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We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or
nanotubes as described by the capillary pore model (also called “space charge” theory). This theory assumes very
long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt
flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We
analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration
gradient. The 3×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new
simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that
Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different
flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968)]. The capillary pore model is well
suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy
conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an
example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis,
using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients
in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for
macroscopic transport properties using a reduced model, where the potential and concentration are assumed to
be invariant with radial coordinate (“uniform potential” or “fine capillary pore” model), are close to results of
the full model.

DOI: 10.1103/PhysRevE.93.053108

I. INTRODUCTION

Charged capillary nanopores and nanotubes are essential
in many natural and technological systems, as part of porous
membranes separating two aqueous electrolytes [1–13]. Mem-
branes containing charged nanopores can be used for water
desalination, selective ion removal, and electrokinetic energy
conversion. In steady state, transport is defined by three fluxes
(salt flux, electrical current, and fluid velocity) and three
driving forces (salt concentration difference, electric potential
difference, and pressure difference). In any physical situation,
three out of these six fluxes or forces are required (prescribed)
to fully define the problem, with the other three physical
quantities to be measured or calculated. It is also possible that
one of the three defining relations includes a combination of
factors, such as a relation between current and electric potential
difference (i.e., applying a constant external electrical load).
The theory for charged capillaries dates back to the work of
Osterle and co-workers [2,3] and describes the flow of ions
and water through a cylindrical pore carrying a homogeneous
charge on its inner surface. The pore is connected to two
reservoirs having different salt concentration, pressure, and/or
electric potential. Length L of the pore is assumed to be many
times larger than pore radius R. The physical situation is
illustrated in Fig. 1.

Although this problem was first analyzed as a simple
model for electrokinetic phenomena in membranes, recent

interest has also been driven by other applications, such
as electro-osmotic micropumps [14–16] and nanofluidic de-
vices [17,18]. In the latter case, the ideal geometry of a
straight nanochannel is easily realized in experiments, albeit
usually with a rectangular cross section. Applications of
electrokinetic phenomena in nanochannels include streaming
current measurements [19–21], electrokinetic energy conver-
sion [8,22,23], ionic [24,25] and flow [26,27] field-effect
transistors, electro-osmotic impedance effects [28], and elec-
trophoretic separations [29–32].

Until recently, most of the theoretical literature on mem-
branes and nanochannels has been based on the assumptions
of thin electric double layers (EDLs), negligible axial salt
concentration gradients, and local quasiequilibrium of the ion
distributions in the potential. It is well known that interfaces be-
tween charged membranes or nanochannels and unsupported
bulk electrolytes lead to ion concentration polarization outside
the membrane, e.g., in classical electrodialysis [33–35], but
complex nonequilibrium electrokinetic phenomena resulting
from strong concentration polarization have recently been
discovered inside membrane pores or microchannels, such
as deionization shock waves [32,36–41] and overlimiting
current sustained by surface conduction (electromigration) and
electro-osmotic flow [42–45] with applications to nanotem-
plated electrodeposition [46] and water desalination by “shock
electrodialysis” [47]. In most situations for nanochannels, the
ions remain in local quasiequilibrium, since electromigration
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FIG. 1. Sketch of a charged cylindrical pore subjected to water
flow, electrical current, and salt flux between a high-salinity (left) and
low-salinity (right) reservoir.

and diffusion dominate, although nonequilibrium structures,
such as “salt fingers” extending along the pore surfaces,
can arise in microchannels, if electro-osmotic convection
dominates [41,44,45,48]. Here, we neglect such effects and
focus on deriving the consequences of local (but not global)
quasiequilibrium.

In this work we revisit Osterle’s capillary pore model [2,3]
describing the nonlinear electrokinetic response of charged
nanopores (also used by Sasidhar and Ruckenstein [4]). We
show that all threefold integrals in the theory (which must
be evaluated across the pore radius) can be simplified to
single integrals, thereby significantly simplifying numerical
calculations. We also demonstrate how an infinite number
of local flux-force relationships are in principle possible
that all abide Onsager symmetry. Unlike most prior work,
we consider the general case where EDLs overlap, and
axial gradients in salt concentration are not negligible. Note
that even when the external bulk solutions have equal salt
concentration, concentration polarization due to current or
flow leads to a concentration difference between the pore
ends [10]. The full capillary pore model therefore allows us to
describe reverse electrodialysis, a membrane process to extract
electrical energy from salinity differences, e.g., between river
water and seawater [3,49–53]. We provide numerical results
for energy conversion, and of two-dimensional (axisymmetric)
current profiles for pores with EDL overlap in the presence of
an overall salt concentration difference. Though we present
only calculation results for the steady state, the model can be
extended quite straightforwardly to dynamic situations [54]. In
the model, ions are assumed to be fully dissociated monovalent
point charges. Theory for electrolytes containing ampholytic
ions (ions that can undergo acid/base reactions) is discussed
in Refs. [55–57].

II. GENERAL THEORY

A. Governing equations

The derivation that follows closely resembles that of Gross
and Osterle [2], Fair and Osterle [3], and Sasidhar and
Ruckenstein [4]. Central to the theory are three equations: the
extended Navier-Stokes (NS) equation, the extended Nernst-
Planck (NP) equation, and the Poisson equation. The NP
equation describes the molar flux J i (mol/m2/s) of ions of

species i by

J i(x,r) = ci(x,r)u(x,r) − Di

(
∇ci(x,r) + zici

�B
∇�(x,r)

)
,

(1)

where ci(x,r) is local ion concentration (mM=mol/m3),
�(x,r) local electric potential (V ), �B thermal voltage
(=RgT/F ), and Di the diffusion coefficient of species i (m2/s)
with i ∈ {+,−}. Ion valency zi is either +1 or −1 because we
will consider only a 1:1 salt (with ions, e.g., Na+ and Cl−).
Further, u is the velocity of the fluid (m/s) and T temperature
(K). Faraday’s constant is F = 96485 C/mol and the gas
constant is Rg = 8.3144 J/mol/K. Equation (1) assumes that
ions are volumeless point charges. In this work we consider a
stationary state and thus the ion mass balance

∂ci(x,r)

∂t
+ ∇ · J i(x,r) = 0 (2)

simplifies to ∇ · J i(x,r) = 0. Throughout we assume cylin-
drical symmetry, see Fig. 1, with axial coordinate x ∈ [0,L]
and radial coordinate r ∈ [0,R].

For laminar flow, fluid flow is described by the incompress-
ible NS equation, which at the low Reynolds number of interest
here is given by

μ∇2u(x,r) − ∇ph(x,r) − ρ(x,r)∇�(x,r) = 0,

∇ · u(x,r) = 0, (3)

where μ is viscosity (Pa s), ph(x,r) hydrostatic pressure (Pa),
and ρ(x,r) local charge density (C/m3).

Finally, Poisson’s equation relates potential �(x,r) to
charge density as

∇2�(x,r) = −ρ(x,r)

ε
= −F

ε
(c+(x,r) − c−(x,r)), (4)

where ε is the permittivity of the medium (F/m). In the second
equality of Eq. (4) we implement the assumption of a 1:1 salt
(both ions monovalent), and only consider positions 0 < r <

R away from the surface charge of the pore at r = R.

