods yield almost
identical results to the event-driven approach, and snapshots of the
flow are indistinguishable. Fig. 3(C) shows Voronoi plots of the packing
fraction in a fixed timestep simulation using method (b). The front of
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Fig. 2. Snapshots of the (A) DEM simulation and (B) event-driven spot simulations at t=60τ. The central slice of the packing is shown, by only plotting those particles with y>0. The
two colors of particles are physically identical and initially form layers of thickness 10d, and are used to highlight the flow and particle mixing that takes place.

Fig. 3. Plots of local packing fraction at two different times, for (A) the DEM simulation, (B) the event-driven spot simulation, and (C) the fixed timestep spot simulation. At each
point, the local packing fraction is computed by finding all particles within a distance of 2.2d of that point, and then dividing the total particle volume by the total volume of their
Voronoi cells. (For packing fractions in the range 0%–50% near the orifice, the color is smoothly graded from white to red.)
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lower density at t=20τ is almost identical to the event-driven case, and
the behavior at later times is very similar.

We therefore think it is reasonable to conclude that both event-
driven and fixed timestepping approaches can be used in spot simu-
lations.With afixed timestepping approach, it becomes feasible towrite
a fully distributed parallel spot algorithm, where all spot motions are
taken care of locally, and a master node is not required to keep track of
the clock.We leave this as a subject for futurework, but expect that very
high parallel efficiency could be achieved. Our results also suggest that
thepreciseorderingof spotmotionsdoesnotplaya significant role. For a
multicore spot algorithm, this suggests that there may be some leeway
in reordering spotmotionswhile still achieving similar results, allowing
for further boosts in speed.

3. Modeling the free surface

The simulations presented previously concentrated only on the
particle flow in the bulk, and as such, the free surface of the packing was
omitted from investigation and not shown. However, many situations
arise where modeling the free surface would be essential, and in this
section, we show that it is possible to modify the spot random walk
process usingmethods that preserve all of theflowproperties in the bulk,
but also give a realistic description of the top of the packing. The free
surfaces of granularmaterials havebeenextensively studied[32–34], and
it is well-known that the inclination of the surface of a granular pile will
not exceed a critical angle, referred to as the angle of repose. In granular
drainage, an initiallyflat surfacewill become progressivelymore inclined
towards the angle of repose as drainage occurs. As shown in the DEM
snapshot in Fig. 4(A), the yellow and cyan particles near the top surface
avalanche towards the center during flow. The unbiased random walk
process described in the previous section will not capture this behavior,
as the free surface will follow the mean velocity streamlines in the bulk.

In the void model, the evolution of the free surface has been
addressed by making use of a very simple modification of the random
walk process [11]. In the bulk of the packing, when a void generally
has two particles in the lattice points above it, the void moves to each
of these sites with equal probability. However, in the case when only
one of these two sites is filled with a particle, the void alwaysmoves in

the direction of the particle. A void is only removed from the simu-
lation when both of the sites above it are vacant. This simple modi-
fication suffices to create heaps and avalanching at the free surface, as
when a void reaches a heap, it travels diagonally upwards along the
heap surface. The angle of repose in this model is tied to the spacing of
the underlying lattice.

This, in effect, creates a simple biasing of the random walk: there
are two locations it can move to, and it chooses randomly among the
available options. This concept can be adapted to the spot model.
Suppose a spot can move to N different locations, and it would
influence pi particles if it moved to location i. Let q=∑ i=1

N pi. If q=0,
remove the spot from the simulation. Otherwise, let

ℙðSpotmovesto iÞ = pi
q
: ð5Þ

In the bulk, where the density of the packing is almost constant,
this does not alter the random walk process by a large amount, but at
the surface, the motion of the spots is biased to create heaps. A
snapshot of a spot drainage simulation using this procedure is shown
in Fig. 4(B), that qualitatively captures the particle avalanching seen in
DEM. However, the free surface angle is too large, and furthermore it
can be seen that particles near the top surface have become separated.
This can be seen more clearly in Fig. 5(A) and (B), which shows close-
up images of the central slice of the packing. Here, each particle is
colored according to the packing fraction computed from its Voronoi
cell, revealing a large drop in density in the spot model. This occurs
because there is no explicit gravity in the spot model, so particles
which become separated during elastic relaxation events will remain
separated.

