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a b s t r a c t

Engineering structures must be designed for an extremely low failure probability such

as 10�6, which is beyond the means of direct verification by histogram testing. This is

not a problem for brittle or ductile materials because the type of probability distribu-

tion of structural strength is fixed and known, making it possible to predict the tail

probabilities from the mean and variance. It is a problem, though, for quasibrittle

materials for which the type of strength distribution transitions from Gaussian to

Weibullian as the structure size increases. These are heterogeneous materials with

brittle constituents, characterized by material inhomogeneities that are not negligible

compared to the structure size. Examples include concrete, fiber composites, coarse-

grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many

materials used in nano- and microscale devices.

This study presents a unified theory of strength and lifetime for such materials,

based on activation energy controlled random jumps of the nano-crack front, and on the

nano-macro multiscale transition of tail probabilities. Part I of this study deals with the

case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic)

loading. On the scale of the representative volume element of material, the probability

distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted

at failure probability of the order of 10�3. With increasing structure size, the Weibull

tail penetrates into the Gaussian core. The probability distribution of static (creep)

lifetime is related to the strength distribution by the power law for the static crack

growth rate, for which a physical justification is given. The present theory yields a

simple relation between the exponent of this law and the Weibull moduli for strength

and lifetime. The benefit is that the lifetime distribution can be predicted from short-

time tests of the mean size effect on strength and tests of the power law for the crack

growth rate. The theory is shown to match closely numerous test data on strength and

static lifetime of ceramics and concrete, and explains why their histograms deviate

systematically from the straight line in Weibull scale.

Although the present unified theory is built on several previous advances, new

contributions are here made to address: (i) a crack in a disordered nano-structure (such

as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel

coupling) model with softening elements, (iii) convergence of this model to the

Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed

random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is
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captured in the present theory through the finiteness of the number of links in the

weakest-link model, which explains why the mean size effect coincides with that of

the previously formulated nonlocal Weibull theory. Brittle structures correspond to the

large-size limit of the present theory. An important practical conclusion is that the

safety factors for strength and tolerable minimum lifetime for large quasibrittle

structures (e.g., concrete structures and composite airframes or ship hulls, as well

as various micro-devices) should be calculated as a function of structure size and

geometry.

& 2011 Elsevier Ltd All rights reserved.

1. Introduction

The design of engineering structures, such as bridges, dams, ships, aircraft and microelectronic components, must
ensure an extremely low failure probability, typically Pf o10�6 (Duckett, 2005; NKB, 1978; Melchers, 1987). A direct
experimental verification by histogram testing is, for such a low failure probability, virtually impossible (as 4108 test
repetitions would be required). So the determination of probability distributions of structural strength and lifetime must
rely on some physically based theory that can be verified and calibrated indirectly, based on tests other than histograms.

The strength distributions of structures have so far been well understood for two limiting behaviors:

(1) Perfectly plastic structures, in which the failure does not localize and the failure load is a weighted sum of the random
material strengths of all the representative volume elements (RVEs) along the failure surface. By virtue of central limit
theorem of the theory of probability, the cumulative distribution function (cdf) of structure strength must then be the
Gaussian (or normal) distribution (except in the remote tails).

(2) Perfectly brittle structures, in which the failure localizes into one RVE and thus the failure of the entire structure is
triggered by the failure of one RVE (like in a chain). For structures of extremely large size (compared to material
inhomogeneities), which can be statistically represented by a chain with an infinite number of RVEs, the strength
distribution is then necessarily the (two-parameter) Weibull distribution.

Therefore, for both perfectly plastic and perfectly brittle structures, the failure load corresponding to the tolerable
failure probability Pf¼10�6 can be easily determined by extrapolating from the mean and variance.

This is not the case for quasibrittle structures, which consist of brittle heterogeneous materials, called quasibrittle
materials. They include concrete (as the archetypical example), rocks, coarse-grained and toughened ceramics, fiber
composites, rigid foams, sea ice, dental ceramics, dentine, bone, biological shells, many bio- and bio-inspired materials,
fiber-reinforced concretes, rocks, masonry, mortar, stiff cohesive soils, grouted soils, consolidated snow, wood, paper,
carton, coal, cemented sand, etc. On the micro- and nano-scales, also fine grained ceramics, fatigue-embrittled metals and
other brittle materials become quasibrittle. These materials have brittle constituents and are incapable of plastic
deformation (except under extreme confining pressure). The salient feature of quasibrittle structures is that the fracture
process zone (FPZ) is not negligible compared to the structure size.

For quasibrittle structures with positive geometry, which are those that fail (under controlled load) right at the
initiation of a macrocrack from a damaged RVE and are characterized by an initially positive derivative of the stress
intensity factor with respect to crack length, the probabilistic aspects of strength and lifetime are more complex than they
are for brittle or ductile structures. It has been demonstrated in various ways that the behavior of quasibrittle materials
transitions from quasi-plastic to brittle as the structure size increases (Bažant, 1984; Bažant and Kazemi, 1990; Bažant,
1997; Bažant and Planas, 1998; Bažant, 2004, 2005). This transition causes a size effect on the type of strength distribution,
in which the cdf of structural strength gradually changes with increasing size from predominantly Gaussian to purely
Weibullian (Bažant and Pang, 2006, 2007). This complicates extrapolation from laboratory tests to structures of large sizes
or complex geometries, and causes that the safety factors guarding against the uncertainty of structural strength, which
are in practice still determined empirically, are the most uncertain aspect of design. For such structures, a rational
reliability analysis is of paramount importance.

This article reviews in a unified way and common context several parts of the theory that have already been published
separately (Pang et al., 2008; Le and Bažant, 2009; Bažant et al., 2008, 2009; Bažant and Le, 2009; Le et al., 2009) and
presents several new advances needed to achieve a unified and complete theory. These advances include: (1) a derivation
of failure statistics and the nano-crack growth that is not contingent upon assuming a regular atomic lattice, (2) a
derivation of the probability distribution of strength of a bundle model with gradually softening elements, (3) the stress-
life curve of quasibrittle structures under constant load and its size effect, (4) a detailed analysis of random walk of an
atomistic crack front in a 1-D setting, and (5) further comparisons with experimental histograms for quasibrittle materials.
In Part II of this study (Le and Bažant, in press), the present theory is further extended to the probability distribution of
fatigue strength and lifetime of quasibrittle structures.
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2. Review of previous studies

2.1. Strength statistics

The two-parameter Weibull theory has been widely used for the strength distribution of quasibrittle materials
(Weibull, 1939; Munz and Fett, 1999; Lohbauer et al., 2002; Tinschert et al., 2000). Freudenthal (1968) proposed to
physically justify the two-parameter Weibull distribution of strength by the statistics of material flaws. On closer scrutiny,
however, the flaw statistics is not a physical justification since three simplifying hypotheses are implied:

(1) The Griffith theory is used to calculate the strength from the flaw sizes, even though the cracks are usually cohesive.
(2) The largest flaws in adjacent material elements are assumed not to interact although they undoubtedly do.
(3) The maximum flaw size am in the volume element is assumed to follow the Fréchet distribution exp½�ðam=uÞ�p

�

(u,p¼constants 40), which is obtained upon assuming that the probability distribution density of maximum flaw size
converges to zero with a power-law decay as am-1.

Hypothesis 3 is strictly a mathematical, rather than a physical, argument, which is based on the extreme value statistics
(Fisher and Tippett, 1928; Gumbel, 1958; Haldar and Mahadevan, 2000). The Fréchet distribution for the largest flaw size
in each RVE is what is needed to obtain the Weibull distribution of macro-strength. But the Fréchet distribution is
mathematically required only as an asymptotic case, which might not be approached closely enough until the number of
flaws becomes unreasonably large, say 1012. This is a weak point of this argument.

Furthermore, while for ceramics the flaws are often sparse and can be clearly identified, for materials such as concrete
the definition of a flaw is ambiguous. The reason is that the material is totally disordered from the nano-scale up and, even
before any load is applied, the material is full of pre-existing densely packed ‘‘flaws’’ which must strongly interact. Yet, the
fracture statistics of concrete and ceramics share the same characteristics.

Therefore, the statistical distribution of flaws itself does not seem to suffice to explain the statistics of quasibrittle
fracture, and it does not predict the size effect on the type of strength distribution. So Freudenthal’s theory merely
represents a useful macro–micro relationship applicable to some perfectly brittle materials, but not a physical proof.