B. Boundary conditions and further assumptions

Because the pore is much longer than wide, we can assume
local equilibrium in the r direction and decompose the total
potential as [58]

�(x,r) = φv(x) + ψ(x,r), (5)

where the “radial potential” ψ(x,r) is obtained from an
equilibrium PB model, and φv(x) accounts for axial gradients
in potential (along the length of the pore). Concerning the
fluxes J i and u, the walls of the pore are impermeable to both
fluid and ions, so we have

Ji,r (x,R) = 0, ur (x,R) = 0, (6)

where subscript r denotes the radial component of vector quan-
tities J i(x,r) and u(x,r). We also assume no-slip boundary
conditions for fluid velocity u, i.e.,

ux(x,R) = 0, (7)

where we stress that this does not hold for ion fluxes J i .

053108-2



ANALYSIS OF ELECTROLYTE TRANSPORT THROUGH . . . PHYSICAL REVIEW E 93, 053108 (2016)

Naturally, the system we have described is out of equilib-
rium and to account for this, “virtual” quantities are defined,
which express the principle of local equilibrium [31,59]. A
physical quantity Fv(x) (subscript “v”) is defined as virtual
when it represents conditions in a virtual reservoir that is in
equilibrium with any differential volume (“slice”) in the pore.
Thus it represents conditions under which a cylindrical pore
cross section, or slice, is in equilibrium with a charge neutral
reference volume. From this definition it follows that virtual
quantities will be x dependent only. Virtual properties at the
two ends of the pore correspond to conditions just outside
the pore in bulk solution [60]. In the capillary pore model we
encounter virtual concentration cv(x), virtual pressure pt,v(x),
and virtual potential φv(x). With this formalism defined, we
can impose the most important assumption, namely that the
pore is much longer than wide, or L � R, with L pore length
and R pore radius. We are then allowed to assume the ionic
profile inside the pore to be in local equilibrium in radial
direction [61], leading to

Ji,r (x,r) = 0, ur (x,r) = 0, (8)

allowing us to derive a radial PB equation by inserting Eqs. (5)
and (8) in the r component of Eq. (1), which results in

∂ci(x,r)

∂r
= −zici(x,r)

�B

∂ψ(x,r)

∂r
, (9)

which can be integrated to the Boltzmann distribution

ci(x,r) = cv(x) exp

(
−zi

ψ(x,r)

�B

)
(10)

and implemented in Eq. (4) to obtain the desired PB equation

∇2�(x,r) = 2
Fcv(x)

ε
sinh

(
ψ(x,r)

�B

)
, (11)

which can be solved with boundary conditions of fixed charge
and considering cylindrical symmetry,

∂ψ(x,r)

∂r

∣∣∣∣
r=R

= +σ

ε
,

∂ψ(x,r)

∂r

∣∣∣∣
r=0

= 0, (12)

where σ is surface charge density of the pore wall (in C/m2).
In the present work, σ is assumed constant, invariant along
the pore. However, in reality it will often depend on the local
pH in the pore via a surface ionization mechanism and thus
gradients in σ can develop [62].

C. Nondimensional formulation

In order to simplify our governing equations (1), (3), and
(11) it is convenient to nondimensionalize all physical quan-
tities by division with an appropriate reference quantity. This
change of variables is listed below and with a slight abuse
of notation we replace all variables by their dimensionless
counterparts, as follows:

r

R
→ r,

x

L
→ x,

cv(x)

cref
→ cv(x)

φv(x)

�B
→ φv(x),

ψ(x,r)

�B
→ ψ(x,r), �B = RgT

F

J i(x,r)

Jref
→ j i(x,r), Jref = Dcref

L

u(x,r)

uref
→ u(x,r), uref = D

L

ph(x,r)

pref
→ ph(x,r), pref = crefRgT

σ

σref
→ σ, σref = ε�B

R
(13)

where cref is an arbitrary reference concentration, for which
we use cref = 1 mM (1 mol/m3) and where D is the (assumed
equal) diffusion coefficient of both types of ions. With this
change of variables we now have r ∈ [0,1] and x ∈ [0,1].
Like hydrostatic pressure, ph, other (virtual) pressures to be
introduced below are also scaled to reference pressure pref .
From this point onward, all equations and parameters are
nondimensional, unless otherwise stated.

Next we proceed with the approximation that in the limit
L� R we can ignore the ∂2

∂x2 terms in both the NS equation (3)
and PB equation (11), which is a well-known procedure [61].
Equation (11) can now be written as

1

r

∂

∂r

(
r
∂ψ(x,r)

∂r

)
= cv(x)

λ2
ref

sinh ψ(x,r), (14)

where

λref = 1

R

√
ε�B

2Fcref
(15)

is a dimensionless reference Debye length in units of the
cylinder radius, R. Boundary conditions of the PB equation
become [5]

∂ψ(x,r)

∂r

∣∣∣∣
r=1

= +σ,
∂ψ(x,r)

∂r

∣∣∣∣
r=0

= 0, (16)

while the Boltzmann distribution of Eq. (10) is now written as

ci(x,r) = cv(x) exp ( − ziψ(x,r)). (17)

Performing the change of variables in Eq. (13), we can also
simplify the NP equation in the x direction (which is the only
direction of interest for the ion fluxes), resulting in

ji,x(x,r) = ci(x,r)ux(x,r) − ∂ci(x,r)

∂x

− zici(x,r)
∂(ψ(x,r) + φv(x))

∂x
(18)

and simplify the NS equation by ignoring the ∂2

∂x2 terms and
substituting Eqs. (4), (13), and (17) in Eq. (3). In x direction
we find that

α
1

r

∂

∂r

(
r
∂ux(x,r)

∂r

)
− ∂ph(x,r)

∂x

+ 2cv(x) sinh ψ(x,r)
∂(ψ(x,r) + φv(x))

∂x
= 0, (19)

with the dimensionless viscosity parameter α given by

α = μD

crefRgT R2
. (20)
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III. RADIALLY AVERAGED
FLUX-FORCE RELATIONSHIPS

In a next step, mathematical expressions are derived for the
radially averaged x component of the fluxes, which in case of
a flux component fx(x,r) takes the form

fx(x) = 2
∫ 1

0
r · fx(x,r)dr. (21)

Our aim will be to derive Onsager relations between the
radially averaged x component of fluxes ux(x), jions,x(x),
and jch,x(x), and driving forces −∂xpt,v(x), −∂xμv(x), and
−∂xφv(x). Here, ion flux j ions and ionic current j ch are defined
as

j ions(x,r) = j+(x,r) + j−(x,r),

j ch(x,r) = j+(x,r) − j−(x,r). (22)

Furthermore, virtual chemical potential, μv(x), virtual osmotic
pressure, πv(x), and virtual total pressure, pt,v(x), are de-
fined as

μv(x) = ln cv(x),

πv(x) = 2 cv(x), (23)

pt,v(x) = ph,v(x) − πv(x).