A furthermodification to the spotmodel can be employed to correct
for this. In the previous implementation, when a spot moves by v→, then
the particles experience a displacement −v→/w, where w is a fixed
quantity. Suppose that a spot is going to influence p particles, each of
volumeVp. If spots are thought of as carrying a completelyfixed amount
of free volume Vs, then another possible approach would be to let
w=pVp/Vs, so the spot's influence is divided equally among the parti-
cles in range. In the bulk, where the particles are roughly at constant

Fig. 4. Snapshots of (A) DEM simulation, (B) a spot simulation using a randomwalk with simple biasing, (C) a spot simulation using simple biasing and influence weighting, and (D) a
spot simulation using adapted biasing (with β=3) and influence weighting. The snapshots are taken at t=300τ.
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density, this modification has little effect. However, at the free surface,
where p is lower, the spots give a larger downwards push, stopping the
particles from separating.

The preceding argument about spots carrying a completely fixed
amount of volume is only directly applicable in the bulk of the
packing, and must be modified slightly at the orifice and at the free
surface. For a spot in the neighborhood of the orifice, at a height zs<rs,
we compute the modified influence V′s(zs) by multiplying Vs by the
proportion of the spot that is above z>0. A volume integration gives

V ′sðzsÞ =
1
2

+
3zs
4rs

− z3s
4r3s

 !
Vs: ð6Þ

At the free surface, as spots exit the packing, the number of particles
within range of a given spot may be very small, and hence those
particles may experience a very large displacement due to the 1/p
dependence in the influence. An additional constraint was therefore
implemented: if p<20, then the spot displacement was calculated
based on p=20. Physically, this modification could be thought of as
spots partially evaporating when they get close to the top of the
packing, so that their influence isweakened. A snapshot of a simulation
using this prescription is shown in Fig. 4(C), and appears very
promising. The free surface correctly forms heaps, and the Voronoi
computation of packing fraction in Fig. 5(C) shows that particles no
longer become separated at the free surface.

The specific implementation of the random walk biasing proce-
dure given in Eq. (5) is arbitrary, and could be replaced by a different
scheme. One possibility is the nonlinear power-law weighting,

ℙðSpotmovesto iÞ =
pβi

∑N
i = 1p

β
i

; ð7Þ

where β is a parameter that can be used to control the amount of
biasing. For β>1 the bias is more strongly weighted toward high
particle densities (above themean), while for β<1 the bias is reduced
compared to linear weighting. Fig. 4(D) shows a snapshot of a
simulation using β=3, in addition to the spot influence weighting,
and Fig. 5(D) shows a close-up of the free surface, with very good
agreement to DEM. Values of up to β=10 were tested, and result in
progressively shallower free surface slopes.

To track the time evolution of the free surface in these simulations,
a simple regression procedure was used to extract the surface angle.
We define xj=(2.5j−1.25)d for j=1, 2,…,10. For a given particle
snapshot, the values zj are computed as the maximum particle z
coordinate in the range ||x|−xj|<1.25d. The angle of the slope can
then be computed by applying linear regression on the set of (xj, zj)
points. Fig. 6 shows the a plot of this angle for the four simulations
considered. The weighted spot simulation with β=3 is in good
agreement with the DEM simulation, and can track a gradual increase
in the slope angle during flow.

4. Boundary layers

In transport phenomena, a boundary layer is a region near a surface
where the continuumvariables vary rapidly in thenormal direction on a
length scale much smaller than the global flow domain. The proper
mathematical treatment of boundary layers is based on the method of
matched asymptotic expansions,when the governing equations contain
a small singular perturbation parameter which can often be expressed
as a typical boundary layer thickness divided by a geometrical length. In
fluid mechanics, boundary layers generally arise due to the no-slip
boundary condition, causing viscous stresses to be important close to
the surface, while often less important in the bulk (at high Reynolds
number). In granular materials, the continuum description is less clear,
and combines liquid-like and solid-like behavior, but the appearance of
boundary layers is possible whenever wall interactions retard the flow
(e.g. by roughness or friction), compared to the bulk flow, if the bulk
material has relatively short-range correlations.

