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Heat of nervous conduction: A thermodynamic framework
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Early recordings of nervous conduction revealed a notable thermal signature associated with the electrical
signal. The observed production and subsequent absorption of heat arise from physicochemical processes that
occur at the cell membrane level during the conduction of the action potential. In particular, the reversible release
of electrostatic energy stored as a difference of potential across the cell membrane appears as a simple yet
consistent explanation for the heat production, as proposed in the “Condenser Theory.” However, the Condenser
Theory has not been analyzed beyond the analogy between the cell membrane and a parallel-plate capacitor,
i.e., a condenser, and cannot account for the magnitude of the heat signature. In this work, we use a detailed
electrostatic model of the cell membrane to revisit the Condenser Theory. We derive expressions for free energy
and entropy changes associated with the depolarization of the membrane by the action potential, which give a
direct measure of the heat produced and absorbed by neurons. We show how the density of surface charges on
both sides of the membrane impacts the energy changes. Finally, considering a typical action potential, we show
that if the membrane holds a bias of surface charges, such that the internal side of the membrane is 0.05 C m−2

more negative than the external side, the size of the heat predicted by the model reaches the range of experimental
values. Based on our study, we identify the release of electrostatic energy by the membrane as the primary
mechanism of heat production and absorption by neurons during nervous conduction.
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I. INTRODUCTION

A. Thermodynamics of nervous conduction

Besides the electrical responses classically measured in
electrophysiological experiments [1–4], the action potential is
accompanied with a production and a subsequent absorption
of heat [5], changes in optical properties [6], and mechanical
deformations [7,8]. These thermal, optical, and mechanical
responses are macroscopic signatures of the physicochemical
processes occurring at the cell membrane level during the
action potential, such as the transport of ions through ion
channels in the membrane [9] or the elastic deformation of
the membrane [10]. While such physicochemical signatures
are associated with the electrical signal, classical electrical
circuit models such as the Hodgkin-Huxley model cannot
capture them because they neglect the microscopic physics at
the membrane level [11,12].

Here we examine the thermal response of nervous con-
duction by resolving the microscopic physics of the mem-
brane and its surrounding electrical double layers. We start
by reviewing experimental and theoretical backgrounds on
the heat signature of nervous conduction. We then apply an
equilibrium-thermodynamics framework to calculate the elec-
trostatic energy that is stored by the membrane and the
surrounding double layers and released into heat during the
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passage of the action potential. Finally, based on typical
neurophysiological parameters, we show that the reversible
release of electrostatic energy offers a plausible explanation
for the heat of nervous conduction.

B. Heat production and absorption by neurons:
The experimental context

A substantial record of experiments shows that the propa-
gation of the action potential along neurons is accompanied by
the release of a small amount of heat, immediately followed
by the absorption of a comparable amount of heat by the
neurons [5,7,12–21]. Successfully recorded for the first time
by Hill in 1925 [19], the heat of nervous conduction has been
most extensively investigated between the 1950s and 1980s
by contemporaries and colleagues of Hodgkin and Huxley
[5,14,16–20], the pioneers of modern neurophysiology. All
neurons possess a similar excitable membrane, and heat pro-
duction is likely a universal feature of nervous conduction.
However, the thermal signals are most easily measured in thin
nerve fibers, which have a high surface-to-volume ratio. The
magnitude of the thermal signals is indeed extremely small
and appears to be proportional to the axon membrane area
[5]. The garfish olfactory nerve, for example, is an excellent
candidate for recording the heat of nervous conduction: it is
made of several millions of fibers of 0.25 μm in diameter,
totals a membrane area of 6.5 m2 per g of nerve [22], and
releases heat on the order of 1 mJ g−1 [5]. When expressed
per total membrane area, the size of the heat remains on the
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same order of magnitude from one organism to the other (60–
180 μJ m−2 [5]).

To understand the origin of the thermal signals, scien-
tists attempted to correlate them with the electrical signals
[5,14,17,19,20]. Notably, Howarth et al. [5] successfully re-
constructed the true temperature change that occurs in neurons
from recorded heat responses and showed that the time course
of the temperature changes closely matches the square of the
membrane potential during the action potential. Such finding
gave support to the “Condenser Theory.”

C. The Condenser Theory

The Condenser Theory offers a simple explanation for
the heat production and absorption: it attributes them to the
reversible release of electrostatic energy stored across the cell
membrane [5,14,17,20]. At rest, the membrane of neurons
holds a difference of electric potential, called the “membrane
potential.” An “action potential” occurs when the membrane
potential at a specific location rapidly rises (depolarization)
and falls (repolarization), due to the opening of voltage-gated
ion channels [9]. The Condenser Theory states that as the
action potential depolarizes the membrane, the electrostatic
energy stored across the cell membrane is released into heat.
Conversely, upon repolarization of the membrane to its resting
potential, the membrane’s electrostatic energy is restored at
the expense of some of the thermal energy of the ions in the
surrounding solutions, which accounts for the heat absorption
phase, in symmetry with the production phase. The membrane
is seen as a capacitor (or a “condenser”), hence this expla-
nation for the heat of nervous conduction is known as the
Condenser Theory. In the first developments of the Condenser
Theory, the amount of heat reversibly exchanged between the
membrane and its surroundings was calculated as the free
energy of a parallel-plate capacitor [5,20]:

�F = 1
2 cm

(
V 2

m − V 2
m,0

)
, (1)

where �F is the free energy change (J m−2), cm the specific
membrane capacitance (F m−2), Vm the membrane potential
(inside potential minus outside potential; see Fig. 1), and Vm,0

the resting potential (≈−70 mV [23]).

D. Arguments to explain the missing heat

Though in qualitative agreement with the experimental
records, Eq. (1) predicts only between a quarter and a half of
the heat that is measured. Realizing this, Howarth et al. [5] and
Ritchie and Keynes [20] suggested that the free energy should
be calculated based on the local value of potential falling on
each side of the membrane (see φt in Fig. 1), rather than on
the potential values in the internal and external bulk solutions
(see Vm in Fig. 1):

�FRitchie = 1
2 cm

(
φ2

t − φ2
t,0

)
. (2)

In particular, it was pointed out that the presence of an
uneven distribution of negative surface charges on the mem-
brane (more charges on the internal side than on the external
side) would increase the transmembrane potential difference
and lead to more heat being evolved [5,20]. Unfortunately,
Howarth et al. [5] and Ritchie and Keynes [20] did not provide

FIG. 1. Profile of the electric potential across the cell membrane
and the diffuse layers on each side. The minus signs in white
denote surface charges (σi inside and σo outside), while the charges
in solution are drawn in blue and red. The dotted lines delimit
thermodynamic domains (see Sec. II B). At rest, the membrane holds
a potential difference (Vm = −70 mV). Upon excitation, cations
cross the membrane through ion channels (not drawn) and Vm jumps
to positive values. Simultaneously, electrical energy is dissipated as
heat (Q < 0).

a careful derivation for Eq. (2), nor did they explore the
physics of the cell membrane and its surface charges beyond
the analogy with a parallel-plate capacitor.

