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PACS 47.55.df – Breakup and coalescence
PACS 47.50.Gj – Instabilities
PACS 47.56.+r – Flows through porous media

Abstract – In multiphase flow in confined geometries an elementary event concerns the interaction
of a droplet with an obstacle. As a model of this configuration we study the collision of a droplet
with a circular post that spans a significant fraction of the cross-section of a microfluidic channel.
We demonstrate that there exist conditions for which a drop moves completely around the obstacle
without breaking, while for the same geometry but higher speeds the drop breaks. Therefore, we
identify a critical value of the capillary number above which a drop will break. We explain the
results with a one-dimensional model characterizing the flow in the narrow gaps on either side
of the obstacle, which identifies a surface-tension–driven instability associated with a variation in
the permeability in the flow direction. The model captures the major features of the experimental
observations.

Copyright c© EPLA, 2010

Introduction. – Microfluidic technologies as a
platform for manipulating droplets are providing new
approaches for designer emulsions [1], encapsulation
of molecules and cells [2], high-throughput biological
assays [3], kinetic analyses [4], and detection of surface
contamination [5]. Continued developments of such multi-
phase flows requires understanding and control of droplet
traffic [6], drop breakup [7], and drop coalescence [8]. For
example, new insights into the latter topic have come
from microfluidic studies of controlled coalescence using
extensional flows [9] and electric fields [10].
The motion of drops in confined geometries is also rele-

vant to traditional subjects such as multiphase flow in
porous media, the motion of drops in networks of chan-
nels [11], and for understanding physiological flows, which
are relevant to airway re-opening [12,13]. One direction
for improved understanding of these flows is to quantify
breakup in confined flows, e.g., past studies have reported
and rationalized drop breakup at T-junctions [14–16] or
in a constricted cylindrical capillary [17].

(a)Present address: Institut Jean le Rond d’Alembert,
CNRS/UPMC UMR 7190 - 75252 Paris Cedex 05, France, EU;
E-mail: protiere@ida.upmc.fr

In this study we investigate the breakup of drops flow-
ing past an obstacle. Previous work showed it was possi-
ble to break drops in such flows, but no quantitative
measurements were provided [14]. Some features of the
influence of various obstruction shapes, including exper-
iments and numerics, have been reported recently [18].
Here we describe the case where a drop that is signifi-
cantly larger than the gap or channel can squeeze past
the occlusion without breaking; we focus on understanding
the conditions for breakup. We identify a critical capillary
number below which drops do not break and above which
drops break. Finally, we explain this transition in terms of
an instability of the menisci located in the narrow gaps on
either side of the obstacle and provide a one-dimensional
theory that rationalizes the results qualitatively.

Experimental setup. – We disperse droplets
of hexadecane (viscosity ηdrop = 8× 10−3 Pa s) in
a continuous phase of distilled water (viscosity
ηcont = 1× 10−3 Pa s). A surfactant, sodium dodecyl
sulfate (SDS) at 1wt.% is added to the water to stabilize
the droplets against coalescence. The interfacial tension
between the surfactant solution and hexadecane is
γ ≈ 5× 10−3N/m, as measured using a ring tensiometer.
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Fig. 1: (Colour on-line) Schematic of the experiment. A
drop of viscosity ηdrop is dispersed in a continuous phase
(viscosity ηcont) flowing from left to right and meeting a
circular obstruction.

Syringe pumps are used to control the flow rates of the
fluids in the microfluidic devices, which are fabricated in
poly(dimethylsiloxane) (PDMS) using soft lithography
techniques [19]. The channels are w= 50µm high and
b= 120µm wide (fig. 1) and remain hydrophilic for the
duration of an experiment as the water-SDS solution
is infused after the devices undergo oxygen plasma
treatment. We have also studied the inverse experiment
where the outer phase is hexadecane and the dispersed
liquid is the water-SDS solution. In this case we do not
need to infuse the outer fluid immediately after oxygen
plasma treatment.
Droplets are generated upstream at a T-junction [14] or