To simplify notation, from this point onward, the x dependency
of the various quantities will no longer be explicitly stated.
Inserting the NP equation (18) and the Boltzmann distribution
(17) into Eq. (22), while also using the definitions of Eq. (23),
we immediately obtain an explicit expression for ion flux and
ionic current in x direction, namely

jions,x(r) = 2cv cosh ψ(r)ux(r) − 2cv cosh ψ(r)
∂μv

∂x

+ 2cv sinh ψ(r)
∂φv

∂x
,

jch,x(r) = − 2cv sinh ψ(r)ux(r) + 2cv sinh ψ(r)
∂μv

∂x

− 2cv cosh ψ(r)
∂φv

∂x
. (24)

We now proceed to find an expression for ux(r). To this
end we note that in r direction the dimensionless NS equation
becomes [using Eq. (17) and ur (r) = 0 in Eq. (8)]

∂ph(r)

∂r
= −ρ(r)

∂ψ(r)

∂r
= 2cv sinh ψ(r)

∂ψ(r)

∂r

= 2cv

∂ cosh ψ(r)

∂r
, (25)

which can again be integrated to result in

ph(r) − ph,v = 2cv( cosh ψ(r) − 1). (26)

Now we observe that, by Eqs. (25) and (26), the equation

∂ph(r)

∂x
= ∂pt,v

∂x
+ 2cv cosh ψ(r)

∂μv

∂x
+ 2cv sinh ψ(r)

∂ψ(r)

∂x

(27)

should hold. Substituting this result back into the NS equation
(19) for the x direction, we arrive at

α
1

r

∂

∂r

(
r
∂ux(r)

∂r

)
= ∂pt,v

∂x
+ 2cv cosh ψ(r)

∂cv

∂x

− 2cv sinh ψ(r)
∂φv

∂x
. (28)

Using the fact that ∂rux(0) = 0, multiplying both sides by r ,
and integrating, we now find

αr
∂ux(r)

∂r
= 1

2
r2 ∂pt,v

∂x
+ 2cv

∫ r

0
r ′ cosh ψ(r ′)dr ′ ∂μv

∂x

− 2λ2
ref r

∂ψ(r)

∂r

∂φv

∂x
, (29)

where we reduced the last term by virtue of the identity

2cv

∫ r

0
r ′ sinh ψ(r ′)dr ′ = 2λ2

ref

∫ r

0

∂

∂r ′

(
r ′ ∂ψ(r ′)

∂r ′

)
dr ′

= 2λ2
ref r

∂ψ(r)

∂r
, (30)

in which the PB equation (14) is implemented. Finally, dividing
both sides of Eq. (29) by r and using ux(1) = 0 we obtain

αux(r) = − 1

4
(1 − r2)

∂pt,v

∂x
− 2cv

∫ 1

r

1

r1

∫ r1

0
r2 cosh ψ(r2)

× dr2dr1
∂μv

∂x
− 2λ2

ref(ψ(r) − ψw)
∂φv

∂x
, (31)

where ψw is the value of potential ψ at the pore wall. It
is now a straightforward endeavor to insert ux(r) back into
Eq. (24) and take the average defined by Eq. (21). The final
result (after grouping all terms) can be written as a matrix
equation, relating fluxes, ux , jions,x , and jch,x , and driving
forces, −∂xpt,v , −∂xμv , and −∂xφv , according to

(ux , jions,x , jch,x)t

=
⎛
⎝L11 L12 L13

L21 L22 L23

L31 L32 L33

⎞
⎠(

−∂pt,v

∂x
,−∂μv

∂x
,−∂φv

∂x

)t

, (32)

where the coefficients of this L matrix are either constant or
only dependent on the x coordinate, and given by

L11 = + 1

8α
,

L12 = +4cv

α

∫ 1

0
r

∫ 1

r

1

r1

∫ r1

0
r2 cosh ψ(r2)dr2dr1,

L13 = + 4

α

∫ 1

0
rλ2

ref(ψ(r) − ψw)dr,

L21 = +cv

α

∫ 1

0
(r − r3) cosh ψ(r)dr,

L22 = +8cv

α

∫ 1

0
r cosh ψ(r)

×
(

cv

∫ 1

r

1

r1

∫ r1

0
r2 cosh ψ(r2)dr2dr1dr + α

2

)
dr,
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L23 = +8cv

α

∫ 1

0
r

(
cosh ψ(r)λ2

ref(ψ(r) − ψw)

− α

2
sinh ψ(r)

)
dr,

L31 = − cv

α

∫ 1

0
(r − r3) sinh ψ(r)dr,

L32 = −8cv

α

∫ 1

0
r sinh ψ(r)

×
(

cv

∫ 1

r

1

r1

∫ r1

0
r2 cosh ψ(r2)dr2dr1dr + α

2

)
dr,

L33 = −8cv

α

∫ 1

0
r

(
sinh ψ(r)λ2

ref(ψ(r)−ψw)−α

2
cosh ψ(r)

)
× dr. (33)

We note that (apart from notation) this set of expressions is
completely equivalent to the set of equations for Lij by Gross
and Osterle [2]. In a next step, we are concerned with reducing
the complexity of the Lij coefficients in Eq. (33). This can be
done first and foremost by reducing the triple integrals to single
integrals in L12,L22, and L32; see Appendix A. In the notation
of Sasidhar and Ruckenstein [4] this implies a reduction of the
k1,k3, and k7 integrals, given by

k1 =
∫ 1

0
r

∫ 1

r

∫ r1

0

r2

r1
cosh ψ(r2)dr2dr1dr

= 1

4

∫ 1

0
r(1 − r2) cosh ψ(r)dr, (34)

k3 =
∫ 1

0
r sinh ψ(r)

∫ 1

r

∫ r1

0

r2

r1
cosh ψ(r2)dr2dr1dr

= −
∫ 1

0
r cosh ψ(r)

λ2
ref

cv

(ψ(r) − ψw)dr, (35)

k7 =
∫ 1

0
r cosh ψ(r)

∫ 1

r

∫ r1

0

r2

r1
cosh ψ(r2)dr2dr1dr

= − 2
∫ 1

0
r cosh ψ(r) ln r

×
(

1

2
r2 cosh ψ(r) − λ2

ref

4cv

(
r
∂ψ(r)

∂r

)2)
dr. (36)

In the above equations the reduced form of k7 to a single
integral was not obtained before, and thus by substituting
Eqs. (34)–(36) into Eq. (33), we can now show that all Lij

expressions can be expressed as single integrals. Computa-
tionally this had the advantage that all Lij coefficients can be
formulated as a first order differential equation in r , which is
much easier to program and saves computational time.

IV. FUNDAMENTAL PROPERTIES OF ELECTROKINETIC
LINEAR RESPONSE

A. Onsager reciprocal relations

With these simplifications, we can now deduce in a
straightforward manner that the L matrix must be symmetric.
Namely, by substituting Eqs. (34) and (35) into Eq. (33)

it follows that L21 = L12 and L32 = L23. Finally, using the
boundary conditions of ψ(x,r) and the PB equation (14) one
can also show that L31 = L13 and thus prove symmetry of the
flux-force matrix. The final reduced form of the symmetric L

matrix can thus be written as

L11 = 1

8α
,

L22 = 8c2
v

α
k7 + 4cv

∫ 1

0
r cosh ψ(r)dr,

L33 = −8cv

α

∫ 1

0
r

(
sinh ψ(r)λ2

ref(ψ(r) − ψw)

− α

2
cosh ψ(r)

)
dr,

L21 = L12 = cv

α

∫ 1

0
(r − r3) cosh ψ(r)dr,

L31 = L13 = 4

α

∫ 1

0
rλ2

ref(ψ(r) − ψw)dr,

L23 = L32 = 8cv

α

∫ 1

0
r

(
cosh ψ(r)λ2

ref(ψ(r) − ψw)

− α

2
sinh ψ(r)

)
dr. (37)

where the analytic form of L22 differs from previous literature
due to the single k7 integral presented in Eq. (36).