A second argument invoked by several authors to bridge
the gap between predicted and measured heats concerns en-
tropy changes presumed to occur inside the lipid bilayer (i.e.,
the membrane) when the electric field across the membrane
relaxes [5,17,19,20]. Specifically, they proposed that the total
energy change �U associated with the depolarization of the
membrane could differ significantly from the free energy
change �F , by an entropy contribution T �S. These changes
were calculated proportionally to the free energy term, based
on the temperature dependence of the membrane capacitance:

T �S = �F
T

Cm

∂Cm

∂T
, (3)

where �S is the entropy change, T the temperature, and
Cm the total membrane capacitance (in Farads). Equation (3)
predicts an additional heating of the lipid membrane if T �S
and �F have the same sign, otherwise it predicts a cooling.
According to Ritchie and Keynes [20] and Ref. [24], the value
of T/Cm ∂Cm/∂T is positive, between 2 and 4, which would
bring a total warming that is 3 to 5 times higher than if the
heat was derived only from the release of free energy stored
in the membrane capacity. However, no rigorous derivation
for Eq. (3) could be found in literature. Furthermore, the pre-
diction of Ritchie and Keynes [20] seems difficult to reconcile
with recent measurements of the temperature dependence of
the dielectric permittivity (∂ε/∂T ) of fatty acids, the carbon
chains that form the cell membrane. Indeed, ∂ε/∂T appears
to be negative [25,26], and if we calculate the membrane
capacitance Cm as proportional to its dielectric permittivity
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εm, we expect ∂Cm/∂T to be negative rather than positive,
which contradicts the argument of Ritchie and Keynes [20].

More than a simple parallel-plate capacitor, the axon
membrane consists of a lipid bilayer with surface charges
and electrical double layers forming on each side [27]. The
analogy with a condenser offers a too limited description
of the membrane to verify the correctness of the arguments
reviewed above. It does not allow us to judge which of Eqs. (1)
or (2) describes correctly the free energy change during the
depolarization of the membrane. In addition, as shown above,
how entropy changes inside the membrane could contribute to
the heat production still needs to be understood.

To assess whether electrostatic energy changes constitute a
plausible explanation for the heat production and absorption
by neurons, we will now derive the changes in electrostatic
free energy and entropy that accompany the action potential,
based on a detailed electrostatic model of the membrane, its
surface charges, and double layers.

II. THEORY

A. Electrostatic model of the charged lipid bilayer

We use the coupled electrostatic model proposed by Genet
et al. [27], which applies Poisson-Boltzmann theory on either
side of the cell membrane. Figure 1 shows the qualitative elec-
tric potential profile inside and surrounding a cell membrane
that holds surface charges on the internal and external sides (σi

and σo, respectively). By convention, we use the symbols −∞
and +∞ to denote the (arbitrary) limits between the diffuse
layers and bulk regions, in the internal and external solutions,
respectively. Note that in physiological conditions, diffuse
layers extend over a few nanometers at most (the Debye length
is 0.6 nm). The membrane core is located between x = −δ

and x = 0, where δ is the thickness of the membrane. The
φi, φm, and φo variables represent the potential in the internal
solution, membrane core, and external solution, respectively.
The membrane potential is defined as the difference between
the potential in the internal and external bulk solutions, Vm =
φ(−∞) − φ(+∞), whereas the transmembrane potential φt

is the potential difference between the internal and external
surfaces of the membrane, φt = φi(−δ) − φo(0). Note that
due to the presence of surface charges on each side of the
membrane, the local difference of potential φt can differ
significantly from the membrane potential Vm.

We assume that equilibration of diffuse layers with the bulk
electrolytes is fast compared to the dynamics of the action
potential (this is verified in Appendix A), which allows us to
describe the concentration of ions in the diffuse layers close
to the membrane with the Boltzmann distribution

c j,i (x) = c j,i (b) exp

(
− z j F φi

R T

)
, (4)

c j,o(x) = c j,o(b) exp

[
− z j F (φo − Vm )

R T

]
, (5)

where c j,i and c j,o are the concentrations of species j inside
and outside, respectively, and RT/F is the thermal voltage
(RT/F = 23.5 mV at T = 273 K). In this subsection, F is
used to denote Faraday’s constant (whereas in other sections,

F denotes the free energy). Applying Poisson’s equation to
each compartment gives

d2φi

dx2
= − ρi

εw
, (6)

d2φm

dx2
= 0, (7)

d2φo

dx2
= −ρo

εw
, (8)

where ρ is the density of free charges (C m−3), and εw the
dielectric permittivity in the internal and external solutions
(water). Note that we assume that the free charge density
is zero inside the membrane (ρm = 0), with a zero ion
concentration inside the membrane. As ρi = ∑

z j F c j,i and
ρo = ∑

z j F c j,o, we obtain the following Poisson-Boltzmann
equations:

d2φi

dx2
(x) = − F

εw

N∑
j

z j c j,i (b) exp

[
− z jF φi(x)

R T

]
, (9)

d2φo

dx2
(x) = − F

εw

N∑
j

z j c j,o(b) exp

{
− z jF [φo(x) − Vm]

R T

}
,

(10)

which we solve numerically, using boundary conditions given
by Maxwell’s equations at an interface [Eqs. (15) and (16)].
We now report the electrostatic relations necessary to derive
energy changes in following sections. At rest, the membrane
acts as a dielectric medium (ion channels are closed), storing a
capacitive charge that we define as −q in the internal solution
and +q in the external solution. In each compartment, this
capacitive charge can be expressed as the sum of the charge
that counterbalances the charges that belong to the surface of
the membrane (that is, −σi inside and −σo outside, both with
units C m−2) and the total mobile charge in solution, which we
obtain by integrating the free charge density over the diffuse
layers:

−q = σi +
∫ −δ

−∞
ρi dx, (11)

q = σo +
∫ ∞

0
ρo dx. (12)

Applying Poisson’s equation to the integrals above, we can
relate the slope of the membrane potential at each interface to
the total charge density in the internal and external solutions:

dφi

dx
(−δ) = 1

εw
(σi + q), (13)

dφo

dx
(0) = − 1

εw
(σo − q). (14)

Boundary conditions for electric potential at the two
membrane-solution interfaces are given by

ε
dφi

dx
(−δ) − εm

dφm

dx
(−δ) = σi, (15)

εm
dφm

dx
(0) − ε

dφo

dx
(0) = σo, (16)
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where εm is the dielectric permittivity of the membrane
(F m−1). By substituting Eq. (13) into (15), and Eq. (14) into
(16), we can deduce that

q

εm
= dφm

dx
(−δ) = dφm

dx
(0). (17)

As the electric field is assumed to be constant inside the
membrane, Eq. (17) gives

q

εm
= φm(0) − φm(−δ)

δ

�= −φt

δ
. (18)

We finally obtain an expression that relates the capacitive
charge to the membrane’s capacitance (cm, in Fm−2) and the
transmembrane potential:

q = −εm

δ
φt = −cm φt, (19)

with cm
�= εm/δ, in agreement with Genet et al. [27].