using a flow-focusing method [20] far upstream of the post
so the flow can be considered steady near the obstacle. The
drops are larger than the channel width and are therefore
“pancake” shaped, with the size set by the continuous-
phase flow rate. Injection of additional outer phase fluid
downstream of the droplet maker allows the continuous-
phase flow rate to be varied independently of the drop size.
An obstruction in the form of a circular post in the

center of the channel is placed downstream of where the
drops are first formed (fig. 1). We vary the obstacle’s
radius R so as to control the minimum distance to the
sidewall h0. We estimate the droplet volume through
image analysis by measuring its length and considering
it as a rectangle connected by two hemi-disks of width w.
The motion of the drop near the obstacle is recorded using
a fast camera (Phantom V7).
The non-dimensional drop speed, represented as a capil-

lary number, C = ηdropQ/bwγ, compares the magnitude of
viscous forces to the surface tension force, where Q is the
total flow rate of the continuous phase. Capillary numbers
in our experiments span between 0.01< C < 0.12. Depend-
ing on the speed of the drop, we observe two very different
responses when a drop encounters an obstacle.

A critical capillary number for breakup. – The
first drop response, observed at higher capillary numbers,
corresponds to the drop breakup into two daughter drops
of different sizes following collision with the obstacle
(fig. 2(a)–(e)); in the experiments the drop has a viscosity
8 times that of the continuous phase. When the drop first
meets the obstacle, the liquid-liquid menisci fill the two
gaps on either side of the obstruction though the dynamics
on the two sides are not identical, and the drop breaks.
Generally, the two drops formed are of different sizes.

Fig. 2: Sequence of images showing a drop approaching an
obstacle (circular post of radius R= 40µm, h0 = 20µm) for
two values of C; ηdrop/ηcont = 8. Images (a)–(e) C = 0.06.
(a) t= 0ms. The drop collides with the post. (b) t= 2.5ms.
The meniscus in the lower gap is slightly ahead of the
meniscus in the upper gap. (c) t= 5ms. The drop is distorted
and is splitting as it flows through both gaps past the
obstacle. (d) t= 11.5ms. The drop is almost split into two.
(e) t= 17.5ms. Downstream of the post the drop has split into
two drops of different sizes. Images (f)–(j): C = 0.012. (f) t=
0ms. The drop meets the post. (g) t= 20ms. The meniscus in
the lower gap is ahead of the meniscus in the upper gap. (h) t=
30ms. The meniscus in the upper gap is moving backwards. (i)
t= 70ms. The entire drop passes through the lower gap. (j) t=
82.5ms. The drop has passed the obstacle without breaking up.

A different response is observed at lower capillary
numbers (see fig. 2(f)–(j)). In this case, the drop menisci
enter the gaps on both sides of the obstacle: when the
meniscus in the upper gap is about half-way past the post,
it gradually retracts (see fig. 2(h) and (i)), while the liquid
in the lower gap moves continually forward until finally
the entire drop has passed the obstacle only through the
lower gap. Thus, we have illustrated a critical capillary
number for breakup: at low C, drops do not break in spite
of significant deformation caused by the collision with the
obstacle, while for higher C drops break.
To understand these two different responses, we follow

the drop’s axial position (z) along the channel on both
sides of the gap as a function of time. At higher capillary
numbers, the two leading menisci move at nearly the same
speed upon first colliding with the obstruction (fig. 3,
curves A and B). However, when the menisci have reached
half-way around the post, one meniscus moves a little
faster in one gap compared to the other. These dynamics
lead to the formation of two drops of different sizes. When
the drop meets the post at a smaller capillary number,
the menisci enter each gap (fig. 3, curves C and D) and
we observe that the liquid is slightly ahead in one gap
compared to the other gap. Nevertheless, when the menisci
have traveled about half-way around the post, we observe
that the leading meniscus suddenly moves faster whereas
the meniscus in the other gap reverses its motion and
the drop does not break. This dynamical response occurs
even though the average axial pressure drop is directed
downstream.
To further investigate this breakup phenomenon we

have measured the size of the droplets formed after
breakup when the initial speed of the drop is increased
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Fig. 3: (Colour on-line) Position of the menisci as a function
of time in the lower (A and C) and upper (B and D) gaps;
ηdrop/ηcont = 8. C = 0.06 for curves A and B, where the drop
breaks. C = 0.012 for curves C and D, where the drop does not
break. Each numbered image shows the position of the drop
with the menisci evident.