The testing of concrete, engineering ceramics and fiber composites, revealed systematic deviations of the strength
histograms from the two-parameter Weibull distribution, even though the number of test repetitions ðo100Þ did not suffice
to reveal the tails (Weibull, 1939; Lohbauer et al., 2002; Munz and Fett, 1999; Salem et al., 1996; Santos et al., 2003; Schwartz,
1987; Tinschert et al., 2000). As a remedy, a switch to the three-parameter Weibull distribution, which has a finite threshold,
has recently been widely adopted to achieve better fits (Duffy et al., 1993; Gross, 1996; Stanley and Inanc, 1985).

This switch, however, amounts to a radical and risky change since the predicted failure load for Pf¼10�6 can increase
even by a factor 1.5 or more (Pang et al., 2008). For broad enough histograms (41000 tests), this switch still does not give
an optimum fit since significant deviations still exist in the high probability range (Bažant and Pang, 2007). Furthermore,
the value of Weibull modulus m obtained by fitting the three-parameter Weibull distribution is unrealistically low
(m� 1:525). More seriously, at the large size limit, the three-parameter Weibull distribution with the weakest-link model
predicts a vanishing size effect for very large sizes and an unreasonably strong size effect for medium sizes, which
contradicts various experimental observations (Le and Bažant, 2009; Pang et al., 2008) as well as the predictions of the
nonlocal Weibull theory (Bažant and Xi, 1991).

Recent studies (Bažant and Pang, 2006, 2007; Bažant et al., 2008, 2009) showed that the crux of the problem lies in the
usual tacit assumption that the number of links in the chain underlying the weakest-link model for structural strength
statistics is infinite. Instead, for all quasibrittle structures, one must adopt a finite weakest-link model, in which the
number of links in the chain is finite, and possibly as small as 5–50. The reason is that the RVE is not negligible compared
to the structure size (and also that the fracture mode is often two-dimensional since a row of RVEs along the front edge of
fracture in the third dimension must fail nearly simultaneously).

For large size structures, the cdf’s strength depends only on the far-left tail of the cdf’s strength of one RVE, which must
follow a power law. This essential tail property, along with the Weibull distribution itself, was first derived in 1928 by
Fisher and Tippett (1928) from the stability postulate of extreme value statistics of a set of independent, identically
distributed, random variables. Of course, the RVEs in a material are not perfectly statistically independent, but the stability
postulate can also be justified for correlated random systems (such as percolation models, Bazant, 2000, 2002; van der
Hofstad and Redig, 2006) using renormalization group methods, which homogenize the system recursively up to a scale
(of the RVE) where correlations become negligible. Aside from the assumption of independence, however, the Fisher–
Tippett argument has nothing to do with physics per se, and for a long time it has not been clear whether the power-law
tail would apply only for probabilities so small (e.g. o10�9) that they would be irrelevant to structural strength.

In recent research (Bažant and Pang, 2006, 2007), a simplified justification of the power-law tail was given on the basis of
the thermally activated fracture of a nano-structure and a multiscale statistical model. Further it was established (Bažant and
Pang, 2006, 2007) that the type of cdf of strength of quasibrittle structures depends on the structure size and geometry, varying
gradually from the Gaussian cdf at small sizes (modified by a remote Weibull tail) to a fully Weibull cdf at large enough sizes.

For ductile (or plastic) materials, by contrast, the strength distribution in the ‘‘central region’’ (within several standard
deviations of the mean, not in the remote tail) must be Gaussian, based on the central limit theorem. The lognormal
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distribution has sometimes been used to describe material strength, with the argument that negative strength values are
impossible. However, this argument is mathematically incorrect because, for a sum of positive independent random
variables, the negative tail is always beyond the range of the central limit theorem (note that even the sum of independent
positive random variables converges to Gaussian distribution). This argument is also physically incorrect because a
lognormal distribution would imply the load to be a product, rather than a sum, of statistically independent strength
contributions from all the elements along the failure surface, which makes little physical sense.

2.2. Lifetime statistics

Ensuring a tolerable lifetime probability of a structure is another important aspect of engineering design. For decades,
extensive efforts have been devoted to both deterministic and statistical predictions of lifetime of engineering materials.

The deterministic models of structural lifetime under constant loads were anchored in the kinetics of breakage of
atomic bonds (Tobolsky and Erying, 1943; Zhurkov, 1965; Zhurkov and Korsukov, 1974; Hsiao et al., 1968; Henderson
et al., 1970). But the structural lifetime was in these models derived directly from the frequency of forward jumps over the
activation energy barrier of one interatomic bond, while the statistics of nano-fracture growth, the statistical multiscale
nano–macro transition, and the slow crack growth at macro-scale were not taken into consideration. Therefore, the size
and geometry dependence of structural lifetime cannot be captured by these classical deterministic models.

Meanwhile, many phenomenological models of the lifetime probability distribution have been developed for various
engineering materials. The lifetime statistics was first studied for fibrous materials (Coleman, 1957, 1958) and later for
fiber composites (Phoenix, 1978a; Tierney, 1983; Ibnabdeljalil and Phoenix, 1995; Mahesh and Phoenix, 2004). These
models were derived by assuming the infinite weakest-link model for a single fiber, which is questionable because
experimentally observed strength histograms of single fibers consistently showed deviations from the classical Weibull
distribution (Schwartz, 1987; Wanger et al., 1984; Schwartz et al., 1986), and the size effect was not checked.

A more general approach for lifetime statistics has more recently been based on the kinetics of crack growth (Munz and
Fett, 1999; Fett and Munz, 1991; Lohbauer et al., 2002). For stress-driven creep crack growth, a power law was proposed to
describe the dependence of crack growth velocity on the applied stress (Evans, 1972; Thouless et al., 1983; Evans and Fu,
1984). A partial theoretical justification of the power-law form for crack growth rate has also been suggested (Fett, 1991;
Munz and Fett, 1999), based on the break frequency of a bond between a pair of two atoms. Such a justification, however,
is insufficient, for three reasons: (1) The derivation was limited to the case of a pair potential, such as the Morse potential,
which neglects the major contribution of surrounding atoms. (2) The propagation of a nano-crack consists of many jumps
between subsequent potential wells with many very small decrements in the overall potential. (3) The statistical scale
bridging between the atomic scale and the macro-scale was lacking. Thus the power law for creep crack growth rate still
remained to be empirical.

In the recent studies of lifetime statistics of ceramics, the structural strength was calculated from the linear elastic
fracture mechanics (LEFM) based on the initial flaw size, and was related to the structural lifetime by the crack growth law
(Munz and Fett, 1999; Fett and Munz, 1991; Lohbauer et al., 2002). In these models, however, the two-parameter Weibull
cdf structure strength, from which the Weibull cdf of lifetime followed, was assumed rather than derived. Yet it has not
been explained why the lifetime histograms of quasibrittle specimens, particularly those of ceramics and fiber composites,
consistently deviate from the two-parameter Weibull distribution (Chiao et al., 1977; Munz and Fett, 1999; Fett and Munz,
1991), and the corresponding size effect has not been checked.

3. Probabilistic fracture mechanics at the nano-scale

The macro-scale fracture originates from the breakage of interatomic bonds at the nano-scale. Thus it is logical to relate
the statistics of structural failure to the statistics of interatomic bond breakage. This seems also inevitable since the only
scale on which the probabilistic properties can be deduced mathematically appears to be the atomistic scale.

Although some researchers suggest mutiscale modeling based on disordered mesostructure, at the mesoscale level there
exists no fundamental physical law for the probability of microstructural breaks. Only intuitive hypotheses can be made. On the
atomic level, though, a well established physical theory for the frequency of bond breaks exists. It is the rate process theory
(Eyring, 1936; Glasstone et al., 1941; Tobolsky and Erying, 1943; Krausz and Krausz, 1988; Kaxiras, 2003), which theoretically
justifies the Arrhenius thermal factor and has long been used to transit from the atomic scale to the material scale, yielding the
temperature and stress dependence of the rates of creep, diffusion, phase changes, adsorption, chemical reactions, etc. In this
theory, the rates of breakage of interatomic bonds are characterized by the distribution of thermal energies among atoms and
the frequency of passage over the activation energy barriers of the interatomic potential. The probability of failure of
interatomic bonds is proportional to their failure frequency because, on the atomic level, the process is quasi-stationary.