The symmetry of the force-flux linear response matrix,
as just shown for Eq. (32), is generally known as “On-
sager reciprocity” or “Onsager symmetry,” a phenomenon
characteristic of linear response of systems that are near
equilibrium. Onsager derived the reciprocal relations for a
general thermodynamic force-flux linear response matrix,
based on the assumption that the microscopic equations
of motion are reversible [63,64]. Onsager reciprocity is a
fundamental postulate of (linear, irreversible) nonequilibrium
thermodynamics [65], which is also assumed in models of elec-
trokinetic phenomena [66], usually without any microscopic
justification. Macroscopic proofs of electrokinetic Onsager
reciprocal relations are available for porous media, based
on local equilibrium assumptions in formal homogenization
theory [67,68], but we are not aware of explicit proofs
based on the microscopic equations of motion for the general
situation with salt concentration gradients, as shown here for
a cylindrical pore, enabled by our analytical evaluation of
the integrals in k7. In contrast, the classical assumption of
constant virtual salt concentration leads to a much simpler
2×2 linear response matrix (e.g., Ref. [10], whose symmetry
can be proven for any cross-sectional shape and surface charge
distribution [69]).

B. Second law of thermodynamics

Any symmetric real matrix has real eigenvalues and
orthogonal eigenvectors, but the eigenvalues of the force-flux
linear response matrix L must also be positive. In other words,
the matrix must be positive definite. This property has its
roots in the Second Law of Thermodynamics, which states
that entropy production is non-negative during an irreversible

053108-5



PETERS, VAN ROIJ, BAZANT, AND BIESHEUVEL PHYSICAL REVIEW E 93, 053108 (2016)

process. Using the analytical results above, we are able to
prove this property directly from the equations of motion.

We here define the dissipated power density P in a slice of
the cylinder (x ∈ [a,b]) as the product of fluxes and conjugate
driving forces (i.e., only diagonal elements are used),

P = −ux

�pt,v(x)

b − a
− jions,x

�μv(x)

b − a
− jch,x

�φv(x)

b − a
, (38)

which is analogous to the definition in [70]. If we were to
reassign dimensions to this equation we would see that it is
a power density with units of W/m3. By the Second Law
of Thermodynamics, this equation has to be positive as the
process it describes is irreversible. Now, passing to the limit
a → b we see that

P = ux

(
−∂pt,v

∂x

)
+ jions,x

(
−∂μv

∂x

)
+ jch,x

(
−∂φv

∂x

)
. (39)

Finally, we observe that when we insert Eq. (32), we can write
Eq. (39) as(

−∂pt,v

∂x
,−∂μv

∂x
,−∂φv

∂x

)
L

(
−∂pt,v

∂x
,−∂μv

∂x
, − ∂φv

∂x

)t

> 0,

(40)
which is a statement of positive definiteness of the matrix L,
because it should hold for arbitrary driving forces.

C. Change of basis

In the last part of this section, we analyze the flux-force
matrix formalism more generally and come to the conclusion
that there are many possible (actually, an infinite number of)
coupled sets of flux-force equations equivalent to the set in
Eq. (33) in the sense that Onsager symmetry is preserved
and the dissipation rate is described by the product of fluxes
and conjugate forces (while there is also an infinite set of
relationships that does not have Onsager symmetry). Gross and
Osterle [2] already showed quite extensively the equivalence
of Eq. (33) and a coupled set with ux,jdiff,x,jch,x as fluxes and
−∂xph,v,−∂xπv,−∂xφv as driving forces. Here, differential
flow is defined as

jdiff(x,r) = j ions(x,r)

2cv(x)
− u(x,r). (41)

However, it is quite an arduous effort to verify the claims
in Ref. [2], as the authors performed the change of coupled
relations simultaneously with the reduction of the integrals in
Eq. (33). Interestingly, we found that their specific claims can
be formulated in terms of a much more general case, very
similar to the one described by de Groot and Mazur [65] as
we will outline next. Let J denote a set of fluxes in the x

direction and X a set of coupled thermodynamic forces, such
as J = (ux,jions,x,jch,x) and X = (−∂xpt,v, − ∂xμv, − ∂xφv).
Let J ′ and X ′ be another coupled set of fluxes and driving
forces, so that we have the relations

J = L · X, J ′ = L′ · X ′ (42)

and the dissipation rate can be written in this notation as

P = J · X = X t · L · X . (43)

Let us also define the (invertible) linear maps A : R3 → R3

and B : R3 → R3 by the relations

J ′ = A · J, X ′ = B · X, (44)

making them the transformations that carry J onto J ′ and X
onto X ′. In general one can easily deduce that the equation

L′ = A · L · B−1 (45)

describes the relation between the coupled flux-force equa-
tions. Assuming that these transformations are non-trivial (thus
invertible) one can quite easily prove conservation of Onsager
symmetry and invariance of the dissipation rate under the
associated change of basis (for arbitrary X ∈ R3) if

At = B−1. (46)

Indeed, if this relation is assumed to hold we observe

(L′)t = (A · L · B−1)t = (B−1)t · Lt · At = A · L · B−1 (47)

and

P ′ = J ′ · X ′ = A · J · B · X = J · At · B · X = J · X = P,

(48)
which we set out to show.

We note that if we work with J ′ = (ux,jdiff,x,jch,x) and
X ′ = (−∂xph,v,−∂xπv,−∂xφv) and our original sets, then A

and B are given by

A =
⎛
⎝ 1 0 0

−1 1
2cv

0
0 0 1

⎞
⎠, B =

⎛
⎝1 2cv 0

0 2cv 0
0 0 1

⎞
⎠. (49)

It is now straightforward to verify that At = B−1, thereby
proving the claim of Gross and Osterle [2]. The matrix L′ can
be calculated directly using these expressions and Eq. (42) and
was found to be in agreement with Eq. (22) in Ref. [2].