B. Thermodynamic definitions

To relate electrical energy changes at the membrane level
to the exchange of heat with the surroundings, we must
define the membrane as a thermodynamic system. We divide
the space into three domains (see Fig. 1): 	M is the “mem-
brane domain,” i.e., the region comprising the membrane
and the diffuse layers that form in the internal and external
solutions, while 	b,i and 	b,o denote the internal and external
bulk solutions, respectively. The first law of thermodynamics,
�Uel = Q + Wel, applies, in which �Uel is the internal energy
change associated with the variation of the membrane poten-
tial from Vm,0 to Vm, Q is the heat added to 	M (Q < 0 when
heat is dissipated), and Wel is the electrical work done on 	M

by the surroundings. Since the capacitive charges +q and −q
are confined to the diffuse layers close to the membrane (the
bulk solutions are electroneutral), no electrical work is done
on 	M by the surrounding domains 	b,i and 	b,o. The first
law thus becomes

�Uel = Q. (20)

The electrostatic internal energy of the membrane system can
be expressed as a sum of free and entropy-related energies:

�Uel = �Fel + T �Sel, (21)

where �Fel and �Sel are, respectively, the electrostatic free
energy and entropy change with respect to the resting state
(Vm,0 = −70 mV). Thus, based on the aforementioned def-
initions, as the internal energy of the membrane domain
decreases (�Uel < 0), heat is released (Q < 0) from the
membrane domain 	M to the surroundings. In the following
sections, we will derive the free energy and entropy changes
in the membrane domain as a function of the membrane
potentials Vm and φt . By Eq. (21), the sum of these en-
ergies will give the internal energy change associated with
the (de)polarization of the membrane and by Eq. (20) the
quantity of heat that is reversibly released from the membrane
domain 	M.

To be comprehensive, our thermodynamic analysis must
also include the energy changes involved in the mixing of ions

across the membrane. Indeed, the depolarization of the mem-
brane is caused by an inward current of sodium ions, while
it is an outward current of potassium ions that is responsible
for its repolarization [9]. Both ions are transported down their
electrochemical gradient, and the action potential is thus asso-
ciated with a loss of free energy inherent to the dissipation of
such gradient. In fact, Margineanu and Schoffeniels calculated
the free energy changes based on application of the Hodgkin-
Huxley model [28] and estimated a free energy dissipation
of 496 μJ m−2 per impulse from ionic transfer through the
membrane. However, the mixing process is also subject to an
increase of entropy, and, in the limit of ideal solutions, the free
energy of mixing is exactly counterbalanced by the entropy of
mixing [29]:

�Umix = �Fmix + T �Smix = 0. (22)

While Margineanu and Schoffeniels considered the free
energy dissipation of ionic currents to be equivalent to a heat
dissipation, they did not consider how the free energy dissipa-
tion relates to their thermodynamic system. The contribution
of entropy of mixing to the measured heat has been an open
question since Bernstein first considered the thermodynamics
of the action potential [30]. Abbott et al. [14] clarified the role
of ionic currents through the membrane further by explaining
that in an ideal solution without any external work, no heat
is produced by the exchange of ions across the membrane
interface. In agreement with Abbott et al. [14], we do not
consider the entropy of mixing to contribute to the heat
production, even if it contributes to the overall free energy
dissipation in the system. One may also ask about the entropy
of mixing involved in the dynamic formation of the double
layers. Similarly, in ideal solutions, the entropy of mixing
related to the reorganization of the double layers as a function
of the membrane potential has no contribution to the heat.

In summary, while free energy of mixing is dissipated
during the action potential, the mixing of ions across the
membrane and in the double layers does not contribute to
the heat of nervous conduction in the limit of ideal solutions.
Following the action potential, chemical energy in the form of
ATP is converted into electrochemical energy by ion pumps
in order to maintain the concentration gradient across the cell
membrane [23]. The whole action potential including subse-
quent active transport is thus not a reversible transformation,
but we assert that the initial passive phases of depolarization
and repolarization that capacitively charge the membrane can
be described as a reversible process.

C. Electrostatic free energy

The electrostatic free energy of a linear dielectric medium
is equal to its field energy [31–33], that is, in one dimension,

Fel = 1

2

∫ +∞

−∞
E D dx, (23)

where E is the electric field (V m−1) and D = ε E the dis-
placement field (C m−2). The electric and displacement fields
are expressed as scalars corresponding to the x component
of the vector due to the planar symmetry in the problem.
Interestingly, the field energy can be equated with the amount
of heat dissipated by ionic currents in an electric field, using
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one of Maxwell’s equations (this is shown in Appendix C).
The field energy is often regarded as an internal energy (Uel);
however, this is only true in a primitive model that considers
the medium as structureless. In a more refined model that
takes into the effect of the electric field on the entropy of
the dielectric medium (see Sec. II D), the field energy must
be regarded as a free energy (Fel) [31,34]. Applying Eq. (23)
to the 	M domain, we obtain the electrostatic free energy as
a function of the membrane potential Vm. We obtain a free
energy contribution from the double layers, which is

F DL
el = 1

2

{∫ −δ

−∞
ρi(φi − Vm ) dx + σi [φi(−δ) − Vm]

+
∫ +∞

0
ρo φo dx + σo φo(0)

}
, (24)

and one from the membrane capacitance, which is

F m
el = 1

2 cm φt Vm, (25)

with Fel = F DL
el + F m

el . The first and third terms in Eq. (24)
correspond to the energy of bulk charges in the diffuse layers
of internal and external solutions and the second and fourth to
the energy of the surface charges fixed onto the membrane.
As shown by Eq. (25), the free energy contribution of the
membrane capacitance is 1/2 cm φt Vm, and not 1/2 cm φ2

t as
proposed in Refs. [5,20]. The latter overestimates free energy
changes, as we will see in the Discussion (see Sec. IV).
The full derivation of Eqs. (24) and (25) is presented in
Appendix D.

Finally, we calculate the free energy changes associated
with the depolarization of the membrane as �F DL

el = F DL
el −

F DL
el,0 and �F m

el = F m
el − F m

el,0, where subscripts “0” mark the
free energies calculated at the resting membrane potential,
Vm,0 = −70 mV.