To justify the quasi-stationarity hypothesis, consider a missile of speed 200 m/s breaking a single row of atoms along the
missile path. The atomic spacing is about 2�10�10 m, and so the rate of bond breakage is ð200 m=sÞ=ð2� 10�10mÞ ¼ 1012=s.
Since the frequency of atomic vibrations is about 1014/s, one jump over the activation energy barrier occurs after every 100
vibrations; for accelerated missiles, after about every 20 vibrations; for a crack propagating at Raleigh wave speed in concrete,
after about 10 vibrations (but the hypothesis is invalid for collisions in space, or for nuclear explosions, for which the frequency
of bond breakage exceeds 1014/s).
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The same hypothesis is also easily justified by energetic arguments. The natural energy scale for chemical bonds, and thus
also for activation barriers in molecular rearrangements between long-lived well-defined molecular states, is the electron-volt.
This scale is larger by at least one order of magnitude than the thermal energy scale since kT¼0.025 eV at room temperature
ðk¼ 1:381� 10�23 J=K¼ Boltzmann constant and T ¼ absolute temperatureÞ. As such, transitions between local minima of
free energy can typically be described by the asymptotic Kramer’s formula for the first passage time, which predicts an
exponential dependence on the barrier energy relative to kT (which is also an Arrhenius dependence on temperature).

Consider a nano-scale element, such as an atomic lattice block representing a crystal grain of brittle ceramic (Fig. 1a), or
a completely disordered system of nano-particles of the calcium silicate hydrate in concrete (Fig. 1b). In a continuum
approximation, the fracturing behavior of this nano-scale element is characterized by a curve of equilibrium load P versus
deflection u, in which hardening is followed by softening (Fig. 2a). The integral of this curve yields the curve of potential P
versus u, shown as the dash line in Fig. 2d.

 5 nm 

Fig. 1. Fracture of nano-scale element.
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Fig. 2. (a) and (b) Load–displacement curve of lattice block, (c) change of activation energy barrier due to fracture.
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A crack in the nano-scale element does not advance smoothly. Rather, it advances in numerous discrete jumps which
correspond to the jumps over the activation energy barriers of interatomic bonds (Fig. 1a) or nano-particle connections
(Fig. 1b). The length of these jumps is the spacing da of the atoms or the nano-particles. The jumps cause that an
undulation must be superposed on the load–deflection curve, and a corresponding undulation on the potential curve; see
Fig. 2b in which P¼ tbla¼ load, u¼displacement in the sense of P, la¼characteristic size of the nano-element, b¼width in
the third dimension, and t¼remote stress applied on the nano-element.

Now the crucial point is that many interatomic bonds (Fig. 1a) or many nano-particle connections (Fig. 1b) must be
broken before reaching the critical crack length at which the nano-fracture becomes unstable and begins to advance
dynamically, with sound emission. Consequently, there must be many undulation waves on the PðuÞ curve and on the
corresponding potential curve (Fig. 2b and d). It follows that the difference DQ between two adjacent potential wells must
be small (Fig. 2c) compared to the activation energy barrier Q0. In previous work (Bažant and Pang, 2006, 2007), the
smallness of DQ was assumed on the basis of shear displacement of atoms over a lattice, which is not too realistic. With
reference to Fig. 2d, the necessity of DQ being small is thus clear.

Consider, for the sake of simplicity, planar three-dimensional cracks that grow in a self-similar manner, expanding, e.g.,
in concentric circles or squares. According to LEFM, the stress intensity factor may generally be expressed as

Ka ¼ t
ffiffiffiffi
la

p
kaðaÞ ð1Þ

where a¼ a=la ¼ relative crack length and kaðaÞ ¼ dimensionless stress intensity factor. In the context of linear elasticity,
the remote stress applied on the nano-scale element t can be related to the macro-scale stress s by setting t¼ cs, where
c¼nano-macro stress concentration factor. Therefore, the energy release rate per unit crack front advance is

GðaÞ ¼ K2
a

E1
¼

k2
a ðaÞlac2s2

E1
ð2Þ

where E1¼elastic modulus of the nano-element. Let g1 ¼ geometry constant such that g1a¼ perimeter of the radially
growing crack front. The energy release along the entire perimeter, caused by crack advance da, is

DQ ¼ da
@P�ðP,aÞ

@a

� �
P

¼ daðg1alaÞG¼ VaðaÞ
c2s2

E1
ð3Þ

Here P� ¼ complementary energy potential of the nano-element, and VaðaÞ ¼ daðg1al2aÞk
2
a ðaÞ ¼ activation volume (note that

if the stress tensor is written as ts where t¼ stress parameter, one could more generally write Va ¼ s : va where
va ¼ activation volume tensor, as in the atomistic theories of phase transformations in crystals (Aziz et al., 1991)).

A sharp LEFM crack is, of course, an idealization. In reality, there is always a finite FPZ. However, for the global response,
which is what matters here, a crack with a finite FPZ may be treated by an equivalent sharp LEFM crack giving the same
energy release rate. Its tip is located roughly in the middle of the FPZ.

Due to thermal activation, the energy states of the nano-element fluctuate and lead to jumps over the activation energy
barriers. The jumps occur both forward and backward, albeit with different frequencies (Fig. 2c). The energies required for
the forward and backward jumps are Q0�DQ=2 and Q0þDQ=2, respectively, where Q0¼activation energy at no stress.

One might object that, generally, there are multiple activation energy barriers Q1, Q2, yinstead of Q0. However, the
lowest one always dominates. The reason is that the factor e�Q1=kT is very small, typically 10�12. Thus, if for example
Q2/Q1¼1.2 or 2, then e�Q2=kT ¼ 0:0043eQ1=kT or 10�12e�Q1=kT , and so the higher barrier makes a negligible contribution. And
if for example Q2/Q1¼1.02, then Q1 and Q2 can be replaced by a single activation energy Q0¼1.01Q1.

Since the nano-crack attains its critical length ac only after overcoming many activation energy barriers (Fig. 2b and d),
the barrier for each forward jump, Q0�DQ=2, must differ only little from the barrier for the backward jump, Q0þDQ=2.
Consequently, the forward and backward jumps must be happening with only slightly different frequencies. According to
the transition rate theory (Kaxiras, 2003; Philips, 2001), the first-passage time for each state transition (for the limited case
of a large free-energy barrier, Q0bkTbDQ), which gives the net frequency of the forward crack front jumps, is given by
Kramer’s formula (Risken, 1989):

f1 ¼ nT ðe
ð�Q0þDQ=2Þ=kT�eð�Q0�DQ=2Þ=kT Þ ¼ 2nT e�Q0=kT sinh½VaðaÞ=VT � ð4Þ

where VT ¼ 2E1kT=c2s2; nT is the characteristic attempt frequency for the reversible transition, nT ¼ kT=h where
h¼ 6:626� 10�34 Js¼ Planck constant¼(energy of a photon)/(frequency of its electromagnetic wave).

A comment on the classical empirical theory of structural lifetime (Zhurkov, 1965; Zhurkov and Korsukov, 1974;
Kausch, 1978) is in order. This theory implied that only forward jumps take place. In that case, as a generalization of the
Arrhenius factor, the jump frequency is assumed to be an exponential function of the applied stress. This situation is
approached by the present formulation when the stress is sufficiently large, in which case the frequency of forward jumps
is far higher than the frequency of backward jumps. Then the second term in Eq. (4) can be neglected, which gives
approximately an exponential instead of the hyperbolic sine.

When, however, the stress is small, such a one-way jump model, which corresponds to the classical empirical theory,
underestimates the lifetime by orders of magnitude. In Zhurkov (1965) it was observed that, for a low stress such as 20% of
the short-time strength, the predicted lifetime was three orders of magnitude shorter than that observed experimentally
on polymers, glass and alumina.
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The atomic spacing is typically on the order of 0.1 nm, and so Va � 10�26 m3. Volume VT is a function of t¼ cs, where
the stress concentration factor c is probably larger than 10. The elastic modulus E1 of the atomic lattice is doubtless larger,
though not much larger, than the macroscopic elastic modulus E. For example, for the nano-structure of hardened Portland
cement gel, the remote stress at nano-scale is perhaps on the order of 20–30 MPa, which gives VT � 10�25 m3, and
Va=VT o0:1. Since sinhx� x for small x, Eq. (4) thus becomes (Bažant et al., 2009):

f1 � e�Q0=kT ½nT VaðaÞ=kT�c2s2=E1 ð5Þ

The essential point here is that the frequency of each jump follows a power-law function of stress t with a zero threshold.
So far we have determined the rate of jumps over one activation energy barrier. For a nano-scale crack to propagate up

to the critical crack length ac at which stability is lost, a certain number, n, of activation energy barriers must be overcome
(up to point A in Fig. 2b). We do not know (and need not know) what number n is, but we know it must exist and be finite.
Assuming that each jump is an independent process, the frequency of reaching the critical crack length is the sum of the
net frequencies of forward jumps over all these barriers (for a subtle refinement see Appendix A). Then, since the failure
probability Pf of the nano-element is proportional to this frequency, we may write

Pf ðsÞp
Xn

i ¼ 1

f1iðsÞ ¼
Z ac

a0

f1 da ð6Þ

where f1i¼ jump frequency of a crack of length ai, whose tip is located at the ith interatomic bond on the crack path either
through the atomic lattice block or through the block of nano-particles. Substituting Eq. (5) into Eq. (6), we obtain:

Pf ðsÞpCT c2s2 ð7Þ

with the notations CT ¼HTg1

R ac

a0
ak2

aðaÞda, and HT ¼ e�Q0=kT ðda!
2
a=E1hÞ.