V. UNIFORM POTENTIAL MODEL

For pores that are thin relative to the Debye length,
concentration profiles across the pore are only weakly chang-
ing and we can simplify the above framework significantly
[71]. This simplification goes under various names, such as
“fine capillary pore model,” “uniform potential (UP) model”
[33,72–77], and also as Teorell-Meyers-Sievers (TMS) theory,
though TMS theory does not include fluid flow [1,35]. In the
UP model, the coefficient matrix L of Eq. (37) simplifies to

L11 = 1

8α
,

L22 = 2 cv cosh ψ + c2
v

2α
cosh2 ψ,

L33 = 2 cv cosh ψ + c2
v

2α
sinh2 ψ,

L21 = L12 = + cv

4α
cosh ψ,

L31 = L13 = − cv

4α
ψ,

L23 = L32 = −2 cv sinh ψ − c2
v

2α
sinh ψ cosh ψ, (50)

which is now independent of the exact pore geometry, except
for a factor α, originally based on the geometry of a capillary
pore, but adjustable to describe other pore geometries.
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To simplify Eq. (50) we use Eq. (17) to derive

ωX = c− − c+ = 2 cv sinh ψ,

cT = c− + c+ = 2 cv cosh ψ =
√

X2 + (2cv)2, (51)

where X is the magnitude of the density of fixed charges
in the nanopore, defined as number of charges per unit pore
volume, taken as a positive number (unrelated to X of the
previous section), while ω is the sign of the membrane
charge (e.g., ω = +1 for a nanopore or membrane with fixed
positive charges, i.e., an anion-exchange membrane). Further-
more, cT is the total ions concentration in the pore, which
is always larger than X; see Eq. (51b). Inserting Eq. (51) in
Eq. (50) results for the coefficients of the L matrix in

L11 = 1

8α
,

L22 = L11 c2
T + cT,

L33 = L11 X2 + cT,

L21 = L12 = L11 cT,

L31 = L13 = −L11 ωX,

L23 = L32 = −L11 ωXcT − ωX, (52)

of which the determinant can now easily be derived to be

D = L11
(
c2

T − X2
) = L11(2cv)2,

which is strictly positive.
Above we have now given the coefficients of the L matrix

for the UP model, where forces are gradients in virtual
quantities pt,v , μv , and φv as in Eq. (32). However, the model
can be further simplified when we return to “real” pressures,
concentrations, and potentials. The resulting set of equations is

u = −L11

(
∂ph

∂x
− ωX

∂φ

∂x

)
,

jions = cTu − ∂cT

∂x
+ ωX

∂φ

∂x
, (53)

jch = −ωXu + ω
∂X

∂x
− cT

∂φ

∂x
,

where we neglect overbar signs to denote pore-averaged fluxes.
For a constant membrane charge, X, the term ω∂xX is zero.
At the two pore mouths (on either side of the pore) we have
to solve for step changes across the EDLs at the membrane-
solution interfaces, leading to jumps in ph, cT, and φ, using
the Donnan (Boltzmann) relations

ph
m = ph

ext + cT,m − 2cext,

cT,m =
√

X2 + (2cext)2,

φm = φext + sinh−1 ωX/2cext, (54)

where subscript “m” refers to a position just within the
membrane, beyond the EDLs at the membrane-solution in-
terface, and where “ext” describes a position just outside the
membrane, in the electroneutral electrolyte.

VI. RESULTS AND DISCUSSION

A. numerical solution

Although the capillary pore model assumes local quasiequi-
librium, which implies local linear response, axial variations
lead to global nonlinear response of the charged nanopore,
which can be far from equilibrium. Therefore, the capillary
pore model must be solved numerically along the length of the
pore (x direction), to find the profiles of the virtual quantities
pt,v(x), μv(x), and φv(x). Because the pore-averaged fluxes,
ux , jions,x , and jch,x , are invariant along the pore, this calcula-
tion requires solving a system of three first order, quasilinear
ordinary differential equations (ODEs), since the Onsager
matrix of Eq. (32) depends on the virtual fields. The six cross
coefficients Lij only depend on wall charge, pore radius, and
local (virtual) concentration cv and thus for a certain charge and
radius, can be calculated a priori as function of cv , and the re-
sult stored as six polynomial functions of Lij versus cv and used
in the solution of the three ODEs in which coordinate x is the
running parameter. In this a priori calculation the PB equation
is solved in radial direction and the profile of ψ(r) calculated;
see Fig. 2. After the functions Lij(cv) have been determined,
the PB calculation based on σ and ψ(r) is no longer necessary.

FIG. 2. Dimensionless electric potential ψ(0,r) and ψ(1,r) in a charged nanopore (radius R = 2 nm; surface charge σ = −10 mC/m2) at
the two ends of the pore, as a function of the dimensionless radial coordinate. At x = 0, the potential drops off more quickly (relatively) from
the wall towards the pore axis as the result of a higher cext.
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FIG. 3. Plots of (a) virtual hydrostatic pressure, ph,v(x), and (b) virtual electric potential, φv(x), vs axial position in pore, x. In (b) the
dashed line is an enlarged view of the potential profile for x < 0.6.

Next, using the expressions given in Appendix B, we
evaluate the r dependence of the x-directional fluxes. Note
that for these fluxes there is no Onsager symmetry for the
flux-force framework, and thus all nine cross coefficients
must be separately analyzed. After that, using the continuity
equation (2), we solve for the radial components of the fluxes,
as their axial component is known on every point of the
grid, which reduces the continuity equation to a first order
r-dependent differential equation, to generate streamline and
vector field plots for u, j ions, and j ch. We illustrate the capillary
pore model with the example of energy harvesting from salinity
differences by flows through charged nanopores.

B. Pore-averaged fluxes

Calculations presented in this section are based on a pore
placed between two electrolyte solutions with cext = 500 and
10 mM salt concentration. We use a pore radius of R =
2 nm, pore length of L = 100 μm, an average ion diffusion
coefficient of D = 2×10−9 m2/s, viscosity of μ = 1 mPa s,
and temperature T = 298 K. The permittivity of water is
ε = 6.91×10−10 F/m, thermal voltage is �B = 25.7 mV, and
surface charge is σ = −10 mC/m2. Thus we have λref = 4.79
and α = 202. We assume the two reservoirs to have the same
hydrostatic pressure; thus ph,v(x = 0) = ph,v(x = 1). We
apply a current of jch,x = 140 which translates dimensionally
to 27 mA/cm2.

For external salt concentrations of cext = 500 mM (at the
left-hand pore entrance, where x = 0) and cext = 10 mM (at
the right-hand side, x = 1), we can directly calculate the
potential profile ψ(x,r), as plotted in Fig. 2. Because the
Debye length increases through the pore due to its reciprocal
dependence on cv(x), we see that at x = 0 [panel (a)] ψ(x,r)
drops off faster (relatively) from the wall towards the pore axis
than at x = 1 [panel (b)]. Also, the magnitude of ψ(x,r) is
much larger at x = 1 for cext = 10 mM [note that scales in
panels (a) and (b) are different].

For the virtual quantity cv(x) [and thus μv(x) = ln cv(x)
and pt,v(x)] we find a gradual change from one end of
the pore to the other (not shown). However, for virtual
hydrostatic pressure ph,v(x) and virtual electric potential
φv(x), the behavior is more interesting; see Fig. 3. First of

all, hydrostatic pressure, though zero at both pore mouths,
makes a steep excursion within the pore, as also observed
in Ref. [78], reaching a maximum value of ph,v ∼ 82 kPa,
corresponding to the osmotic pressure of a 17 mM salt solution.
The electric potential, φv(x), is virtually unchanging for most
of the pore (0 < x < 0.8) before steeply increasing at the very
end of the pore. Interestingly, φv(x) is slightly negative at the
beginning of the pore before turning positive. Note that in
Fig. 3 virtual quantities are discussed, not “real” pressures or
potentials.