In the test geometry considered here, the best place to examine
this behavior is in the y direction, across the 8d width of the packing.
Fig. 7(A) shows the velocity profile in this direction in the central
region of flow, for DEM simulations with five different values of wall
friction, μw. For μw=0.1 the flow is almost constant across the width
of the packing, but as μw is increased, regions of slower flow next to
the wall become apparent.

In the spot simulations, the downwards velocity profile is given
approximately by the convolution of the spherical spot influence with
the width over which the spots move. (Additional motion from particle
relaxation could also play a role, although it can be expected that this is a
less important effect.) Near the container walls, the velocities will
therefore begin to smoothly decrease, and the size of this slower-moving
region will be determined by the wall buffer distance dw, that controls
how close the spot centers can come to the wall. Fig. 7(B) confirms this
by showing the same cross sections for spot simulationswith the default

Fig. 5. Close-up snapshots of the free surface of the particle packings for the same simulations in Fig. 4, for the region 50d<z<90d. Each particle is colored according to its local
packing fraction, computed as the ratio of its volume to its Voronoi cell volume. The central slice of the packing is shown by only plotting particles with y>0. The same color scheme
is used as for Fig. 3.

Fig. 6. Time evolution of the angle of the free surface, calculated using linear regression,
of the four simulations shown in Fig. 4.
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value of dw=d, and three other values of dw. For dw=0.5d the width of
the spot simulation boundary layer is in reasonable agreement with
those in DEM for high wall friction values, although the very rapid drop
in velocities close to the wall is not well captured. In order to reproduce
the low wall friction case where no boundary layer is present, the best
match is achieved with dw=−1.5d, so that the centers of spots are
allowed to move outside of the container walls.

Allowing the spot centers to move outside the walls is valid, since
these spots still create valid collective motions of the particles near
the wall. However, it introduces an additional complication: in
determining the original spot model parameters, the insertion rate
λ is set by balancing the DEM particle outflow rate with amount of
displacement an individual spot causes. Spots within a distance of rs of
a wall will have some of their region of influence lie outside the
container, and will therefore on average displace fewer particles than
they would in the bulk. For the positive values of dw considered, only a
small amount of the spot influence lies outside the container, and the
effect is negligible. However, for dw=−1.5d a considerable amount
of the spot influence lies outside, resulting in a significant flux drop:
the outflow rate is 106.8τ−1, compared with 131.1τ−1 for the DEM
simulation. Thus, while there is no specific limit on how far spots can
be allowed to penetrate into the wall, more negative values of dw may
be progressively more problematic to implement, since the flux drop
would have to be considered.

The spot influence weighting procedure discussed in the previous
section,where the particle displacements caused by a spot are scaled by
the number of particles influenced, provides onemethodof circumvent-
ing this issue, as each spot will always have equal influence. Another

possible approach is to set dw=0, and then reflect the part of the spot's
influence that lies outside the container back into the packing. More
specifically, if a spot is at s→=(sx,sy,sz) with sy>0, and there is a wall at
y=0, then the displacement on a particle at x→ is scaled according to

Sð→x Þ =
0 if j→x −→s j≥rs
1 if j→x−→s j<rs and j→x−ðsx;−sy; szÞ j≥rs
2 if j→x−→s j<rs and j→x−ðsx;−sy; szÞ j<rs:

8
<

: ð8Þ

This procedure means that the total spot influence is uniform across
the entire width of the packing. For spots near edges between twowalls,
the reflection procedure is applied for both walls. As shown in Fig. 7(B),
the vertical velocity profile is roughly uniform using this procedure,
without the largedrop inparticleflux seen in thedw=−1.5d simulation.