4. Statistical multiscale transition of strength distribution

To relate the strength distributions of a nano-scale element and an RVE at the macro-scale, a certain statistical
multiscale transition framework is needed. The numerical stochastic multiscale approaches proposed so far (e.g. Xu, 2007;
Graham-Brady et al., 2006; Williams and Baxer, 2006) do not suffice for handling multiscale transitions of probability
distributions and their tails. Here we try to determine the type of strength distribution of an RVE analytically, using for
the scale transitions two basic statistical models: the fiber bundle model (or parallel coupling model) and the chain model
(or weakest-link model, or series coupling model). These two models represent statistically two basic phenomena:

(1) The weakest-link model (Fig. 3a), failing in one link only, statistically models the localization of failure into one FPZ at
one location, within one scale.

(2) The fiber bundle model (Fig. 3b) statistically models the condition of compatibility between one scale and its sub-
scale—namely the condition that the deformations of several cracked material sub-elements located along the crack

1 2 nb

1
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2
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s

�

�

Fig. 3. (a) Chain model, (b) bundle model, (c) hierarchical model.
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path within the FPZ must be compatible with the overall deformation of this FPZ on a higher scale. In contrast to the
weakest-link model, the bundle model represents a material element that fails by distributed cracking.

4.1. Weakest-link model (a chain or series coupling)

The strength of the chain is determined by the strength of its weakest-link. To determine the failure probability Pf of a
chain, note that the whole chain survives if and only if all the elements survive. So, the survival probability, 1�Pf, of a
chain is the joint probability of survival of all its links. Therefore, if the failure probability (or strength distribution) of the
i-th link (or element) under stress si is denoted as PiðsÞ where s¼stress in the chain, and if all the Pi are statistically
independent, then the failure probability of a chain of nc elements is given by the following well-known formula:

Pf ,chainðsÞ ¼ 1�Pnc

i ¼ 1½1�PiðsÞ� ð8Þ

For a detailed discussion, see, e.g., Bažant and Pang (2007). Suffice to say that the chain has the following two simple
asymptotic properties: If the cdf’s of strength of all the elements (or links) have a power-law tail of exponent p, then the
cdf of strength of the whole chain has also a power-law tail and its exponent is also p; and for large enough nc,
Pf ¼ 1�e�nc ðs=s0Þ

p

¼Weibull distribution (where s0 is a constant).

4.2. Bundle model (parallel coupling)

In the bundle model (Fig. 3b), after one element (called a ‘fiber’) fails, the load gets redistributed among the other
elements. The load is reduced to zero when all the elements break, but the maximum load is reached when a only certain
fraction of the elements breaks. The bundle model statistically represents the load redistribution when the microstructure
is partially damaged. The load redistribution after a fiber breaks depends on the load sharing rule. Various rules have been
assumed (Daniels, 1945; Phoenix, 1978a, 1978b; Phoenix and Tierney, 1983; Mahesh and Phoenix, 2004), but many of
them were merely phenomenological hypotheses, such as the load sharing by the nearest neighbors of the failing element
in the bundle. A more realistic rule should be based on a mechanical model.

Since any fiber can be replaced by several fibers having different cross section areas or different lengths but the same
combined elastic stiffness, it is not unduly restrictive to assume that all the fibers have equal elastic stiffness and are
subjected to the same displacement. So, we consider initially elastic fibers spanning two parallel rigid plates. The load
sharing rule is then fully determined by the failure behavior of the fibers.

Two limiting cases are by now well understood: (1) brittle failure, in which the stress in the fiber drops to zero
immediately after its strength limit (peak stress) is reached, (2) plastic (or ductile) failure, in which the fiber extends at
constant stress after its strength limit is reached. Two asymptotic properties are of particular interest here—the tail of the
cdf of bundle strength and the type of cdf’s of the strength of large bundles.

A surprisingly simple property applies to power-law tails. The power-laws are always preserved and their exponents
are additive. Specifically, if the strength cdf of each of nb fibers in a bundle has a power-law tail of exponent pi (i¼1,y,nb),
then the cdf of bundle strength has also a power-law tail and its exponent is p¼

Pnb

i ¼ 1 pi.
For a brittle bundle, this remarkable property was proven by induction based on the set theory (Harlow et al., 1983;

Phoenix et al., 1997). Later it was also proven by a simpler approach Bažant and Pang (2007) using the asymptotic
expansion of Daniel’s (1945) exact recursive equation for the strength of cdf of bundles of increasing nb. For a plastic
bundle, this property was proven by the asymptotic expansion of cdf (Bažant and Pang, 2007). Alternatively, it can be
proven through the Laplace transform of cdf. A recent study (Lam et al., submitted for publication) provided a general
proof of the additivity of power-law tail exponents based on the generalization of the central limit theorem. For the
general case of fibers that exhibit gradual post-peak softening, the tail exponent additivity has been verified numerically
but an analytical proof has been lacking. It is presented next.

Consider a bundle with two fibers having the same cross section area, although a generalization to any number of fibers
is easy. Assume that each element has a bilinear stress–strain curve (Fig. 4a), which has an elastic modulus E and softening
modulus Et ðEt r0Þ. Let the only random variable be the peak strength siði¼ 1,2Þ. Then the peak of average stress in the
bundle can be written as:

sb ¼max
E
½s1ðEÞþs2ðEÞ�=2 ð9Þ

where E¼ strain in the fiber, and s1, s2¼ stresses in fibers 1 and 2. We seek the critical strain E� at which the load on the
bundle reaches its maximum. The critical strain depends on the ratio a¼�Et=E ðaZ0Þ. Two cases must be distinguished,
depending on whether the weaker element fails completely (i) before or (ii) after the stronger element reaches its peak.

Let the two fibers be numbered such that s1rs2. Then the peak stress of the bundle, sb, can be written as follows:
Case1: 0rar1

if ð1þaÞs1=a4s2 : sb ¼ ½ð1þaÞs1þð1�aÞs2�=2, ð10Þ

if ð1þaÞs1=ars2 : sb ¼ s2=2, ð11Þ
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Case2: a41

if ð1þaÞs1=a4s2 : sb ¼ s1, ð12Þ

if ð1þaÞs1=ars2 : sb ¼maxðs1,s2=2Þ, ð13Þ

Note that these results cover not only the softening bundles but also the limit cases of both the plastic and brittle
bundles. When a¼ 0, the element is plastic and the peak average stress in the bundle is ðs1þs2Þ=2 (which was statistically
analyzed in Bažant and Pang (2007)). When a-1, the element is brittle and the peak stress of the bundle is maxðs1,s2=2Þ
(Daniels, 1945).

If the average bundle strength is less than some prescribed value S, i.e. sbrS, then, based on Eqs. (10)–(13), the
strength of each fiber must lie in the domain O2ðSÞ, shown in Fig. 4b and c. Since the strengths of these two fibers are
independent random variables, we may use the joint probability theorem to express the cdf of the average bundle
strength;

G2ðSÞ ¼ 2

Z
O2ðSÞ

f1ðs1Þf2ðs2Þ ds1 ds2 ð14Þ

where fi¼probability density function (pdf) of the strength of the ith element (i¼1,2). For the limiting cases of brittle and
plastic bundles, Eq. (14) becomes equivalent to Daniels’ (1945) formulation for the brittle bundle and the convolution
integral for the plastic bundle becomes equivalent to the formulation in Bažant and Pang (2007).

Now we assume that the strength of each fiber has a cdf with a power-law tail, i.e. PiðsÞ ¼ ðs=s0Þ
pi . Considering the

transformation: yi ¼ si=S, we can write the cdf of bundle strength as:

G2ðSÞ ¼ 2Sðp1þp2Þ

Z
O2ð1Þ

p1p2

sp1þp2

0

yp1�1
1 yp2�1

2 dy1 dy2 ð15Þ

where O2ð1Þ denotes the feasible region O2ðSÞ normalized by S. Since the integral in Eq. (15) results in a constant, the cdf of
bundle strength has a power-law tail whose exponent is p1þp2.