Concerning fluxes, the average flux of ions is
jions,x = 18.7 mmol/m2/s and the average velocity of
fluid is ux = −0.49 μm/s for the chosen parameter set. This
implies that ions move right, while the water flows left, in
agreement with the common notion of solvent flowing to the
side of lower total pressure (the side of higher salinity in the
case of equal hydrostatic pressure).

C. Analysis of fluxes as function of r coordinate

For the r dependence of the x component of the fluxes,
we find for water velocity ux(r) an almost parabolic shape
(with no-slip at the wall), essentially unvarying from x = 0 to
x = 1. Ion flux jions,x(r) does not vary much with axial nor
radial coordinate, from a value of ∼17.4 mmol/m2/s in the
center to ∼19.6 mmol/m2/s at the wall (not shown). Thus
note that the highest ion fluxes are found at the wall.

For the profile in ionic current, jch,x(r), we also find the
highest value at the wall, but interestingly, in the center of the
pore, the ionic current inverts. In particular, at x = 0, jch,x(r)
is always positive, increasing from jch,x(0) = 12 mA/cm2

to jch,x(1) = 58 mA/cm2. However, at x = 1, jch,x(0) =
−16 mA/cm2, while jch,x(1) = 73 mA/cm2. This changeover
in jch,x(0) from positive at x = 0 to negative at x = 1 implies
that there is a “surface” within the pore where the x component
of the ionic current is zero, as indeed shown in Fig. 4. As Fig. 4
illustrates, even though the average ionic current is positive
(directed to the right), in a range of r positions around the
center axis ionic current enters the pore on the right-hand
side and flows to the left, before looping back and exiting the
pore again on the right, but now closer to the wall.
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FIG. 4. Streamline (left) and vector field (right) plots of ionic current j ch(x,r). The streamline plot clearly demonstrates the inversion of
j ch(x,r), while the vector field plot shows the higher magnitude of ionic current near the pore wall.

In presenting streamline and vector field plots in Fig. 4, one
might notice a paradox, as we previously assumed equilibrium
in r direction, which should result in jch,r = 0 for all x,r .
This seems to clash with our calculation of j ch by virtue
of the continuity equation (2), which very clearly results in
a vector field of j ch(x,r) that has nonzero r components.
This paradox is solved by noticing that we normalized our
x and r coordinates to a [0,1]×[0,1] square. To obtain the true
magnitude of our vector components one has to multiply all
r components by R and all x components by L. The latter is
much larger and this justifies the claim that the r component
of j ch(x,r) is almost 0.

Different from previous work, we presented computational
results of the capillary pore model for a long and narrow
charged pore, in the presence of an axial concentration
gradient. Reference [79] considered an axial concentration
gradient but their method involved solving the NS, NP, and
PB equations directly, for a system far from the “needle limit”
of L/R → ∞. Instead, the geometry considered was for a
pore even wider than long (i.e., L/R < 1). In Ref. [79] an
inversion within the pore of one of the fluxes was observed,
namely in ux(x,r). In Ref. [56] electrically driven fluid vortices
were predicted in microchannels in ampholytic salt solutions.
Reference [11] modeled in two dimensions the full problem
of transport in a cylindrical pore between two solutions of
different salt concentration, while Ref. [80] solved the problem
for a conical nanopore in the absence of fluid flow. Our
analysis, therefore, provides a different perspective on the
generality of this phenomenon. We hope that calculating
the full vector fields of u(x,r), j ions(x,r), and j ch(x,r) via
the formulation of averaged fluxes will prove useful to find
other flux inversions as well.

D. Energy generation from a salinity difference

Next, we show how our calculations can provide relevant
information on the performance of an electrokinetic energy

harvesting device based on a salt concentration difference.
Here, we consider the single membrane pore as part of a
membrane which is placed in a stack of multiple membranes,
with alternating sign of the fixed charge on the membrane.
This process is called reverse electrodialysis [3,35,49–51,53].
Because of the salt concentration difference across each
membrane, power is delivered to a load R placed in an external
circuit; see Fig. 1. In the remainder of this section, for average,
axial, fluxes we drop the overbar sign, and we also drop
subscript “x”.

We can define a local efficiency of the generation of
electrical energy, at any point in the membrane pore, as

η′ = − jch∂xφv

jions∂xμv + u∂xpt,v

. (55)

For a zero overall hydrostatic pressure, separately integrating
the upper and lower side of Eq. (55) over the entire pore length,
results for the overall energy efficiency η in [3,80]

η = − jch�φv

jions�μv − u�πv

, (56)

noting that differences � are defined as conditions at “x = 1”
minus at “x = 0.” In Fig. 5 we plot η versus generated electrical
power by a single nanopore (instead of plotting both versus
current or voltage as in Ref. [35]). These calculations are based
on external salt concentrations of cext = 100 and 10 mM, with
all other parameter settings the same as before. The maximum
in energy conversion efficiency of η ∼ 28% is obtained for
a current of ∼19 mA/cm2 (�φv ∼ 31 mV; salt transport
efficiency ϑ = jch/jions ∼ 63%). Around this optimum, the
fluid velocity switches from normal osmosis (directed to the
high-salinity side at lower currents), to anomalous osmosis
at higher currents where fluid flows to the low-salinity side
[6]. In the present calculation, fluid velocity is found to
change from u = −0.7 μm/s for open-circuit conditions (zero
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FIG. 5. Plot of energy efficiency η against generated electri-
cal power P by a single charged nanopore placed between two
electrolytes of different salinity (cext = 10 and 100 mM). Current
increases in direction of arrow.

current, �φv ∼ 47 mV) to u = +1.6 μm/s for electrical short
circuit (�φv = 0, current ∼ 54 mA/cm2). Values for the power
per pore in aW as depicted in Fig. 5 can be multiplied by 80 to
a power in mW/m2 pore area, resulting in a maximum power
of ∼0.64 W/m2.

E. Calculations using uniform potential (UP) model

Finally, we applied the UP model and made the same
calculations as before. Comparing with results in Fig. 2, we
calculate for the r-independent ψ value in the UP model
that ψcext=500 mM = −0.10 and ψcext=10 mM = −2.35, values in
between minimum and maximum ψ(r) values in Fig. 2. Plots
of virtual hydrostatic pressure and potential in Fig. 3 come
out almost exactly the same with the UP model, with the
maximum in ph,v somewhat higher at ph,v ∼ 100 kPa, reached
at a slightly higher x ∼ 0.85. For potential φv , again an initial
decay is predicted, with φv turning positive at x ∼ 0.56 to end
at x = 1 at φv = 1.877, which is ∼2% above the result of the
full capillary model. For efficiency versus power, as in Fig. 5,
results match almost exactly, with the maximum in efficiency
ηmax for both models at jch ∼ 20 mA/cm2, with ηmax ∼ 27.6%
for the full model and 27.9% for the UP model. Fluid flow u

in both models switches sign just below jch = 20 mA/cm2,
and increases with jch. However, water velocity increases
somewhat faster for the UP model: at jch = 39 mA/cm2,
u = 0.77 μm/s for the full model and u = 0.93 μm/s for
the UP model.

In conclusion, the UP model (TMS model, fine capillary
pore model) gives predictions for the overall (pore-averaged)
transport in thin capillary pores which are in almost quantita-
tive agreement with the full model, even for conditions where
the Debye length is about the pore size on one end of the
pore and much smaller than the pore size on the other end.