D. Entropy associated with the electric field

We consider two entropy terms: entropy changes associ-
ated with the polarization of water in the diffuse layers and
entropy changes in the membrane.

1. In the diffuse layers

The electric field orders water dipoles in the diffuse layers,
which decreases entropy. The change of entropy associated
with the alignment of dipoles in a dielectric medium (water in
our case) is related to the electrostatic free energy by [34]

T �SDL
el = T

εw

∂εw

∂T
�F DL

el . (26)

The value of T/εw ∂εw/∂T for water is −1.17 at 0 ◦C and
−1.4 at human body temperature (37 ◦C) [35,36].

2. In the membrane

Similarly, entropy changes inside the lipid membrane have
been proposed based on the temperature dependence of the
membrane capacitance [5,17,20]:

T �Sm
el = T

Cm

∂Cm

∂T
�F m

el . (27)

To verify that Eq. (27) holds, we adapted the derivation of
Eq. (26), in which entropy is a function of ∂εw/∂T , to the
case in which entropy is a function of ∂Cm/∂T , the tempera-
ture dependence of the membrane capacitance. As shown in
Appendix E, Eq. (27) holds under the assumption that the
membrane capacitance is constant with potential but has a
linear dependence on temperature. Interestingly, it appears
from recent experiments that the temperature dependence of
the membrane capacitance arises from the variation of the
lipid bilayer’s dimensions (thickness, δ, and area, A, per lipid
molecule) with temperature, rather than from the variation of
its dielectric permittivity (∂εm/∂T � 0) [25,37–39]:

∂Cm

∂T
= ∂ (εm A/δ)

∂T
� εm

∂ (A/δ)

∂T
. (28)

Based on recent measurements of these dimensional changes
[37–39], Plaksin et al. [25] have pointed out that the temper-
ature dependence of the membrane capacitance remains close
to +0.3%/◦C across several cellular types and artificial lipid
membranes, suggesting that the rate of thermal response of the
membrane is universal.

E. Parameters

Two important parameters in this model are the surface
charge density on the interior (σi) and exterior (σo) sides
of the membrane. Here we report ranges of values found in
literature and then choose baselines for these two parameters.
Hille [9] compiled experimental data on excitable membranes,
showing that extracellular and intracellular surface charge
densities vary from −0.04 to −0.16 C m−2. Other estimates
give a wider range of values, from −0.002 to −0.37 C m−2

[40]. Several lines of evidence suggest that neurons have more
negative surface charges on the internal side of the membrane
than on the external one. In rat cortical neurons for instance,
Plaksin et al. [25] estimated this surface charge bias to be σi −
σo = −0.1 C m−2. Further support for this hypothesis arises
from the uneven distribution of phospholipids between the
two sides of the membrane. In particular, phosphatidylserine,
the most abundant negatively charged phospholipid in cell
membranes, is found exclusively on the internal side of the
cell membrane of neurons, where it has key signaling func-
tions [41]. In this work, the external surface charge density
will be fixed to σo = −0.05 C m−2, and we will evaluate three
cases for the internal surface charge density: σi = −0.05,
−0.1, and −0.15 C m−2. Figure 2 shows the profile of the
electrostatic potential across and in the vicinity of the mem-
brane, as calculated by our model in the three cases of surface
charge density. Table I reports the other model parameters.

III. RESULTS

A. Free energy changes

The change in electrostatic free energy with membrane
potential is depicted in Fig. 3, in the membrane (�F m

el ) and
in diffuse layers (�F DL

el ), with and without surface charges on
the membrane. First, when there are no surface charges, the
free energy follows a parabola centered around Vm = 0 mV.
The diffuse layers bring a relatively negligible contribution to
the free energy in this case. Interestingly, the presence of an
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FIG. 2. Profiles of the electric potential across the membrane and the surrounding diffuse layers, for different values of the membrane
potential Vt (−70 to +30 mV). (a) Surface charge densities are equal on each side (σi = σo = −0.05 Cm−2). (b) and (c) A bias of surface
charges makes the internal side more negative (σi = −0.1 and 0.15 Cm−2 and σo = −0.05 Cm−2), such that the transmembrane potential φt

need not to reverse as soon as the membrane potential becomes positive (purple dash-dotted curves).

equal amount of surface charges on each side of the membrane
(σi = σo = −0.05 C m−2) results in almost no alteration of the
energy changes as compared to the zero surface charge case.
However, as more surface charges are present on the internal
side than on the external side of the membrane (σi = 2 σo and
3 σo), both �F m

el and �F DL
el follow a steeper decrease, such

that more free energy is released with increasing Vm.

B. Entropy changes

Entropy changes, depicted in Fig. 4, are proportional to
the free energy changes presented above [Eqs. (26) and (27)].
As the membrane depolarizes (increasing Vm), the entropy in
the membrane (T �Sm

el ) decreases, while the one in diffuse
layers (T �SDL

el ) increases. Both entropy changes follow the
same trend with surface charge distribution as the free energy
changes in Fig. 3.

C. Internal energy change, heat production,
and temperature change

The internal energy change occurring inside the 	M do-
main, i.e., the sum of the free and the entropic energy changes,
is depicted in Fig. 5 according to the different scenarios of
surface charge distribution used until now. The internal energy
change provides a direct measure of the heat produced and

TABLE I. Parameters used in the electrostatic model and en-
ergy calculations. Concentrations are given in the format internal
solution/external solution.

Parameter Value Unit Source

δ 3 nm [27]
cm 9 mF m−2 [27]
Vm,0 −70 mV [9,23,27]
1/εm ∂εm/∂T −0.43 at 0 ◦C %K−1 [35,36]
1/Cm ∂Cm/∂T +0.3 %K−1 [25]
cNa+,i |cNa+,o 5|145 mM [42]
cK+,i |cK+,i 140|5 mM [42]
cCa2+,i |cCa2+,o 0.0001|2.5 mM [42]
cCl−,i |cCl−,o 145|155 mM [42]
T 273 K [5]

absorbed by the nerve during the course of the action potential
[Eq. (20)]: an internal energy decrease (�Uel < 0) corre-
sponds to a release of heat by the membrane domain (Q < 0),
whereas an internal energy increase (�Uel > 0) corresponds
to an absorption of heat by the membrane domain (Q > 0).
An idealized action potential (modeled with a normal distri-
bution function, for simplicity) and the corresponding heat
profile are depicted in Fig. 6. We find that the presence of
negative surface charges on the membrane leads to a more
important decrease in internal energy (Fig. 5) and thus heat
production (Fig. 6), especially when the membrane holds
more fixed charges on its inside than outside. Interestingly,
the bottom curve in Fig. 5 shows that when surface charges
are distributed unevenly, the internal energy must not rise im-
mediately after that Vm takes positive values. In other words,
the membrane can release heat even when the membrane
potential overshoots to positive values. This is reflected in
Fig. 6 by the progressive disappearance of the “notch” in the
energy profiles as σi becomes more negative than σo. Another
way to understand how the internal energy of the membrane
can keep on decreasing at positive membrane potentials, is
to notice that the transmembrane potential φt need not to
reverse as soon as Vm becomes positive, as shown in Figs. 2(b)
and 2(c).