By induction, the foregoing analysis is then easily extended to a bundle with nb fibers, for which the cdf of average
bundle strength can be written as:

Gnb
ðSÞ ¼ nb!

Z
Onb
ðSÞ

Ynb

i ¼ 1

fiðsiÞds1ds2, . . . ,dsnb
ð16Þ

E

1

1

�E

�i

S

�2

�1

S/(1-�)

S/ (1+�)S

Ω2 �1 = �2

S

S
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S/2
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Fig. 4. (a) Mechanical behavior of fiber. (b) and (c) Feasible region of strength of fibers.
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Gnb
ðSÞ ¼ nb!S

p1þp2þ���þpnb

Z
Onb
ð1Þ

Ynb

i ¼ 1

piy
pi�1
i

spi

0

 !
dy1dy2, . . . ,dynb

ð17Þ

Here Onb
ðSÞ is the feasible region of stresses in all the fibers, which defines an nb-dimensional space, and Onb

ð1Þ is the
corresponding feasible region of normalized stresses, yi ¼ si=S. Q.E.D.

Thus, regardless of the post-peak slope Et of each fiber, it is proven that, if each fiber strength has a cdf with a power-
law tail, then the cdf of bundle strength will also have a power-law tail, and the power-law exponent will be the sum of the
exponents of the power-law tails of the cdf of all the fibers in the bundle.

In Bažant and Pang (2006, 2007), the reach of power-law tail of the strength cdf of softening bundle was shown to be
another important consideration. It can be calculated from Eq. (16). However, for large bundles, it is difficult to handle the
integral in Eq. (16) numerically. Previous studies (Bažant and Pang, 2006, 2007) showed that the reach of power-law tail
decreases with the number nb of elements rapidly as Ptnb

� ðPt1=nbÞ
nb�ðPt1=3nbÞ

nb for brittle bundles, or ðPt1=nbÞ
nb for plastic

bundles, where Pt1¼failure probability at the terminal point of the power-law tail of one fiber. Since the behavior of
softening bundles is bounded between these two extreme cases, the rate of shortening of power-law tail of strength cdf of
the softening bundles must lie between them; i.e.

Ptnb
� ðPt1=nbÞ

nb�ðPt1=3nbÞ
nb ð18Þ

The series coupling, by contrast, was shown to extend the power-law tail (Bažant and Pang, 2007)—roughly by one
order of magnitude for each ten-fold increase in the number links.

The foregoing framework can be applied to a bundle with fibers whose strength has any kind of cdf. Recently, many
papers (Duffy et al., 1993; Gross, 1996; Stanley and Inanc, 1985) assumed that the cdf of strength has a non-zero threshold
si. So, consider that, for each fiber, PiðsÞ �/s�siS

pi . Then the cdf of average strength of a bundle of nb fibers with bilinear
stress–strain relations will have the tail:

Ptnb
�/s�s0S

p1þp2þ���þpk

Ynb

i ¼ kþ1

/s�s0iS
pi ð19Þ

where s0 ¼
Pk

i ¼ 1 Aisi and s0i ¼ Bisi; Ai, Bi and k are constants which depend on the softening stiffness of the fibers.
Obviously, when si ¼ 0,ði¼ 1, . . . ,nbÞ, Eq. (19) indicates additivity of the power-law tail exponents. For perfectly plastic
bundles, the strength cdf of the bundle has one threshold, i.e. Ptnb

�/s�s0S
p1þp2þ���þpnb . For perfectly brittle bundles, the

strength cdf of bundle has nb thresholds, i.e. Ptnb
�
Qnb

i ¼ 1 /s�s
0
iS

pi . Hence, for general bundles with softening behavior, the
strength cdf will have multiple thresholds.

Another important asymptotic property is the type of cdf of strength of large bundles. For brittle bundles, Daniels
derived a recursive equation for the strength cdf of a bundle with nb fibers and showed that the strength cdf of large
bundles approaches the Gaussian (or normal) distribution (Daniels, 1945). This property is obviously also true for plastic
bundles; it is a natural consequence of the central limit theorem since the strength of a plastic bundle is the sum of
strengths of all the fibers.

To prove that this asymptotic property applies to all the bundles regardless of their post-peak softening stiffness Et,
consider a bundle of 3nb fibers (or elements). The load carried by the bundle is given by FðEÞ ¼max½

P3nbþ1
j ¼ 2 sjðEÞAf �, where

Af¼cross section area of each fiber, sj ¼ stress in jth element, and E¼ strain in each element. The mechanical behavior of
each fiber can be random and independent. This causes randomness of the critical value E� of strain E, at which F reaches its
maximum. We label the 3nb elements by j¼2, 3, 4,y,3nbþ1, arrange them according to their breaking order, and divide
them into two groups with different load resultants:

FAðEÞ ¼
X

i ¼ 3k

siðEÞAf , FBðEÞ ¼
X

i ¼ 3k71

siðEÞAf ðk¼ 1,2,3, . . . ,nbÞ: ð20Þ

The maximum load carried by the bundle is

Fmax ¼ FAðE�ÞþFBðE�Þ ð21Þ

If n is large, then the stress distribution over the elements in these two groups will be similar to that in the bundle (Fig. 5).
It follows that the cdf of Fmax (i.e. the strength of bundle) and the cdf of FAðE�Þ and FBðE�Þ are of the same type. Then, to
satisfy Eq. (21), the only possible distribution of Fmax is the Gaussian distribution (note that this argument would not apply
if the we divided the bundle into two groups with the same number of elements and the same resultant for large nb).

However, the rate of convergence depends on the post-peak softening stiffness Et of the elements. The slowest
convergence, of the order of Oðn�1=3

b ðlognbÞ
2
Þ (Smith, 1982), occurs for brittle bundles. The fastest convergence, of the order

of Oðn�1=2
b Þ, occurs for plastic bundles (Bažant and Pang, 2007).

4.3. Hierarchical model for strength distribution of one RVE

At low probabilities, the strength cdf of typical quasibrittle materials asymptotically terminates with a power-law of
exponent m (i.e. Weibull modulus), which is generally observed to be between 15 and 60. But for the nano-scale, the cdf
tail was found to have the exponent of 2. How to explain such a drastic increase of exponent? Let us now briefly review the
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previous work (Bažant and Pang, 2006, 2007) which showed that the explanation can be given in terms of multiscale
transitions.

Aside from the exponent, we must also consider the reach of the power-law tail. Based on studies of experimental
strength histograms and the mean size effect for typical quasibrittle materials, it was shown (Bažant and Pang, 2007) that
the cdf of RVE strength must have a Weibullian (or power-law) tail extending up to Pf¼ 10�4–10�3.

Why cannot the extent of the power-law tail be r10�5? If it were, then the histograms of strength tests of structures
with 4104 RVEs would not be predominantly Weibullian and the mean size effect would not approach a power-law,
contrary to observations (Bažant and Pang, 2007). And why cannot the extent of the power-law tail be 410�3? If it were,
then the histograms of strength tests of structures with o103 RVEs would not yield the observed kinked deviations from
the Weibull cdf and the mean size effect would not deviate from the power-law at the observed locations.

From these tail properties, it has been concluded (Bažant and Pang, 2006, 2007) that the RVE must be statistically
represented by a hierarchy of series and parallel connections shown in Fig. 3c, which consists of a bundle of only two long
sub-chains, each of which consists of sub-bundles of two sub-sub-chains, each of which consists of sub-sub-bundles, etc.,
until the nano-scale element is reached (Bažant and Pang, 2006, 2007). In this model, the parallel connections involve no
more than two elements (except at nano-scale where three can be coupled in parallel), provided that each chain consists of
about 10–20 elements (which seems to reflect damage localization patterns). If there were more elements coupled in
parallel, the reach of the power-law tail would be shorter than the aforementioned limit of 10�4 (unless the chains had
hundreds of elements).

In the hierarchical model, the strength of each element is assumed to be statistically independent, although statistical
correlations must in fact exist. However, a certain statistical correlation is indirectly introduced by the parallel coupling (or
bundle model), through its load distribution rules. The lack of an explicit statistical correlation cannot be a serious problem
because the choice of the rule of load distribution in the bundle model is found to have a negligible effect on the functional
form of the cdf of strength of the hierarchical model.