gradually (fig. 4). The results are reported as Vout/Vin,
where Vin is the initial volume of the drop and Vout is
the volume of the daughter drops formed after the colli-
sion with the post. At capillary numbers below a critical
value Ccr, the drop passes the obstruction through one gap
without breaking. We have found that the critical condi-
tions for the breaking/non-breaking transition appear to
depend only weakly on the aspect ratio of the gap h0/b
(fig. 4(a)). For increasing values of C > Ccr the two daugh-
ter drops become more comparable in size (fig. 4).
We have also performed a few experiments to determine

that the critical value of of the capillary number Ccr
depends strongly on the viscosity ratio of the liquids.
Figure 4(b) shows that a drop with ηdrop/ηcont = 8 breaks
for Ccr ≈ 0.02 while for a ηdrop/ηcont = 1/8 the drop breaks
at the smallest flow rates we were able to access, Ccr→ 0.

One-dimensional model of the instability. – We
now develop an analytical description to describe the
experimental observations of the two typical behaviors
described above for the collision of a drop with a post in
the confined space of a channel. We observed that either
the drop i) splits, which corresponds to the invasion of the
channels on either side of the post, or ii) goes around the
post without splitting. We interpret these two different
responses as a hydrodynamic instability, where the two
menisci initially move together around the post but are
“unstable” for case ii) so that only one meniscus ends up
bypassing the post, while the “stable” state of invasion of
both sides of the post produces two drops (case i)). The
description at this stage is qualitative since the breaking
of the drop into two smaller drops also exhibits menisci
that move at different speeds, though the speed difference
is reduced as the capillary number is increased (figs. 3
and 4).
These dynamics have the spirit of the Saffman-Taylor

instability, which refers to the finger-like propagation of
low-viscosity fluid during displacement of a fluid of higher

(a)

(b)

Fig. 4: (Colour on-line) (a) Volume of the daughter drops
Vout normalized by the initial volume of the drop Vin as a
function of the capillary number C. We measure the length
or diameter of the drop, D to estimate its volume. When
the drop is pancake-shaped we estimate it to be that of a
rectangle connected by two hemi-disks of width w. The open
symbols correspond to the volume of the first daughter drop
to pass the obstacle and the full symbols to the volume
of the second daughter drop. Circles: h0/b= 1/12, squares:
h0/b= 1/6, triangles: h0/b= 1/4, inverted triangles: h0/b=
1/3, diamonds: h0/b= 5/12. (b) Vout/Vin as a function of
C with h0/b= 1/6 for two different viscosity ratios; squares
ηdrop/ηcont = 8 and triangles ηdrop/ηcont = 1/8.

viscosity [21,22]. Nevertheless, our measurements, which
occur at a constant flow rate, demonstrate an instability of
a propagating meniscus even when the drop phase is more
viscous than the continuous phase (fig. 2), which is the
“stable” state in a classical viscous fingering configuration.
Moreover, the instability we observe is most significant
for the largest values of the surface tension, i.e. lower
capillary numbers, which also is in contrast with the usual
descriptions of viscous fingering. As we describe below
with a one-dimensional model, the control parameter for
the instability when multiple connected menisci travel
along parallel paths is the permeability (k) variation in the
flow direction in the gaps on either side of the obstacle.
The one-dimensional analysis has similarities with the
study of bubble propagation in branching microfluidic
networks [12], though the qualitative trends we identify
are distinct.
Consider a fluid of viscosity λη invading a channel of

variable shape filled with wetting fluid of viscosity η; for
the experiments shown in fig. 2 we identity η= ηcont and
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λ= ηdrop/ηcont. The positions of the menisci (i= 1, 2) in
either gap are denoted zi(t). The one-dimensional flow in
either phase is described by the Darcy equation, relating
the velocities and pressures of the two fluids,

z < zi(t) :
ληu

k
=−∂p

∂z
, z > zi(t) :

ηû

k
=−∂p̂

∂z
. (1)