FIG. 3. Change in electrostatic free energy in the membrane
�F m

el (a) and in diffuse layers �F DL
el (b) as a function of mem-

brane potential, for an equal amount of surface charges (σi = σo =
−0.05 C m−2) and with a surface charge bias (σi = 2 σo and 3 σo).
When a surface charge bias is present, more free energy is released,
in both the membrane and diffuse layers.
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FIG. 4. Entropy changes in the membrane T �Sm
el (a) and dif-

fuse layers T �SDL
el (b) with no surface charges, an equal amount

of surface charges (σi = σo = −0.05 C m−2), and with a surface
charge bias (σi = 2 σo and 3 σo). The surface charge bias decreases
the entropy in the membrane decrease more upon depolarization,
whereas it increases the entropy in diffuse layers.

Based on Fig. 6, we predict that a typical depolarization
of the membrane from −70 mV to +20mV [23,43] leads to
a heat production of −Q = 40 to 70 μJ m−2, depending on
the magnitude of the bias of surface charges present on the
membrane (0 to −0.1 C m−2). Strikingly, in the scenario of no
or equal surface charge density on each side of the membrane
(σi = σo), the overshoot of the membrane potential to positive
values results in a notch-like heat profile, that is never ob-
served in experiments [5,14,17,19,20]. Only when a sufficient
bias of surface charge is present (σi = 2 and 3 σo) does the
notch disappear, and the predicted heat profile reaches bet-
ter qualitative agreement with the experimental heat profiles
[5,14,17,19,20]. If we consider an action potential that starts
from a lower resting potential than in Fig. 6, which can be

FIG. 5. Internal energy changes of the membrane system, from
top to bottom: without surface charge (σi = σo = 0), with an equal
amount of surface charges (σi = σo = −0.05 C m−2), with a moder-
ate surface charge bias (σi = 2 σo), and with a bigger one (σi = 3 σo).
The internal energy release increases with the presence of negative
surface charges on each side of the membrane, and significantly more
as the surface charge difference between the internal and external
sides of the membrane rises.

FIG. 6. (a) An action potential depolarizes the membrane, start-
ing from a resting potential of Vm = −70 mV at time 0, the
membrane depolarizes to Vm = +20 mV at the peak of the action
potential, before decreasing back to the resting potential. (b) Con-
comitantly with the action potential, heat (−Q) is produced and
absorbed, increasing the nerve temperature (�T ). See Appendix B
for the calculation of temperature increase as a function of the heat
released.

down to −100 mV [9], up to 150 μJ m−2 of heat is predicted
by the model (not shown in Fig. 6). The predicted values fall
in the range of experimental values (60–180 μJ m−2) [5].

IV. DISCUSSION

The purpose of this work was to provide a theoretical
background for heat production and absorption in neurons that
goes beyond the simplistic analogy with a capacitor. Based on
an equilibrium thermodynamics description of the membrane,
its surface charges, and double layers forming on each side,
we evaluated the amount of heat released due to electrostatic
free energy and entropy changes during the action potential.
First, we found that the electrostatic free energy of the cell
membrane depends on both the membrane potential and the
transmembrane potential, as shown by the expression derived
in this work: F m

el = 1
2 cm φt Vm. In consequence, the amount of

free energy stored and released as heat increases as more sur-
face charges are present on the internal versus the external side
of the membrane. Our expression thus predicts a larger free
energy change than classical electrical circuit models such as
the Hodgkin-Huxley model, which neglect the membrane’s
surface charges and calculate the free energy as 1/2CmV 2

m, i.e.,
the electrostatic energy stored by a capacitor. However, our
expression predicts a smaller energy change than the formula
suggested by Howarth et al. [5] and Ritchie and Keynes [20],
as shown in Fig. 7. Second, free energy changes in the diffuse
layers surrounding the membrane also increase significantly
when a bias of surface charge is present; however, these
changes are offset by the entropy changes associated with the
polarization of water by the electric field, which are of compa-
rable magnitude but of opposite sign (∼−117% at 0 ◦C). Last,
entropy changes upon depolarization and repolarization of the
cell membrane bring a contribution to the heat of nervous
conduction that is comparable to the free energy contribution
(∼+82%). This result is consistent with the early intuition of
Howarth et al. [17], who first hypothesized the entropy of the
membrane as a possible contribution to the heat of nervous
conduction, but could not prove nor quantify such hypothesis.
In our work, we showed that the entropy changes can be
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FIG. 7. Free energy changes in the membrane, according to the
classical electrical circuit expression, (�F m

el,ec, orange dotted curve),
the expression suggested by Howarth et al. [5] and Ritchie and
Keynes [20] (�F m

el,Ritchie, blue solid curve), and the revised Condenser
Theory (this work, �F m

el , green dashed curve). Our expression pre-
dicts a larger energy change than the electrical-circuit-based expres-
sion, which neglects the presence of surface charges, but a smaller
change than the expression of Ritchie and coworkers. Assumed
surface charge densities are σi = −0.1 Cm−2 and σo = −0.05 Cm−2.

calculated as T �Sm
el /�F m

el = T/Cm ∂Cm/∂T provided that
the membrane capacitance is constant with potential but has
a linear dependence on temperature (∂Cm/∂T ). Furthermore,
new experimental data allowed us to reinterpret and quantify
these entropy changes: while previous researchers sought to
calculate ∂Cm/∂T based on the variation of the membrane’s
dielectric permittivity with temperature (∂εm/∂T ) [17,18],
we propose to calculate the entropy changes based on the
variation of the cell membrane’s thickness and area with
temperature (∂δ/∂T and ∂A/∂T ), in agreement with Plaksin
et al. [25] and recent experimental [37–39] and molecular
dynamic studies [44] that have quantified these changes.

The comparison of the model predictions with the best-
available measurements of the heat production and absorption
in neurons supports the idea that the heat of nervous con-
duction has an electrostatic origin: assuming a typical action
potential that depolarizes the membrane from −70 mV to
+20 mV and a surface charge bias of −0.05 C m−2 between
the two sides of the membrane, we predict a production
and absorption of heat of ∼60 μJ m−2, which is sufficient
to reach the range of experimental values measured in the
neurons of different organisms (60–180 μJ m−2) [5]. Should
the size of the action potential be larger (starting from a more
negative resting potential) or the surface charge bias be more
pronounced, more heat would be evolved.