For larger pores, the UP model is expected to deviate more
significantly. Furthermore, the UP model does not provide
information on microscopic phenomena such as the devel-
opment of loops in current or fluid flow. Also, calculations
(not reported here) show that the UP model can significantly
overpredict coion exclusion (i.e., the full capillary pore model
predicts a significantly higher pore-averaged concentration of
coions).

VII. CONCLUSIONS

We have analyzed the capillary pore model, which is a
semianalytical model of ion transport and flow through charged
nanopores, based on the assumption of local quasiequilibrium,
allowing for overlapping EDLs and axial concentration gra-
dients. The analysis is based on the force-flux framework of
Osterle and co-workers [2,3], for which we have discovered a
simple single-integral expression for the coefficient k7. We
demonstrate that all symmetric force-flux frameworks are
equivalent and obey Onsager reciprocal relations for local
linear response, as a result of the local quasiequilibrium
assumption. We also solve the full nonlinear model numer-
ically without integrating over the cross section to resolve
the axisymmetric two-dimensional profiles of ion transport
and flow. Calculations for a pore subjected to two reservoirs
with different salt concentrations, as a model of reverse
electrodialysis, demonstrate how in the presence of an overall
concentration difference a “current loop” can develop at one
of the pore ends. We present a plot of energy efficiency versus
electrical power generated by a single charged nanopore in this
process. We analyze the uniform potential model (fine capillary
pore model), a model in which potential and concentration
are assumed to be invariant with radial coordinate, and show
that for the parameter range investigated, it gives predictions
of macroscopic transport properties that are in line with
results of the full capillary pore model. Our work unifies
previous theoretical work and provides a rigorous basis for
further modeling of transport in charged membranes and
nanopores.
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APPENDIX A: DERIVATION OF k INTEGRALS

In this appendix we show how the triple integrals for k1, k3, and k7 can be reduced to single integrals. For k1 and k3 this
allows us to show Onsager symmetry of the flux-force framework. Another advantage is that single integrals are numerically
much easier to evaluate. It was already known to Sasidhar and Ruckenstein [4] that several of the integrals can be reduced to
single integrals. Gross and Osterle [2] also reduced their expressions to simple forms. We follow the definitions of Sasidhar and
Ruckenstein [4] to define k1, k3, and k7 as

k1 =
∫ 1

0
r

∫ 1

r

1

r1

∫ r1

0
r2 cosh ψ(r2)dr2dr1dr, (A1)

k3 =
∫ 1

0
r sinh ψ

∫ 1

r

1

r1

∫ r1

0
r2 cosh ψ(r2)dr2dr1dr, (A2)

k7 =
∫ 1

0
r cosh ψ

∫ 1

r

1

r1

∫ r1

0
r2 cosh ψ(r2)dr2dr1dr, (A3)

which appear in the matrix elements L12, L32, and L22, and in the full calculation are x dependent.
We show that these triple integrals can be reduced, by dividing the area of integration in a suitable way, and switching the

order of integration.
First of all, we note that in general it holds that∫ 1

r

(∫ r1

0
dr2

)
dr1 =

∫ r

0

(∫ 1

r

dr1

)
dr2 +

∫ 1

r

(∫ 1

r2

dr1

)
dr2 (A4)

valid because {r � r1 � 1 and 0 � r2 � r1} is equivalent to the statement {[0,r], r � r1 � 1 and on [r,1], r2 � r1 � 1}. In
Eq. (A4) on the left-hand side the integration is performed first over dr2 and then over dr1, and on the right-hand side this order
is reversed. Thus we combine Eq. (A4) with changing the order of integration twice (we first switch r1 and r2, and then r2 and
r), with the Poisson-Boltzmann equation (in the case of k3 and k7), with partial integration, and with a symmetry argument in
the case of k7. We start by reducing the k1 integral according to

k1 =
∫ 1

0
r

(∫ 1

r

∫ r1

0

r2

r1
cosh ψ(r2)dr2dr1

)
dr

=
∫ 1

0
r

(∫ r

0

∫ 1

r

r2

r1
cosh ψ(r2)dr1dr2 +

∫ 1

r

∫ 1

r2

r2

r1
cosh ψ(r2)dr1dr2

)
dr

=
∫ 1

0
r

(∫ r

0
ln r1|1r r2 cosh ψ(r2)dr2 +

∫ 1

r

r2 ln r1|1r2
cosh ψ(r2)dr2

)
dr

= −
∫ 1

0
r

(
ln r

∫ r

0
r2 cosh ψ(r2)dr2 +

∫ 1

r

r2 ln r2 cosh ψ(r2)dr2

)
dr, (A5)

where in the second line we used our first change in the order of integration. We will now perform another change of the order
of integration by interchanging r2 with r . To this end notice that {0 � r � 1, 0 � r2 � r} is equivalent with {0 � r2 � 1 and
r2 � r � 1}. Also observe that {r � r2 � 1, 0 � r � 1} is equivalent with {0 � r2 � 1 and 0 � r � r2}. We then find, after
interchanging, moving r2 cosh ψ(r2) to the front, and performing a partial integration in the first integral that

k1 = −
∫ 1

0
r2 cosh ψ(r2)

(∫ 1

r2

r ln r dr + ln r2

∫ r2

0
r dr

)
dr2

= −
∫ 1

0
r2 cosh ψ(r2)

(
1

2
r2 ln r|1r2

−
∫ 1

r2

1

2
r dr + 1

2
r2

2 ln r2

)
dr2 = 1

4

∫ 1

0
r2

(
1 − r2

2

)
cosh ψ(r2)dr2, (A6)

which is the reduced form for k1.
For the integral of k3 our derivation follows the same scheme as for k1, by changing order of integration twice. However, in

this derivation also the Poisson-Boltzmann equation is involved to deal with the hyperbolic sine function. In this case we have

k3 =
∫ 1

0
r sinh ψ(r)

(∫ 1

r

∫ r1

0

r2

r1
cosh ψ(r2)dr2dr1

)
dr

=
∫ 1

0
r sinh ψ(r)

(∫ r

0

∫ 1

r

r2

r1
cosh ψ(r2)dr1dr2 +

∫ 1

r

∫ 1

r2

r2

r1
cosh ψ(r2)dr1dr2

)
dr

=
∫ 1

0
r sinh ψ(r)

(∫ r

0
r2 ln r1|1r cosh ψ(r2)dr2 +

∫ 1

r

r2 ln r1|1r2
cosh ψ(r2)dr2

)
dr
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= −
∫ 1

0
r sinh ψ(r)

(
ln r

∫ r

0
r2 cosh ψ(r2)dr2 +

∫ 1

r

r2 ln r2 cosh ψ(r2)dr2

)
dr

= −
∫ 1

0
r2 cosh ψ(r2)

(∫ 1

r2

r ln r sinh ψ(r)dr + ln r2

∫ r2

0
r sinh ψ(r)dr

)
dr2. (A7)

Now, invoking the Poisson-Boltzmann equation, recalling that 1
r

∂
∂r

(r ∂ψ

∂r
) = cv

λ2
ref

sinh ψ by Eq. (14) from the main text, we then

see that by partial integration we have

k3 = −
∫ 1

0
r2 cosh ψ(r2)