We assume that the invading fluid completely fills
the channel and neglect the influence of wetting films
(e.g. [12]). The permeability of the “channels” (i.e. the
gaps on either side of the post) varies with z and, within
the familiar lubrication approximation where the channel
height h(z) is much smaller than the width b or the

obstacle radius R, we have k(z) = h(z)
2

12 =
h2

β2 . For the
configuration of flow around the post, we approximate

the variation of the gap as h(z) = h0
(
1+ z2

2h0R

)
, which

identifies the characteristic length %= (2h0R)1/2 in the
flow direction along the gap. Similarly, there is a pressure
drop across the curved liquid-liquid interface, which we
write approximately as p− p̂= cγ

k1/2(zi)
, where the constant

c=O(1) and the dominant radius of curvature is assumed
proportional to the local channel height (or k1/2). The
(two-dimensional) flow rate qi through either side of the
post can vary in time, and the value is set following the
motion of the meniscus at position zi(t):

qi(t) = h(z)u(z, t) = βk1/2 (zi)
dzi
dt
. (2)

Thus, assuming that the pressure variations are localized
to the gap between the post and channel boundaries, which
is a good approximation in lubrication configurations, we
integrate the Darcy equations (1) from upstream of the
post (pressure p0(t)) to downstream (pressure p∞(t)),
which leads to (i= 1, 2)

ηk1/2(zi)
dzi
dt

(

λ

∫ zi(t)

0

dz

k3/2
+

∫ ∞

zi(t)

dz

k3/2

)

=

p0− p∞−
cγ

k1/2 (zi)
. (3)

Writing this equation for the two menisci individually,
i= 1 and i= 2, and then subtracting eliminates the pres-
sure difference, and yields

k1/2(z1)
dz1
dt

(

λ

∫ z1(t)

0

dz

k3/2
+

∫ ∞

z1(t)

dz

k3/2

)

− k1/2(z2)
dz2
dt

(
λ

∫ z2

0

dz

k3/2
+

∫ ∞

z2

dz

k3/2

)
=

cγ

η

(
1

k1/2 (z2)
− 1

k1/2 (z1)

)
. (4)

Along with mass conservation, where the constant flow
rate (per unit width) q0 satisfies q0 = βk1/2(z1)

dz1
dt +

βk1/2(z2)
dz2
dt , we now have two equations for two unknown

menisci positions, z1(t) and z2(t).

It is convenient to nondimensionalize the equations with

K =
k

h20/β
2
, Z =

z

%
, τ =

t

%h0/q0
, (5)

in which case we arrive at the two equations

K1/2(Z1)
dZ1
dτ

(

λ

∫ Z1(τ)

0

dZ

K3/2
+

∫ ∞

Z1(τ)

dZ

K3/2

)

−K1/2(Z2)
dZ2
dτ

(

λ

∫ Z2(τ)

0

dZ

K3/2
+

∫ ∞

Z2(τ)

dZ

K3/2

)

=

λ

Ceff

(
1

K1/2 (Z2)
− 1

K1/2 (Z1)

)
, (6)

and

1 =K1/2(Z1)
dZ1
dτ
+K1/2(Z2)

dZ2
dτ
, (7)

where Ceff = βηdropq0%cγh20
is defined using the drop viscosity to

be consistent with the experiments. This system of equa-
tions gives the time-dependent positions of the menisci
Z1(τ) and Z2(τ) as a function of two dimensionless para-
meters, Ceff and λ. The response also depends on the
spatial variation of the channel permeability K(Z).
For the case of a narrow parabolic gap between the

cylindrical post and the boundary we have K = (1+Z2)2.
Performing the integration in eq. (6) and rearranging using
(7) leads to

2
(
1+Z21

) dZ1
dτ
=

1+ 2π (λ− 1)L (Z2)+
16λ
3πCeff

(
Z21−Z

2
2

(1+Z21)(1+Z22)

)

1+ 2π (λ− 1) (L (Z1)+L (Z2))
, (8)

where L (Z) = arctan(Z)+ Z
1+Z2 +

2
3

Z
(1+Z2)2

.