Clearly, our predictions have a critical dependency on the
action potential size and the surface charge distribution be-
tween the internal and external sides of the membrane. Surface
charge distribution can vary from one type of neuron to the
other; however, the values used for our calculations do not
seem extravagant, considering the range of values reported in
the literature [9,40]. Regarding the size of the action potential,

while we assumed a typical depolarization from −70 mV to
+20 mV [23,43], a thorough experimental validation of our
predictions would require us to compare the heat production
with the true time course of the action potential in the neurons
from which the heat is measured, which can be obtained only
by measuring the membrane potential intracellularly. It is in
practice extremely challenging to insert an electrode inside the
minuscule neuronal fibers from which the thermal signals are
most easily measured. In consequence, most of the data that
compare electrical and thermal signals [5,14,17,20] are based
on extracellular recordings of the membrane potential, which
give signals of a necessarily much smaller magnitude than
the intracellular changes in membrane potential [45,46]. With
the recent development of nano-electrodes [47–49], there is
hope that it is becoming possible to record true membrane
potentials in the small neurons in which temperature changes
can effectively be measured.

For simplicity, we have assumed that the heat of nervous
conduction is evolved in a reversible process: during the
depolarization phase, all internal energy is converted into
heat, while during the subsequent repolarization phase, all
this heat is converted back to internal energy. In consequence,
a symmetric action potential input into our model results
in a symmetric heat profile, as shown in Fig. 6. The shape
of heat profiles reported in the literature [5,18] supports the
assumption of a reversible process, since the amount of heat
produced closely matches the amount of heat reabsorbed
(937 μJ g−1 vs 962 μJ g−1 for the negative heat in Ref. [5]).
However, produced and absorbed heat rarely coincides ex-
actly, and the heat profiles are generally slightly asymmetric:
in some experimental records, the positive heat is larger than
the negative heat [17,19,20], whereas in others, the positive
heat is smaller than the negative heat [5,18]. Temperature
could be a determining factor in the relative size of the positive
and negative heats [18]. Taken together, the experimental
observations suggest that the heat of nervous conduction could
have an irreversible component, although it is minimal as
compared to the reversible component.

While in our model we have considered ideal solutions,
for which the enthalpy of mixing is zero [29], deviations
from ideal behavior could lead to a nonzero heat of mixing.
Abbott et al. [14] considered the fact that the physiological
solutions are not actually ideal solutions and should have
some enthalpy of mixing. It was challenging to measure the
enthalpy of mixing expected from the small exchanges of
ions during the action potential. Even so, in 1968 Howarth
et al. [17] showed that the contribution from the mixing of
a solution of 0.15 M NaCl and a 0.15 M KCl solution gives
an expected heat of 3.7 cal/mol. Based on this figure and our
model parameters (Table I), we estimate this contribution as
0.26 μJ m−2 per impulse. This represents merely 0.5% of the
lowest experimental value for the heat production [5], which
supports the present treatment. Evidently, the salt solutions
used in the experiment of Howarth et al. [17] are only simple
models of the more complex physiological solutions. The real
physiological solutions might further deviate from the ideal
behavior, which could help to explain the asymmetry observed
in the heat records.

In our analysis, we have made strong assumptions
of complete reversibility, ideal solutions, constant bulk
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concentrations, and equilibrium conditions in order to isolate
the energy stored in the dielectric membrane and double layers
as a function of voltage and surface charge asymmetry. There
are numerous articles on the heat released with the action
potential; however, there has been no thorough attempt to
analyze the electrostatic part of the heat production including
thermodynamics and dielectric theory, beyond the simplistic
analogy with a condenser. Several works have suggested
that the experimentally observed heat cannot be accounted
for from the condenser model, and thus mechanical effects
were explored in more detail. While other models attempt to
capture nonequilibrium dissipation [28] or mechanical effects
[8,10–12,50], they do not account for the entropy changes due
to the temperature dependence of the membrane capacitance
or the solution’s permittivity, nor do they model the surface
charge at the membrane interfaces. We have shown that the
surface charge effects can bring the predicted heat within the
range of experimentally measured values without considering
these additional contributions. We cannot rule out the impor-
tance of the mechanical surface waves [10] or density pulses
[8,11,12,50] that accompany the electrical signal in determin-
ing the heat signature, but we can point to another important
contribution to the heat. The asymmetry of surface charge,
the presence of which is supported by the experimental heat
signatures, strongly affects the local potential drop across the
cell membrane and the local concentrations of ions in the
vicinity of the membrane [27].

Models of ionic conduction through protein channels em-
bedded in the cell membrane may need to account for the
fixed charge on both sides of the membrane to properly
describe the voltage-dependent conductance of the channel.
Gating kinetics of channels are typically expressed in terms
of the global membrane potential, rather than in terms of
the local membrane potential drop experienced by the ion
channel. Furthermore, emerging neurotechnologies that rely
upon the conversion of heat to electrical responses, such as
infrared neural stimulation [25,51–56], could benefit from
our thermodynamic framework. Besides neurosciences, the
physics our work explores could be relevant for engineer-
ing electrical double-layer capacitors [57] or designing ca-
pacitive deionization processes, which performance can be
influenced by the presence of surface charges, either im-
mobile [58] or modulated electrochemically [59]. More-
over, thermodynamic analyses in capacitive systems typi-
cally do not include the entropy of dipoles in dielectric
media [60]. Here we showed that the entropy of dipoles
brings a significant contribution to the internal energy stored
by the double layers and the associated heat production
and absorption.

Since early measurements of nervous activity, the observed
thermal response has been a mystery, yet it contains infor-
mation that could deepen our understanding of nervous con-
duction, and serves as additional evidence of the microscopic
physics of the action potential. Although we cannot discard
the possibility of other sources of heat, such as heat arising
from mechanical displacements of the membrane [10,61,62],
our analysis suggests that the reversible release of electrostatic
energy by the membrane represents the most prominent mech-
anism of heat production and absorption by neurons during the
propagation of the action potential.
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APPENDIX A: FAST EQUILIBRATION
OF DOUBLE LAYERS

In this work, we describe ions and the electric potential
in the diffuse layers at equilibrium, with the Boltzmann
distribution [Eqs. (9) and (10)]. This equilibrium assumption
decouples the problem from time dependence for relaxation
of the double layers and simplifies it to a single dependence
on the membrane potential Vm. However, in reality, Vm is
time-dependent. We must thus verify that the double lay-
ers reach their equilibrium conformation (ion concentration
versus position) significantly faster than the variation of Vm

during the course of the action potential. Two timescales can
characterize the relaxation of diffuse layers: diffusion τD =
L2/D and charge density relaxation τL = λ2

D/D, where L is
the characteristic length, D the characteristic diffusivity, and
λD the Debye length. At low voltages, Bazant et al. [63] have
shown that the primary timescale for diffuse charges dynamics
in a non-Faradaic electrochemical cell is the harmonic mean
between these time constants, that is, τC = λD L/D. Interest-
ingly, a recent study by Janssen [64] has shown that the easily
obtainable τC decently describes double-layer relaxation also
in cylindrical geometry, the relevant geometry for neurons. By
analogy with the electrochemical cell, the membrane can be
seen as sandwiched between two electrodes separated by a
distance L and on which a difference of potential is applied
[61,65].