With the ability to approximate boundary layers of slower flow, it is
possible to gain good estimates of particle residence-time distributions
during a drainage process. In previous work, it has been shown that a
continuum analysis of the kinematic model can be useful in predicting
the tails of the residence time distribution [7], even without any careful
treatment of theflownear the boundaries. In the spot simulation,where
the bulk flow is similar to the kinematicmodel, and the boundary layers
of slower flow can be approximated, it will be possible to predict
residence time distributions to a higher degree of accuracy.

5. Infrequent relaxation

One of the most surprising aspects of the spot simulation is that
addition of the relaxation step, shown in Fig. 1(B), is enough to
completely enforce packing constraints. While the displacements
introduced by the relaxation step are based upon geometry alonewith
no details of the contact physics, and typically are the order of 20% of
the spot displacement, the radial distribution function g(r) was
exactly zero over the range 0< r<1d for the entirety of the simulation,
corresponding to no overlapped particles. Furthermore, over a
medium time interval, the spot model simulation was accurate
enough to track minuscule changes in g(r) and the bond angle
distribution function g3(θ) that were seen in DEM. This success can be
largely attributed to the fact that the particle displacement induced by
a single spot motion is extremely small, on the order of a hundredth of
a particle diameter, so after each motion, only an extremely small
motion is required to fix packing constraints.

As discussed in Section 2, even when efficiently implemented, the
elastic relaxation step is themost time-consumingpart of the simulation,
requiring a consideration of all neighboring pairs of particles, and can
take approximately sixteen times as long as a spot motion. Here, we ask
whether it is possible to apply relaxation less often and still recreate valid
particle packings, as a potential method of speeding up the code even
further. While this will result in a loss of accuracy, it may be appropriate
for some situations, where we do not require perfect random packings,
but would still like the particles not to suffer from large local buildups in
density.

A series of simulations was carried out whereby the amount of
relaxation applied was reduced by a factor of k. For a given reduction
factor, three different methods were implemented:

1. A local relaxation is applied after each step with probability 1/k, for
k=10, 100, and 1000.

2. Each spot keeps an individual counter of the number of times it has
moved, and a local relaxation is applied after every kth motion, for
k=10.

3. After a time Δt=k/μ, when spots have each moved k times on
average, a global relaxation is applied, for k=1, 10, and 100.

It is not clear a prioriwhethermethods 1 and2with local relaxations,
or method 3 with global relaxations, would be more efficient in main-
taining the quality of the packing. By applying local relaxations infre-
quently, the possibility may arise that some particles will not be part of

Fig. 7. Normalized vertical velocity profiles across the width of the container, in the test
region x<10d, 50d<z<70d, over the time window 80τ< t<180τ, for (A) five different
DEM simulations with different values of wall friction μw, and (B) five different spot
simulations with different values of dw, plus the reflection procedure. For each
simulation, the velocities are normalized by the average velocity vz̄ in the test region, so
that ṽz(y)=vz(y)/v ̄z.
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any relaxation event for a long period of time, but with periodic global
relaxations, one is assured that all particles will be considered equally
often. However, the local relaxation procedures have the advantage that
the amount of relaxation in a particular region is proportional to the
number of spot motions in that region. A summary of the simulations
considered and their running times is given in Table 2.

Fig. 8 shows a selection of simulation snapshots during the flow, at
t=120τ. For the original simulation with full relaxation (A), the
snapshot looks very similar to DEM, with no visible evidence of
overlapped particles. This is in contrast to the simulation with no
relaxation shown in (D), where the absence of any relaxation causes
significant particle overlaps as the flow takes place. In figures (B) and
(C), the same snapshots are shown using method 1 relaxation for
k=100 and k=1000 respectively. Despite the relaxation steps
being applied much less frequently, the particle packings appear to
be in very good agreement with the original case, and very little
evidence of significantly overlapped particles can be seen.