4.4. Calculation of the cdf of strength of one RVE

To figure out the type of cdf of strength of one RVE, one must specify the mechanical behavior of the bundles in the
hierarchical model. Although different assumptions yield about the same results, here the following assumption is made:
For the bundles at the lowest scale, three types of stress–strain behaviors, i.e. brittle, softening, and plastic, are considered
for each element. Bundles at higher scales have brittle behavior.

The strength cdf needs to be calculated in a hierarchical manner. At the lowest scale, each element represents a nano-
structure whose strength cdf has a power-law tail. One can then calculate the strength cdf of the sub-chain that connects
these elements. At the next scale, the strength cdf of the sub-bundle, which consists these sub-chains, can be calculated
based on the strength cdf of these sub-chains. In this manner, one could move up through the scales, and finally obtain the
strength cdf of one RVE.

2 3nb+13

3  2 4 
Stress distribution in 
sub-bundle B

Stress distribution in 

sub-bundle A

Stress distribution in the bundle

6 9 512

Fig. 5. Stress distribution of fibers in a large bundle.
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As an example, we calculate the strength cdf of the hierarchical model shown in Fig. 3c. Every element in the
hierarchical model represents one nano-scale element, whose strength cdf is a power-law (Eq. (7)). Three cases are
considered:

(1) Each element has an elastic–brittle behavior.
(2) Each element exhibits a linear post-peak softening, where the softening modulus magnitude is 40% of the elastic

modulus of the element.
(3) Each element has an elastic–plastic behavior.

Fig. 6a shows the calculated strength cdf of the hierarchical model for these three cases on the Weibull scale. For all
these cases, the lower portion of the calculated strength cdf is a straight line on the Weibull plot, which indicates that it
follows the Weibull distribution (i.e., the tail is a power-law). This property is, of course, expected since, in the chain and
bundle models, the power-law tail of the cdf of strength is indestructible.

For the upper portion, the strength cdf deviates from the straight line in Fig. 6a. Among the three cases considered,
case 1 (i.e., elements with brittle behavior) gives the shortest Weibull tail, which terminates at the probability of about
0.7�10�4, while case 3 (elements with plastic behavior) gives the longest Weibull tail, which terminates at the
probability of about 0.7�10�3.

To identify the type of distribution for the upper portion of the cdf, the cdf’s of strengths are plotted on the normal
probability paper; see Fig. 6 b–d where the upper portion of the cdf is seen to be fitted quite closely by a straight line. The
straight line is not too close for case 1 and for Pf Z0:8. For the cases 2 and 3, the straight line fits quite closely, with a slight
deviation occurring only for Pf Z0:99. This means that, the upper portion of the strength cdf can be approximated as the
Gaussian distribution. Since, for real quasibrittle structures, the nano-element is expected to have a softening behavior
(Fig. 2b), the strength cdf of one RVE should be close to case 2.

In general, the strength distribution of one RVE can be approximately described by a Gaussian distribution with a
Weibull tail grafted on the left at a point of the probability of about 10�4–10�3. The grafted cdf of strength of one RVE may
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Fig. 6. (a) Calculated strength cdf of one RVE on the Weibull scale. (b)–(d) Calculated strength cdf of one RVE on the normal distribution paper.
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be mathematically described as (Bažant and Pang, 2006, 2007):

P1ðsNÞ ¼ 1�e�ðsN=s0Þ
m

ðsN rsgrÞ ð22Þ

P1ðsNÞ ¼ Pgrþ
rf

dG

ffiffiffiffiffiffi
2p
p

Z sN

sgr

e�ðs
0�mGÞ

2=2d2
G ds0 ðsN 4sgrÞ ð23Þ

Here sN ¼ nominal strength, which is a maximum load parameter of the dimension of stress, in general defined as
sN ¼ cnPmax=bD or cnPmax/D2 for two- or three-dimensional scaling Pmax¼maximum load of the structure or parameter of
load system; cn¼parameter chosen such that sN represent the maximum principal stress in the structure, b¼structure
thickness in the third dimension, D¼characteristic structure dimension or size. Furthermore, m (Weibull modulus) and s0

are the shape and scale parameters of the Weibull tail, and mG and dG are the mean and standard deviation of the Gaussian
core if considered extended to �1; rf is a scaling parameter required to normalize the grafted cdf such that P1ð1Þ ¼ 1, and
Pgr¼grafting probability¼ 1�exp½�ðsgr=s0Þ

m
�. Finally, continuity of the probability density function at the grafting point

requires that ðdP1=dsNÞjsþgr
¼ ðdP1=dsNÞjs�gr

.
Note that, in the framework of present theory, Pgr depends on the failure behavior of sub-scale structures, from micro to

nano, which is statistically represented by the hierarchical model. One cannot determine Pgr directly from the hierarchical
model since it is essentially a qualitative statistical model which only yields the functional form of the cdf of strength of
one RVE. Therefore, Pgr must be calibrated from macro-scale tests. The simplest is the size effect test of the mean structural
strength, where Pgr can be identified from the location where the size effect curve deviates from the classical Weibull size
effect (Bažant and Pang, 2007).

4.5. Probability distribution of structure strength

Consideration is here limited to the broad class of structures having the so-called positive geometry (which is a
geometry characterized by @KI=@a40, KI¼stress intensity factor, a¼crack length). Such structures fail under controlled
load as soon as a macro-crack initiates from one RVE. Therefore, their macroscopic failure behavior follows the weakest-
link model in which each link corresponds to one RVE if the structure is subdivided into many RVEs (Fig. 3a). The definition
of RVE is necessarily different from the homogenization theory: The RVE is the smallest material volume whose failure
causes the whole structure to fail (Bažant and Pang, 2006, 2007).

The survival probability of the structure is the joint probability of survival of all the RVEs, numbered as i¼1,y,N.
Therefore, under the assumption of statistical independence of the random strengths of the RVEs, 1�Pf ¼

QN
i ¼ 1½1�P1�i or

Pf ðsNÞ ¼ 1�
YN
i ¼ 1

½1�P1ð/sðxiÞSsNÞ� /xS¼max ðx;0Þ ð24Þ

where P1ðsÞ ¼ cdf of strength of one RVE, Pf¼failure probability of the structure, sN ¼ nominal strength of the structure,
siðxiÞ ¼ sNsðxiÞ ¼maximum principal stress at the center of ith RVE with the coordinate xi, and sðxiÞ ¼ field of
dimensionless maximum principal stress in the structure. Here it is assumed that the principal stresses in each RVE are
fully statistically correlated to the maximum one, which seems realistic. If they were uncorrelated, each principal stress
would require one element in the chain.

Eq. (24) is further contingent upon the hypothesis that the strengths of different RVEs are statistically uncorrelated.
This is certainly a simplification, though probably quite realistic. Strictly speaking, the strength field within the structure is
an autocorrelated random process. But previous studies of random particle-lattice model (Grassl and Bažant, 2009)
showed that the autocorrelation length is approximately equal to size l0 of the RVE. So, the strength correlations, though
existing, should be negligible for distances larger than the RVE size (anyway, even if the maximum autocorrelation length
were larger than the RVE, then the RVE size could be enlarged to this length and the uncorrelated weakest-link model
could still be used on the larger scale).

Eq. (24) directly implies the size effect on structure strength in terms of number N. For small-size structures (small N),
the cdf of strength is predominantly Gaussian, which corresponds to the case of quasi-plastic behavior. This implies that
the failure of one RVE is caused by distributed cracking instead of localization of damage. When the structure size
increases but is not too large, the core of the cdf of structure strength is still predominantly governed by the lower part of
the Gaussian core of the strength cdf of one RVE lying close to the grafting point but above it. According to the stability
postulate used by Fisher and Tippett (1928) (or a renormalization group analysis Bazant, 2000; van der Hofstad and Redig,
2006), the core of cdf of structural strength should thus approach the Gumbel (or Fisher–Tippett–Gumbel) distribution, in
the sense of intermediate asymptotics (Barenblatt, 1978).

However, for sufficiently large structures (large N), what matters for Pf is the tail of the strength cdf of one RVE,
i.e. P1ðsÞ ¼ ðs=s0Þ

m. Therefore, Eq. (24) can be re-written as:

Pf ðsNÞ ¼ 1�exp �

Z
V
/sðxiÞS

m dVðxÞ

V0

� �
sN

s0

� �m� �
ð25Þ

where V0¼ l0
3
¼volume of one RVE, and l0¼size of one RVE, which is a material property (material length).
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As shown in Eq. (25), the cdf of strength of large-size structures tends to the Weibull distribution, which corresponds to
the case of perfectly brittle behavior. Here, it is convenient to define Neq,s ¼

R
V/sðxiÞS

mdVðxÞ=V0. Neq,s represents the
equivalent number of RVEs, which is the number of RVEs under uniform stress for which sN gives the same cdf of structure
strength as does Eq. (24) under the assumption that the strength cdf follows the Weibull distribution (Bažant and Pang,
2006, 2007).