λ2
ref

cv

( ∫ 1

r2

ln r
∂

∂r

(
r
∂ψ

∂r

)
dr + ln r2

∫ r2

0

∂

∂r

(
r
∂ψ

∂r

)
dr

)
dr2

= −
∫ 1

0
r2 cosh ψ(r2)

λ2
ref

cv

(
r ln r

∂ψ

∂r
|1r2

−
∫ 1

r2

∂ψ

∂r
dr + r2 ln r2

∂ψ

∂r2

)
dr2

= −
∫ 1

0
r2 cosh ψ(r2)

λ2
ref

cv

(
−r2 ln r2

∂ψ

∂r2
− ψ |1r2

+ r2 ln r2
∂ψ

∂r2

)
dr2

= −
∫ 1

0
r2 cosh ψ(r2)

λ2
ref

cv

(ψ(r2) − ψw)dr2, (A8)

which is the required reduced form for k3.
Now for the final result, the reduced form of k7 is by far the hardest to derive. To our knowledge, the fully reduced integral

for this term was not yet available. We again start by first interchanging the order of integration,

k7 =
∫ 1

0
r cosh ψ(r)

(∫ 1

r

∫ r1

0

r2

r1
cosh ψ(r2)dr2dr1

)
dr

=
∫ 1

0
r cosh ψ(r)

(∫ r

0

∫ 1

r

r2

r1
cosh ψ(r2)dr1dr2 +

∫ 1

r

∫ 1

r2

r2

r1
cosh ψ(r2)dr1dr2

)
dr

=
∫ 1

0
r cosh ψ(r)

(∫ r

0
r2 ln r1|1r cosh ψ(r2)dr2 +

∫ 1

r

r2 ln r1|1r2
cosh ψ(r2)dr2

)
dr

= −
∫ 1

0
r cosh ψ(r)

(
ln r

∫ r

0
r2 cosh ψ(r2)dr2 +

∫ 1

r

r2 ln r2 cosh ψ(r2)dr2

)
dr. (A9)

Up until this point the steps have been equivalent to the steps for k1 and k3. However, in the next steps, we will only interchange
the order of integration in the second term. Notice that we then obtain a symmetry in the distribution of the variables and thus
the integral expressions, resulting in

k7 = −
∫ 1

0
r cosh ψ(r) ln r

∫ r

0
r2 cosh ψ(r2)dr2dr −

∫ 1

0
r2 cosh ψ(r2) ln r2

∫ r2

0
r cosh ψ(r)dr dr2

= − 2
∫ 1

0
r2 cosh ψ(r2) ln r2

∫ r2

0
r cosh ψ(r)dr dr2. (A10)

Now we finish our derivation by performing partial integration and invoking the Poisson-Boltzmann equation again, resulting
in

k7 = −2
∫ 1

0
r2 cosh ψ(r2) ln r2

∫ r2

0
r cosh ψ(r)dr dr2

= −2
∫ 1

0
r2 cosh ψ(r2) ln r2

(
1

2
r2

2 cosh ψ(r2) −
∫ r2

0

1

2
r2 sinh ψ(r)

∂ψ

∂r
dr

)
dr2

= −2
∫ 1

0
r2 cosh ψ(r2) ln r2

(
1

2
r2

2 cosh ψ(r2) − λ2
ref

cv

∫ r2

0

1

2
r

∂

∂r

(
r
∂ψ

∂r

)
∂ψ

∂r
dr

)
dr2

= −2
∫ 1

0
r2 cosh ψ(r2) ln r2

(
1

2
r2

2 cosh ψ(r2) − λ2
ref

2cv

∫ r2

0
r

(
∂ψ

∂r

)2

+ r2 ∂2ψ

∂r2

∂ψ

∂r
dr

)
dr2

= −2
∫ 1

0
r2 cosh ψ(r2) ln r2

(
1

2
r2

2 cosh ψ(r2) − λ2
ref

2cv

∫ r2

0
r

(
∂ψ

∂r

)2

+ 1

2
r2 ∂

∂r

(
∂ψ

∂r

)2

dr

)
dr2. (A11)
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Now we partially integrate the last term in this equation,

k7 = −2
∫ 1

0
r2 cosh ψ(r2) ln r2

(
1

2
r2

2 cosh ψ(r2) − λ2
ref

2cv

( ∫ r2

0
r

(
∂ψ

∂r

)2

dr + 1

2
r2

(
∂ψ

∂r

)2∣∣∣∣
r2

0

−
∫ r2

0
r

(
∂ψ

∂r

)2

dr

))
dr2

= −2
∫ 1

0
r2 cosh ψ(r2) ln r2

(
1

2
r2

2 cosh ψ(r2) − λ2
ref

4cv

(
r2

∂ψ

∂r2

)2)
dr2, (A12)

which is the reduced form of the k7 integral. It is very interesting to notice that reduction of this integral does not work out in
the planar case (i.e., the pore consisting of two narrow plates instead of a cylinder). In that case the radial cancellations in the
last five steps of k7 do not work out, due to the different form of the Jacobian (being unity) and the Laplacian (containing no
reciprocal terms).

APPENDIX B: FULL EQUATIONS OF MOTION

Based on the original capillary pore model, Eq. (32) from the main text, it is possible to obtain full (x,r)-dependent expressions
for the three fluxes by inserting Eq. (31) into Eq. (24), and omitting the averaging step, resulting in

(ux(r),jions,x(r),jch,x(r))t =
⎛
⎝L′

11 L′
12 L′

13
L′

21 L′
22 L′

23
L′

31 L′
32 L′

33

⎞
⎠(

−∂pt,v

∂x
,−∂μv

∂x
,−∂φv

∂x

)t
, (B1)

where

L′
11 = + 1

4α
(1 − r2),

L′
12 = −2cv

α

(
ln r

∫ r

0
r1 cosh ψ(r1)dr1 +

∫ r

0
r1 ln r1 cosh ψ(r1)dr1

)
,

L′
13 = + 2

α
λ2

ref(ψ(r) − ψw),

L′
21 = + cv

2α
(1 − r2) cosh ψ(r),

L′
22 = −4cv

α
cosh ψ(r)

(
cv

(
ln r

∫ r

0
r1 cosh ψ(r1)dr1 +

∫ r

0
r1 ln r1 cosh ψ(r1)dr1

)
− α

2

)
,

L′
23 = +4cv

α

(
cosh ψ(r)λ2

ref(ψ(r) − ψw) − α

2
sinh ψ(r)

)
,

L′
31 = − cv

2α
(1 − r2) sinh ψ(r),

L′
32 = +4cv

α
sinh ψ(r)

(
cv(ln r

∫ r

0
r1 cosh ψ(r1)dr1 +

∫ r

0
r1 ln r1 cosh ψ(r1)dr1) − α

2

)
,

L′
33 = −4cv

α

(
sinh ψ(r)λ2

ref(ψ(r) − ψw) − α

2
cosh ψ(r)

)
. (B2)

Solving for these fluxes, considering the appropriate boundary conditions, yields a complete picture of the velocity fields of the
ions and the solvent in the cylindrical pore.
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