To investigate this quantitatively, the radial distribution functiong(r)
was computed in the central region of flow, C={−15d<x<15d,
15d<z<45d} over all snapshots in the time interval 40τ<t<200τ. This
is done by first computing the frequency distribution N(r) of neighbor
separations r=| x→−y→| for all particle pairs (x→,y→) subject to the
restriction that x→! C. After this, N̄(r) is calculated as the theoretical
frequency distribution for a homogeneous arrangement of particles at
the same average density ρ as the test packing. In three dimensions this
would simply be N̄(r)=4πr2ρ by integrating over a spherical shell.
However, here the packings are confined over an 8d range in the y

direction, so that some of the spherical shells are not complete. By
carrying out a surface integration, it can be shown that

―
NðrÞ =

4πρr2 1− r
16d

" #
r≤8d

16πρdr 8d < r≤10d:

8
<

: ð9Þ

Wedonot consider this for r>10d, since the spherical shells centered
within the test regionCwould then be affected by the sidewalls also, and
the integrationwould become significantlymore complicated. The radial
distribution function is then calculated as g(r)=N(r)/N ̄(r), so that it
represents the deviations in the neighbor separations from a completely
homogeneous packing. Fig. 9 shows the computed curves for all of the
spot simulations listed in Table 2. For the simulationwith full relaxation,
there are no significantly overlapped particles: g(r) is identically zero
over the range 0<r<0.9925d. The curve also has significant peaks at
r =

ffiffiffi
3

p
d;2d, due to local particle ordering, a behavior which closely

matches the corresponding DEM simulation. The radial distribution
functions for the simulations with infrequent relaxation are difficult to
distinguish from the full relaxation case, and the differences only become
clear when looking at a zoomed-in region, as shown in Fig. 10(A). In this
plot, we can see that the runs with less relaxation give progressively
smoother curves. Fig. 10(B) shows a semi-logarithmic plot of g(r) for
small separations tohighlight the amount of overlappedparticles. For the
infrequently relaxed simulations, there are someoverlaps, althougheven
with very little relaxation the tails in g(r) do not significantly extend
beyond 0.8d to 0.9d. All the curves with some relaxation are significantly
more realistic than the casewith no relaxation,which has a large number
of separations less than 1d, and has an almost uniform distribution, as
would be expected for randomly placed points in a domain.

To directly compare the results of each simulation, an overall
packing badness B is computed for each, based on the amount that
particles are overlapped. If a given particle i has ni overlapping
contacts, and the overlap amounts are specified by δij for j=1,…, ni,
the packing badness is computed as

B =
1
p
∑
p

i=1
∑
ni

j=1

δ2ij
d2

: ð10Þ

Here we consider all particles in the same region as the g(r)
distributions, using the same time interval. The results are shown in
Table 2 and Fig. 11. For the three different infrequent relaxations
considered, there is a roughly one-to-one relationship between the
total simulation time spent on relaxation and the packing badness,

Table 2
Summary of the simulation runs considered making use of infrequent inelastic
relaxations. trelax refers to the total time spent in the relaxation routines. Also given is
an overall packing badness B, computed over 40τ< t<160τ.

Relaxation method Relaxation ratio k trelax (s) B

Full relaxation 1 22446.4 0.00110
No relaxation – 0 0.501
Method 1 10 2359.23 0.00798
Method 1 100 244.4 0.0286
Method 1 1000 23.8 0.0871
Method 2 10 1629.81 0.00792
Method 3 1 261.1 0.0183
Method 3 10 28.0 0.0631
Method 3 100 2.8 0.171
DEM – – 0.00365

Fig. 8. Snapshots at t=120τ for (A) the original simulation, (B) the method 1 simulation with k=100, (C) the method 1 simulation with k=1000, and (D) the simulation with no
relaxation. The region −15d<x<15d, 0<z<40d is shown, and only particles with y>0 are plotted, to view the central slice of the particle packings.
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suggesting that the precise details of how the relaxation is applied
have little overall effect on the packing structure.

These results suggest that infrequent relaxation is a promising
method of speeding up a spot simulation. As discussed in Section 2, a
typical local relaxation step takes about sixteen times as long as a spot

motion. Thus a simulation will run an order of magnitude faster if
relaxation is applied only a tenth of the time, and at this level, the
computed packing badnesses are very small, and roughly comparable to
DEM, where particles necessarily overlap to create forces. Reducing the
relaxation by a factor of a hundred or a thousand still results in reason-
able packings, although there is less practical justification for using these,
since at that level the total simulation time becomes dominated by the
spot motions.