Therefore, Neq,s depends on the structure size relative to the RVE size, V/V0, as well as the stress field sðxiÞ. For the
grafted distribution, Neq,s is expected to be a function of both sN and stress field.

The strength distribution of one RVE has sometimes been assumed as Weibullian. However, it is simple to prove that
this is impossible. Consider that the strength of a presumed ‘‘RVE’’ has the Weibull distribution. But this distribution can
arise only from the weakest-link model for a chain, described by Eq. (24). But in a chain, the fracture must always localize
into one failing link. So the presumed ‘‘RVE’’ cannot be the true RVE. Rather the failing link must represent the true RVE,
which is the smallest material volume whose failure triggers the failure of the entire structure.

Using the weakest-link model (Eq. (24)) to calculate the strength cdf of structure, one needs to subdivide the structure
into equal-size elements, having approximately the same size as the RVE. However, such a subdivision is possible only for
rectangular boundaries. For structures with general geometry, a nonlocal boundary layer (NBL) approach has been recently
proposed to deal with arbitrary boundaries and at the same time avoid the subjectivity of subdivision (Bažant et al., 2010).

In this approach, a boundary layer of thickness h0 � l0 along all the surfaces is separated from the structure. For the
boundary layer, one only needs to evaluate the stress for the points of the middle surface OM of the layer. For the interior
domain VI, the conventional nonlocal continuum approach (Bažant and Jirásek, 2002) can be adopted. The original
weakest-link model may be rewritten as:

ln½1�Pf ðsNÞ� ¼ h0

Z
OM

lnf1�P1½sðxMÞ�g
dOðxMÞ

V0
þ

Z
VI

lnf1�P1½sðxÞ�g
dVðxÞ

V0
ð26Þ

For very large structures, the boundary layer becomes very thin compared to the structure size (i.e. the first integral becomes
negligible), the nonlocal stress in the domain becomes the local stress, and Eq. (26) eventually leads to Eq. (25). Note that, in the
original weakest-link model, the element size is roughly equal to the auto-correlation length and the element strength is
essentially independent of the other elements. In the nonlocal model, the element can be smaller than the auto-correlation
length and the spatial correlation is represented through the nonlocal averaging (Breysse and Fokwa, 1992).

5. Formulation of lifetime distribution

To ensure a sufficiently small probability that a structure would not achieve its specified lifetime, the cdf of creep
lifetime must be determined. When a long lifetime is required, it is often impossible or unacceptable to obtain the
histogram of lifetime by waiting until the structure fails. Recently it was proposed (Bažant and Le, 2009; Le et al., 2009)
that how the cdf of lifetime of quasibrittle structures could be predicted theoretically from experiments of much shorter
durations. Here we review this approach in a unified context and present in detail its physical justification, which consists
of fracture kinetics and its multiscale transition.

Attention is here limited to the simplest loading history—the creep rupture case, although a generalization to other
monotonic loading histories is straightforward. An extension to fatigue lifetime is presented in Part II which follows.

5.1. Crack growth law and its physical justification

Consider again the nano-element in which the frequency of each crack jump is given by Eq. (5). Since the propagation of
the nano-crack is governed by stress-induced drift, the velocity of nano-crack propagation is simply given by:

_anano ¼ daf1 ¼ n1e�Q0=kT K2
a ð27Þ

where _anano ¼ danano=dt, n1 ¼ d2
a ðg1alaÞ=E1h¼constant, and Ka¼stress intensity factor of the nano-element, which is given

by Eq. (1) and is proportional to the remote stress t¼ cs, and thus also to s.
At macro-scale, when the crack starts to propagate, there will be a FPZ at the tip of the crack. In this FPZ, there are Na

active nano-cracks. To link the fracture kinetics of macro- and nano-cracks, we follow Bažant et al. (2009, Eq. (9)) in
imposing the condition of equality of energy dissipation rates, which states that the rate of energy dissipation of the
macro-crack must be equal to the sum of energy dissipation rates of all the active nano-cracks ai (i¼1,y,Na) in the FPZ of
the macro-crack (this condition, of course, ignores dissipations by frictional slips within the FPZs, but since this additional
dissipation should be roughly proportional to the fracturing dissipations, the argument is not affected qualitatively). This
condition reads:

G _a ¼
XNa

i ¼ 1

Gi _ai ð28Þ
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where G and Gi denote the energy release rate functions for the macro-crack a and nano-crack ai, respectively. By
substituting Eq. (27) for _ai and expressing the energy release rate function in terms of the stress intensity factor, one has:

_a ¼ e�Q0=kTfðKÞ where fðKÞ ¼
XNa

i ¼ 1

niK
4
i E

K2Ei
ð29Þ

where Ki¼stress intensity factors of nano-cracks ai within the nano-elements in the FPZ, Ei¼elastic modulus of each nano-
element, and ni ¼ d2

aðg1ailiÞ=Eih. Ki may be assumed to be linearly proportional to the macro-scale stress s as well as the
nano-scale remote stress t. So, one may set Ki ¼oiK where oi¼constants. Hence, fðKÞ can be re-written as:

fðKÞ ¼ K2
XNa

i ¼ 1

vio4
i E

Ei
ð30Þ

The number of active nano-cracks in the FPZ of the macro-crack may be added up through the hierarchy of FPZ scales
(Fig. 7): The FPZ of the macro-crack contains q1 meso-cracks, each of which has a meso-FPZ at its tip. Each of the meso-FPZ
contains q2 micro-cracks, each of which has at its tip a micro-FPZ with q3 sub-micro-cracks, y, and so forth, all the way
down to the nano-scale. If there are s different scales between the macro-scale and nano-scale, then the total number of
nano-cracks in the macro-FPZ is simply given by:

Na ¼ q1q2 � � � qs ð31Þ

On scale m, the number qm of activated cracks within the FPZ must be a function of the relative stress intensity factor K=Km,
i.e. qm ¼ qmðK=KmÞ, where Km ¼ typical critical value of K for cracks of scale m.

It appears plausible that function qmðK=KmÞ increases rapidly with increasing K=Km while the ratios in fðKÞ change far
less. Therefore, one may replace Ei, oi, and ni by some effective mean values Ea, oa, and na:

fðKÞ ¼ nao4
a ðE=EaÞK

2
Ys

m ¼ 1

qmðK=KmÞ ð32Þ

It may be expected that there is no characteristic value of K at which the behavior of function qmðK=KmÞ would
qualitatively change, and so function qmðK=KmÞ should be self-similar. The only self-similar functions are power laws, i.e.
qmðK=KmÞ ¼ ðK=KmÞ

r (Barenblatt, 2003). It follows that function fðKÞ should also be a power law:

fðKÞ ¼
nao4

aE

Ea
Q

mKr
m

� �Krsþ2 ð33Þ

Substituting Eq. (33) into Eq. (29) and setting rsþ2¼ n, one has:

_a ¼ Ae�Q0=kT Kn ð34Þ

where A¼ ðnao4
aEÞ=Eað

Q
mKr

mÞ. Eq. (34) is the well-known power law for the rate of creep crack growth, which was proposed
in Evans (1972), Evans and Fu (1984), Thouless et al. (1983) and used widely as an empirical law (Bažant and Prat, 1988;
Bažant and Planas, 1998; Munz and Fett, 1999; Lohbauer et al., 2002; Fett and Munz, 1991). The foregoing analysis
providing the theoretical justification of the power law for crack growth rate was recently sketched in Bažant and Le
(2009), Le et al. (2009). Note that Eq. (34) has the same form as Eq. (27) except for two aspects:

1. While n1 in Eq. (27) depends on the relative nano-crack length a, parameter A in Eq. (34) is a constant. The reason is that
the FPZ does not change significantly as the macro-crack propagates, which is an essential concept leading to the

FPZ1: n1 sub-cracks

FPZ2: n2 sub-cracks

a

Hierarchy of FPZ scales 

FPZ3: n3 sub-cracks 

Fig. 7. Hierarchy of fracture process zone scales.
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constancy of the fracture energy Gf. Therefore, all the different relative nano-crack lengths ai in the nano-elements of a
FPZ must average out to give a constant A, as mathematically described by Eq. (32).