We next analyze the linear stability of these equations.
The base state corresponds to both menisci moving at the
same speed with time-dependent position Z0+

1
3Z
3
0 =

1
2τ ,

where we have chosen Z(0) = 0. Thus, we seek perturba-
tions to this base state of the mass-conserving form

Z1 =Z0+ δ(τ) and Z2 =Z0− δ(τ) with δ% 1. (9)

If we further assume that Z0% 1, then (9) leads to growth
of the perturbation according to

1

δ

dδ

dτ
=
16

3π

(
4λZ0
Ceff

− (λ− 1)
)
. (10)

We compare the dimensional form of this estimate for
the growth rate of the instability (treating Z0(τ) as an
order-one quantity) with the typical time (%/(q0/h0)) to
bypass the obstacle. When this ratio is less than 1 we
expect an instability where one meniscus grows at a much
faster rate than the other meniscus can propagate to the
other side of the obstacle. Hence, the unstable state, which
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we have seen to produce no breakup of the drop, occurs
when

“instability”:
λ

Ceff
− (λ− 1)> 1 or Ceff < 1. (11)

The fact that this prediction is independent of λ suggests
that to account for the viscosity ratio dependence requires
a fully nonlinear calculation.
This one-dimensional calculation makes two predictions

consistent with the experimental observations. First, we
identify a critical capillary number above which the
menisci positions are “stable” and two drops are formed,
which is consistent with the qualitative trends reported in
the experiments. Lower capillary numbers are predicted
to be more unstable. Second, the above argument shows
that when the meniscus is upstream of the post Z0 < 0, the
menisci movements are stable, which is consistent with our
observations in that the instability only sets in when the
menisci advance beyond the position of the minimum gap.
We can use the nonlinear theory to examine the dynam-

ics as the capillary number is varied, in the spirit of the
experimental results for the menisci positions shown in
fig. 3. In order to capture the manner in which the experi-
ment is performed, where the capillary number is changed
by varying the flow rate, we plot the dimensionless results
in terms of the dimensionless time scale τ/Ceff . In particu-
lar, we advance the menisci into the widening gap accord-
ing to the unperturbed solution Z0(τ) and at time τ = 1/4
introduce a small perturbation.
As an example, for λ= 8 we numerically solve the two

ordinary differential equations for Z1(τ) and Z2(τ) for
Ceff = 0.06 and Ceff = 0.8, which are, respectively, below
and above the critical capillary number for instability
(lower capillary numbers are more unstable). The numer-
ical results are shown in fig. 5(a). We observe that for the
smaller capillary number the positions of the two menisci
diverge as the leading one advances into the diverging gap,
and, more significantly, the trailing meniscus begins to
retract. For the larger capillary number, the two menisci
continue to advance at nearly the same rate, and the
perturbation has only a minor effect. These dynamical
features are consistent with the most significant trends
evident in fig. 3. Similar calculations for lower λ show
that the critical capillary number Ceff,cr for the instability
is monotonically reduced, with more rapid variations for
λ< 1 (fig. 5(b)). The trend is consistent with the experi-
mental results though the magnitude of the change is not
as large.
The above ideas can be generalized to use the one-

dimensional approach with arbitrary shape functions (but
with consistency within the lubrication approximations)
and with the droplet or interface advancing into a region
of N identical subchannels. In this case it is convenient
to give the steps in dimensional form. Again, we let k(z)
denote the permeability, and introduce κ(z) as the mean
curvature of the meniscus, and a(z) the cross-sectional
area (the geometry need not be planar). The hydraulic

(a) (b)

Fig. 5: (Colour on-line) (a) Numerical solutions for the menisci
position as a function of the dimensionless time τ/Ceff for
Ceff = 0.8 and Ceff = 0.06; λ= 8. We observe the same behav-
ior as the experimental results shown in fig. 3. (b) Numer-
ically estimated critical capillary number for an instability,
Ceff,cr, vs. λ.

resistance of a subchannel of length L with a meniscus at
position zi is given by

R(zi;λ) = λ

∫ zi

0

dz′

k(z′)a(z′)
+

∫ L

zi

dz′

k(z′)a(z′)
. (12)

Let ∆p(t)> 0 be the total pressure drop across the
subchannels from the inlet to the reservoir downstream.
The flow rate Qi(t) in each subchannel satisfies a system
of nonlinear first-order differential equations:

Qi = a(zi)
dzi
dt
=
∆p− γκ(zi)