6. Conclusion

In this paper, we have demonstrated a simple multiscale simu-
lation technique that is capable of modelingmany features of granular
drainage at a fraction of the computational cost of DEM. The spot
model microscopic mechanism provides a reasonable description of
particle flow and rearrangement in the bulk, and in addition, we have
shown that simple modifications to the simulations can be used to
model free surfaces and boundary layers. We believe that the spot
model may have applications in a large number of practical problems
where features of granular drainage must be estimated in real time.
We envisage that the free parameters in the model could be initially
estimated, either from DEM simulation or from experimental data,
and then used as a basis for many spot simulations.

We have also demonstrated that the basic concept of breaking down
a flow into mesoscopic group displacements is robust, and that the
physical results do not depend strongly on the precise implementation.
Both event-driven and fixed timestep simulations yield largely similar
results. One of the most surprising conclusions of the simulations by
Rycroft et al. [22] was that the simple elastic relaxation step was good
enough to preserve random packings, with no significantly overlapped
particles, and herewe have shown that even if relaxation is applied very
infrequently, the random packings can still be reasonably accurate.
These results bode well for designing future spot-based algorithms, as
they point to a great deal of flexibility in the implementation. Since the
spot simulations are much quicker than DEM, and handle particle
interactions purely based on geometry as opposed to a detailed consi-
deration of contact dynamics, they offer the possibility of simulating
problems that would be otherwise infeasible with DEM. It would be
possible to simulate several orders ofmagnitudemoreparticles than can
currently be considered with DEM. Since particle dynamics in the spot
model is based on geometric considerations, it is straightforward to
generalize to polydisperse systems or irregular particles. The particle
relaxation displacements given in Eq. (3) can be generalized to poly-
disperseparticles byweighting according to the relative particlemasses.
Using this, it may be possible to understand the role of geometric
packing constraints on effects such as segregation. For elongated or
irregular particles, a more complex relaxation step would be needed,

Fig. 9. The radial distribution function g(r) for the spot simulations listed in Table 2,
computed in a central region of flow, −15d<x<15d, 15d<z<45d for all snapshots
over the range 40τ≤ t≤200τ.

Fig. 10. (A) A zoomed-in region of the radial distribution functions of Fig. 9 showing the
second and third peaks. (B) A semi-logarithmic plot of the radial distribution functions
in the region 0<r<1.5d, highlighting the parts of the curves that correspond to
overlapped particles. The colors of the curves are the same as those used in Fig. 9.

Fig. 11. Logarithmic plot of the packing badness B versus the total time spent on
relaxation in the simulation trelax, for the simulation with full relaxation, and the
simulations with the three different types of infrequent relaxation.
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that also induces rotations on the particles, allowing for the study of
effects such as texturing under shear.

The largest limitation of the simulations presented here is that the
technique only applies to granular drainage problems where the kine-
matic model, with diffusing vertical velocity profiles, is a good approx-
imation. However, the basic concept of breaking down a flow into
mesoscopic group displacements appears to be generally applicable,
and related work [23,25] suggests that it may be possible to link this
mechanism of particle motion with a mechanical theory of granular
flow, to create a complete model. The microscopic particle mechanism
may be a useful technique in studying other systems featuring dense
amorphous arrangements of particles, where co-operative particle
motion [35] is a frequently observed feature.

Nomenclature
b spot diffusion length (L)
d particle diameter (L)
μ particle–particle Coulomb friction coefficient
μw particle–wall Coulomb friction coefficient
τ simulation time unit (T)
g gravitational acceleration (L/T2)
rs spot radius (L)
re relaxation radius (L)
δij particle overlap (L)
λ spot insertion rate (T)
μ spot move rate (T)
dw spot wall buffer distance (L)
Δx, Δy, Δz spot random walk step sizes (L)
w spot displacement ratio
k relaxation factor
g(r) radial distribution function
B packing badness
trelax simulation time for relaxation (T)
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