In physiological conditions (ionic strength = 150 mM) and
at 0 ◦C, the Debye length is less than 1 nm:

λD =
√

RT εw

F 2
∑

z2
j c j

= 0.6 nm. (A1)

In the garfish olfactory nerve, one of the smallest axons
studied, the characteristic length is given by the radius of
the cell, L/2 = 0.25 μm. Taking D = 10−9 m2 s−1 we find
τC = 0.3 μs. In the giant squid axon, one of the largest axons
ever studied, we have L/2 = 200 μm, and thus τC = 240 μs.
These characteristic times for relaxation are small compared
to the timescale of compound action potentials, which is 10
to 100 ms [5]. While in the nonlinear regime (where the
double-layer potential across each side is much larger than the
thermal voltage ∼24 mV) the timescale for bulk salt diffusion
τD = L2/D can be important, the leading order dynamics
occur at the τC scale. Therefore, we neglect any double-layer
relaxation effect and treat them at equilibrium.

APPENDIX B: FAST EQUILIBRATION OF
TEMPERATURE INSIDE THE NERVE

Another important assumption we make is the fast heat
equilibration between the cell membrane and the rest of the
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nerve. The validity of this assumption can be verified based
on scaling analysis on the heat equation, which yields a
characteristic time for heat diffusion:

τh = ρ cp L2

K
, (B1)

where ρ is the mass density, cp the specific heat capacity,
L the characteristic length, and K the thermal conductivity.
With L = 0.125 μm, ρ = 5.8 g cm−3, cp = 3.6 J (g.K)−1 [5],
and using the thermal conductivity of water at 0 ◦C, K =
0.0056 J (K cm s)−1 [36], we find τh ∼ 0.6 μs. Thus, the heat
equilibration in the interior of the small nerve fibers in which
the heat experiments were conducted [5] is on the order of
microseconds, which is much quicker than the timescale of
the action potential in these nerves (10 to 100 ms) [5]. The
nerve is solely composed of densely packed fibers, such that
the mean distance between fibers is smaller than the size of a
single fiber [22]. Thus, we assume that the whole nerve vol-
ume is at thermal equilibrium during the action potential, and
we calculate the rise of the nerve’s temperature as proportional
to the amount of heat dissipated:

�T = − Q

cp
Am, (B2)

where Am = 65 000 cm2 g−1 is the total membrane area per
mass of nerve [5].

APPENDIX C: THE CONDENSER THEORY FROM
MAXWELL’S EQUATION FOR AMPÈRE’S LAW

Heat production and field energy can be unified using
Maxwell’s equation for Ampère’s law [66],

E (∇ × H) = E · J + E · ∂D
∂t

, (C1)

where J is the current density (A m−2), H is the magnetic
field, and D the displacement field. −E · J is the energy
dissipated by an ionic current J in an electric field E as heat
per unit of volume and time [66–69], noted Q̇EJ,V (negative
when heat is dissipated). Based on the planar symmetry of the
problem, we will reduce all vectorial quantities v into only
their component varying normal to the membrane (v = vx̂).
Neglecting magnetic contributions, and in one dimension, we
find

Q̇EJ,V = −E J = E
∂D

∂t
. (C2)

This relationship offers another way to understand the Con-
denser Theory: during the action potential, positive charges
(Na+ and K+ ions) move through ion channels of the mem-
brane [9], first in the same direction as the electric field
(−E J < 0, in one dimension), then against the electric field
(−E J > 0), which results in heat production (Q̇EJ,V < 0) and
then heat absorption (Q̇EJ,V > 0). Let us consider the situation
where the field is 0 at time zero and E at time t . If the dielectric
medium is linear (D = ε E ), the heat absorbed between time
0 and t is equal to the field energy at time t :

QEJ,V =
∫ t

0
E

∂D

∂t
dt = 1

2

∫ t

0

(
E

∂D

∂t
+∂E

∂t
D

)
dt = 1

2
E D.

(C3)

The second equality holds for any linear dielectric medium,
whereas the third is given by the fundamental theorem of cal-
culus. Finally, integrating QEJ,V over the membrane domain
	M gives the heat dissipated per unit of membrane surface
area (J m−2):

QEJ =
∫ +∞

−∞

∫ t

0
E

∂D

∂t
dt dx =

∫ +∞

−∞

1

2
E D dx. (C4)

This last expression shows that upon release of the free energy
of the dielectric cell membrane, a quantity of heat equal to the
field energy is liberated.

APPENDIX D: DERIVATION OF THE ELECTROSTATIC
FREE ENERGY OF THE MEMBRANE CAPACITANCE

AND OF DOUBLE LAYERS

In this section we split the free energy of the 	M domain
[given by Eqs. (23) or (C4)] into a contribution from the
membrane capacitance and one from the double layers. This
separation is necessary to entropy calculations (Sec. II D). We
start by expanding the field energy expression over the internal
diffuse layer, the membrane, and the external diffuse layer:

Fel = 1

2

[
εw

∫ −δ

−∞

[
dφi(x)

dx

]2

dx + εm

∫ 0

−δ

[
dφm(x)

dx

]2

dx

+εw

∫ +∞

0

[
dφo(x)

dx

]2

dx

]
. (D1)

Assuming the density of free charges to be zero at any point
]−δ; 0[ inside the membrane, Poisson’s equation requires the
field to be constant across the membrane, such that dφm (x)

dx =
dφm (0)

dx . The second term in the RHS of Eq. (D1) then simplifies
to

εm

∫ 0

−δ

[
dφm(x)

dx

]2

dx = εm

∫ 0

−δ

[
dφm(0)

dx

]2

dx

= εm

(
q

εm

)2 ∫ 0

−δ

dx

= q2

cm
. (D2)

The second equality is given by boundary conditions for the
electric field, Eq. (17). Next, integration by parts of the first
and third terms in Eq. (D1) gives

Fel = 1

2

[
εw

(
dφi

dx
φi

)−δ

−∞
− εw

∫ −δ

−∞
φi

d2φi

dx2
dx + q2

cm

+ εw

(
dφo

dx
φo

)+∞

0

− εw

∫ +∞

0
φo

d2φo

dx2
dx

]
. (D3)