R(zi)
. (13)

The pressure ∆p(t) is determined implicitly by the
constraint of fixed total flow rate Q0 =

∑
iQi, which

provides a nonlinear coupling among the menisci.
Suppose the menisci move together, leading to symmet-

ric breakup into N identical daughter droplets. Then, the
average meniscus position zi(t) = z̄(t) is given by

Q1 =
Q0
N
= a(z̄)

dz̄

dt
, (14)

with solution z̄(t) = V −1(Q1t), where V (z) is the subchan-
nel volume from 0 to z, which satisfies V ′(z) = a(z). In
order to maintain the total flow rate, the pressure varies
as ∆p̄(t) =Q1R(z̄(t))+ γκ(z̄(t)).
We now consider a small perturbation of the base state,

zi(t) = z̄(t)+ δi(t), where |δi|% z̄ and derive a linear
system for δi(t). Since the mean perturbation (a linear
combination) is preserved under linearized dynamics, we
can set it to zero without loss of generality,

∑
i δi = 0. With

this choice, z̄(t) is the mean position of the menisci for all
times in the linear regime. Next, we linearize (13) to obtain
the generalization of equation (10) in the form

1

δi

dδi
dt
= α(z̄(t)), (15)

which has the general solution si(t) = si(0) exp×
(
∫ t
0 α(z̄(τ))dτ), where the local exponential growth
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rate of perturbations depends only the mean meniscus
position, given by

α(z) =−γκ′(z)a(z)+Q1 (a(z)R(z))
′

a(z)2R(z)
(16)

Regions of linear instability in the subchannels are
defined by the condition α(z̄)> 0. Outside these regions
the synchronized base state is stable. Since the menisci
enter the subchannels in a nearly synchronized state, we
can predict the critical position, zc =minz {z : α(z)> 0},
where the linear instability begins for a given geometry
(if zc <L).
For a given geometry, we can interpret the linear

instability condition α> 0 as a bound on an effective local
capillary number. Therefore, we conclude

linear instability :
Q0 (a(z)R(z))

′

Nγ|κ′(z)|a(z) < 1, (17)

which is a geometrical criterion for linear instability that
generalizes the result above for an obstruction with two
parabolic gaps. The viscosity ratio implicitly enters the
analysis through the resistivity.
As an example, suppose that a more viscous fluid is

invading a less viscous wetting fluid, λ> 1. In that case,
the channel resistance increases with meniscus position,
R∝ z For consistency with the lubrication approximation,
we must have (a(z)z)′ > 0, so that the cross-sectional
area varies slowly with subchannel length. Since hydraulic
resistance increases with length, the last term in (16)
must be positive in the lubrication limit. The meniscus
curvature κ(z) scales with the inverse of the channel
width. We conclude that for thin channels the menisci
are stable in contracting regions (κ′ > 0) and can be
unstable in expanding regions (κ′ < 0), consistent with
both experiments and the simpler version of the theory.

Discussion. – This problem of displacement of one
fluid by a second fluid is the origin of the classical viscous
fingering instability [21,22]. In particular, it is well known
that when a low-viscosity fluid invades a Hele-Shaw cell
filled with high-viscosity fluid, a propagating finger of
low-viscosity fluid develops, thus bypassing the mostly
stationary higher-viscosity fluid. However, invading fluid
more viscous than the emplaced fluid propagates with
a uniform front. Here we show that when a viscous
droplet, large compared to the channel width, meets an
obstacle partially blocking a channel filled with lower-
viscosity fluid, there is a critical speed above which the
viscous liquid drop breaks into two different-sized drops
and below which all of the fluid bypasses the obstacle
through only one of the gaps. An instability in the
relative motion of the two menisci will prevent a drop
from breaking at very low capillary numbers, so that
there exists a critical value of the capillary number Ccr.
A theoretical description of this instability was given
in the form of a one-dimensional model that recognizes
permeability variations in the flow direction. The model
captures the most significant qualitative trends present

in the experimental results. From a fundamental point
of view, our study provides new results concerning the
control of droplets in a microfluidic channel. In a more
global context, our quantification of the breakup process
can yield a better understanding of droplet flow in all types
of porous media.
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