Remembering that the potential is constant at −∞ and +∞,
using Eqs. (13) and (14) and Poisson’s equation, Eq. (D3) can
be rearranged into

Fel = 1

2

[∫ −δ

−∞
ρi φi dx + (σi + q) φi (−δ)

+
∫ +∞

0
ρo φo dx + (σo − q) φo(0) + q2

cm

]
. (D4)
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As q = −cm(φi(−δ) − φo(0)) by Eq. (19), this last expression
simplifies to

Fel = 1

2

[∫ −δ

−∞
ρi φi dx + σi φi(−δ)

+
∫ +∞

0
ρo φo dx + σo φo(0)

]
. (D5)

By applying the substitution φi = (φi − Vm ) + Vm and using
Eqs. (11) and (19), we separate the free energy in the diffuse
layers (F DL

el ) from the one in the membrane (F m
el ):

F DL
el = 1

2

[∫ −δ

−∞
ρi(φi − Vm )dx + σi (φi(−δ) − Vm )

+
∫ +∞

0
ρo φo dx + σo φo(0)

]
(D6)

and

F m
el = 1

2 cm φt Vm, (D7)

with Fel = F DL
el + F m

el .

APPENDIX E: DERIVATION OF ENTROPY
CHANGES IN THE MEMBRANE

In Appendix C we showed that the electrostatic free energy
the cell membrane can be released as heat. In this Appendix,
we will show that if the membrane capacitance has a depen-
dence on temperature, an additional quantity of heat will be
liberated, due to entropy changes. This idea was brought up in
earlier works on the Condenser Theory, in which Refs. [5,19]
argued that entropy changes in the lipid bilayer could account
for up to 4 times the free energy changes. They calculated the
ratio between the entropy-related energy and the free energy
as

T �S

�F
= T

Cm

∂Cm

∂T
, (E1)

where Cm is the membrane capacitance expressed in F (Cm =
cm Am). However, no full derivation of this equation is re-
ported in the literature. Here we will derive Eq. (E1) and show
under which conditions it holds. Our demonstration will be
based to a great extent on a derivation by Frohlich [34] of
the entropy of a dielectric in an electric field. Let us consider
a membrane that holds a potential difference V between its
two sides and that does not hold any fixed surface charges,
for simplicity. This simplification will ease notations without
modifying the relation between the membrane’s entropy and
electrostatic free energy. We start by evaluating the change of
internal energy dU (in J) following an increment of charge
dq (here q is the capacitive charge in C). The first law of
thermodynamics reads

dU = dQ + dW = dQ + V dq,

where dQ is the influx of heat and dW is the electrical work
done on the membrane. Note that the electrical work did
not appear explicitly in the thermodynamic system defined
in Sec. II B, since no electrical work is done on 	M by the
surroundings [the latter is, however, implicitly accounted for
as �Fel in Eq. (21)]. For the purpose of this demonstration,

the thermodynamic system we consider here consists of the
membrane only (x ε ] − δ; 0[), which allows us to express
the electrical work associated with the depolarization and
repolarization of the membrane explicitly. Assuming that the
capacitance Cm remains constant with V but depends on the
temperature T , we obtain

dq = d (Cm · V ) = dCm V + Cm dV = ∂Cm

∂T
dT V + C d (V ).

(E2)

Thus, a variation of q may be due to a variation of temperature
or of potential, the capacitance being assumed to remain con-
stant for the range of physiological potentials (ca. −100 mV
to + 20 mV). By taking T and V 2 as independent variables,
the first law now becomes

dQ + V 2 ∂Cm

∂T
dT + 1

2
Cm d (V 2)

= dU = ∂U

∂T
dT + ∂U

∂ (V 2)
d (V 2). (E3)

Note that dQ is not a total differential; however, dS = dQ/T
is one, for a reversible process [34]. This property means that
a unique function S(T,V 2) must exist, such that

dS = ∂S

∂T
dT + ∂S

∂ (V 2)
d (V 2). (E4)

Thus if there is a relation dS = f (T,V 2) dT + g(T,V 2) dV 2,
where f and g are two unknown functions, the condition that
dS is a total differential requires that

∂ f

∂ (V 2)
= ∂g

∂T
, (E5)

as both sides of Eq. (E5) are equal to ∂2S/[∂T ∂ (V 2)], by
Eq. (E4). Next, by substituting for dS = dQ/T in Eq. (E3),
we find

dS = 1

T

(
∂U

∂T
− V 2 ∂C

∂T

)
dT + 1

T

[
∂U

∂ (V 2)
− Cm

2

]
d (V 2).

(E6)

This equation is analogous to Eq. (E4) and therefore, Eq. (E5)
becomes

∂

∂ (V 2)

[
1

T

(
∂U

∂T
− V 2 ∂Cm

∂T

)]
= ∂

∂T

{
1

T

[
∂U

∂ (V 2)
− Cm

2

]}
.

(E7)

By carrying out differentiations we find (take ∂Cm/∂T as a
constant):

∂U

∂ (V 2)
= Cm

2
+ 1

2

∂Cm

∂T
T . (E8)

Finally, upon integration, we obtain

�U = 1

2

∫ V 2

0

(
Cm + ∂C

∂T
T

)
d (V 2)

= 1

2
CmV 2 + 1

2

∂Cm

∂T
T V 2. (E9)

The first term is the free energy change �F of the capacitor,
whereas the second is the energy associated with a change of
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entropy T �S. Thus we have

T �S = �U − �F = 1

2

∂Cm

∂T
T V 2 = T

Cm

∂Cm

∂T
�F, (E10)

and Eq. (27) holds, under the condition that the membrane
capacitance has a linear dependence on temperature but is
constant with potential. A number of recent studies indicate
that there exists such a linear dependence and that the value
of ∂Cm/∂T is ∼0.3%/◦C for a wide range of cell membranes
[25,54,70–72]. Why does the membrane capacitance change
with temperature? Using the classical model for the mem-
brane capacitance, Cm = εm Am/δ, where δ is the membrane
thickness, the temperature dependence could be attributed

to a variation of the dielectric permittivity ∂εm/∂T or to a
variation of the membrane dimensions (∂Am/∂T and ∂δ/∂T ).
Dimensional changes have been measured in artificial lipid
bilayers [37–39], and in neurons, these changes correspond
to a 0.11 + −0.03%/K reduction in the lipid membrane
thickness and a 0.22 + −0.03%/◦C increase in the area per
lipid, resulting in a linear increase of the capacitance with
temperature of 0.3%/K [25]. Little is known on how the
membrane’s dielectric permittivity varies with temperature;
however, ∂εm/∂T has been measured for unsaturated fatty
acids (the molecules composing the core of the membrane),
yielding values more than one order of magnitude smaller than
the combined dimensional changes [25,26].
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