2. The power-law exponent for the nano-crack growth rate is 2 while the power-law exponent for the macro-crack
growth rate is about 10–30, as observed in experiments (Munz and Fett, 1999; Kawakubo, 1995). This is because, for a
certain applied stress and structural geometry, the number of activated nano-cracks rapidly increases on passing to
higher scales with larger FPZs, as implied by the increasing value of s in Eq. (31).

The present analysis proves that the growth rate of nano-cracks follows a power-law with an exponent equal to 2, and
it shows that, under a certain plausible assumption (self-similarity of function qmðKÞ), the power-law form of crack growth
rate at macro-scale can be physically justified. Nevertheless, the foregoing analysis does not present a mathematical proof
of the power-law for macro-crack growth rate. The experimental validation is essential.

5.2. Distribution of structural lifetime

The crack growth rate is a crucial aspect of time-dependent failure, which relates the strength and lifetime of one RVE.
Consider the load history in the creep-rupture test (or lifetime test), in which the load F is rapidly raised to some value F0,
then is held constant for various lengths of time, t1, and finally is rapidly increased to some random value F1 at which the
failure occurs (Fig. 8a). When t1-l¼ lifetime, we have F1-F0. For t1-0, F1-Fmax, which is the strength test. In between
there must be a continuous transition, and so the statistics of failure load Fmax must be related to the statistics of lifetime l.

Now consider one RVE which contains a dominant subcritical crack aR with initial length a0. Based on the equivalent
linear elastic fracture mechanics, this subcritical crack is considered to have its tip at the center of the FPZ, thus
representing the effect of distributed damage in the RVE. Under a certain loading history, this crack grows to its critical
length ac, at which the RVE fails. The growth rate of the subcritical crack can be described by Eq. (34), in which one may
further express the stress intensity factor as:

KR ¼ s
ffiffiffiffi
l0

p
kRðaÞ ð35Þ

where s is a load parameter of the stress dimension, called the nominal stress, and is defined as s¼ F=l20; l0¼RVE size,
a¼ aR=l0 relative crack length.

For the case of strength test, the load is linearly increased till the failure of RVE with loading rate r (i.e. F¼rt); Fig. 8b.
Denoting sN ¼ Fmax=l20 and integrating Eq. (34), one obtains the nominal strength sN:

snþ1
N ¼ rðnþ1ÞeQ0=kT

Z ac

a0

da
Alðn�2Þ=2

0 kn
RðaÞ

ð36Þ

For the case of lifetime test (Fig. 8b), the load is rapidly increased to F0, which is smaller than the load capacity of the
RVE, and the lifetime of interest is typically far longer than the duration of laboratory strength tests. Therefore, the initial
rapidly increasing portion of the load history makes a negligible contribution compared to the overall structural
lifetime. By letting the applied nominal stress to be s0 ¼ F0=l20 and integrating Eq. (34) for the constant s0, one obtains
the lifetime, l:

sn
0l¼ eQ0=kT

Z ac

a0

da
Alðn�2Þ=2

0 kn
RðaÞ

ð37Þ

Comparison of Eqs. (36) and (37) leads to a surprisingly simple relationship between sN and l:

sN ¼ bsn=ðnþ1Þ
0 l1=ðnþ1Þ

ð38Þ

where b¼ ½rðnþ1Þ�1=ðnþ1Þ ¼constant.

P P

Fmax

F0

Strength test 

Lifetime test 

tt

F0

F1

t1 λ

Fig. 8. Loading histories of strength and lifetime tests.
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Note that although the power-law for creep crack growth has been derived as the mean behavior, it is now used to
relate the randomness of strength and of lifetime in one RVE. This is certainly a simplification. Eqs. (36) and (37) indicate
that the randomness of strength and lifetime of RVE is caused by the geometrical randomness of the dominant subcritical
crack. In the framework of equivalent linear elastic fracture mechanics, this reflects the randomness of micro-structures
and local fracture energy. This randomness can be captured by the random particle model (Grassl and Bažant, 2009).

Since the distribution of RVE strength is given by Eqs. (22) and (23), the lifetime distribution of one RVE can easily be
obtained by substituting Eq. (38) for sN in Eqs. (22) and (23):

for lolgr : P1ðlÞ ¼ 1�exp½�ðl=slÞ
m
�; ð39Þ

for lZlgr : P1ðlÞ ¼ Pgrþ
rf

dG

ffiffiffiffiffiffi
2p
p

Z gl1=ðnþ 1Þ

gl1=ðnþ 1Þ
gr

e�ðl
0
�mGÞ

2=2d2
G dl0 ð40Þ

where g¼ bsn=ðnþ1Þ
0 lgr ¼ b�1s�n

0 snþ1
N,gr , sl ¼ snþ1

0 b�ðnþ1Þs�n
0 , and m ¼m=ðnþ1Þ.

Similar to the strength distribution of one RVE, the lifetime cdf of one RVE, too, has a Weibull tail (power-law tail). The
grafting probability Pgr for the lifetime distribution of one RVE is the same as that for the strength cdf of one RVE. However,
as Eq. (40) suggests, the rest of the lifetime cdf of one RVE does not exactly follow the Gaussian distribution.

Since the lifetime of a chain is the shortest lifetime of its links, the weakest-link model may again be used to compute
the lifetime cdf of a structure consisting of any number of RVEs. Similar to the definition of nominal strength, here we can
define the nominal stress, s0 ¼ cnP=bD or¼cnP/D2 for two- or three-dimensional scaling, and P is the applied load. By the
joint probability theorem, the lifetime distribution of structure can be expressed as:

Pf ðs0,lÞ ¼ 1�
YN
i ¼ 1

f1�P1½/s0sðxiÞS,l�g ð41Þ

where sðxÞ ¼ dimensionless stress field. Similar to the chain model for the cdf of the structural strength, the lifetime of the
i-th RVE is here assumed to be governed by the maximum average principal stress s0sðxiÞ within the RVE, which is valid
provided that the other principal stresses are fully statistically correlated. Similar to the calculation of strength cdf, the
lifetime cdf of a structure of any geometry can be calculated by using the nonlocal boundary layer model (Bažant and Le,
2009).

As shown in Eq. (40), the core of lifetime cdf of one RVE, denoted as FuðlÞ, is a Gaussian cdf transformed by the power-
law for crack growth, i.e., is such that the lifetime power x¼ ðr=kÞks1�k

0 lk ðk¼ 1=ðnþ1ÞÞ would have the Gaussian
distribution;

Fu ¼

Z x

�1

ð2ps2
uÞ
�1=2 e�ðt

0�muÞ
2=2s2

u dt0 ð42Þ

When k is very small, the foregoing transformation can be approximated by the logarithmic transformation for the
region of l that is near some prescribed lifetime l0 (Ibnabdeljalil and Phoenix, 1995):

x¼ ðr=kÞks1�k
0 lk0 ½klnðl=l0Þþ1� ð43Þ

This approximation rests on the fact that, when k is small enough, ðl=l0Þ
k is close to 1. Therefore, ln½ðl=l0Þ

k
� � ðl=l0Þ

k
�1

and lk0 ½klnðl=l0Þþ1� � lk.
To ensure the continuity of both cdf and pdf at the grafting point, we choose l0 ¼ lgr . From Eqs. (42) and (43), one finds

that the core of lifetime distribution can be approximated as the lognormal distribution for a range of l that is near lgr .
This range is typically very narrow because the lifetime is widely scattered and ðl=lgrÞ

k for the main part of the core is not
close to 1.

As k decreases (or n increases), one might expect that the range of applicability of the logarithmic transformation
would increase. Interestingly, this is not really the case. The reason is as follows: A larger value of n would doubtless make
ðl=lgrÞ

k converge to 1. At the same time, however, a larger value of n means a much broader scatter of the lifetime. This
would greatly increase the ratio l=lgr for the main part of the core, and thus it would make ðl=lgrÞ

k deviate further from 1.
Calculations show that these two effects cancel each other. As a result, the logarithmic transformation gives only an
approximation of the core near lgr , albeit a good one, and does so even for a large value of n.

Fig. 9 shows the lifetime distributions of structures consisting of different numbers of RVEs with n¼20 (or k¼ 1=21),
calculated by both the exact transformation from the power-law of crack growth and its logarithmic approximation. For
the lifetime distribution of one RVE, the logarithmic approximation works well only for a very narrow range of l. When the
number of RVEs increases, the logarithmic approximation gets closer to the exact solution. This is because, if the structure
is sufficiently large, the portion of the core of lifetime cdf of one RVE that matters for the lifetime cdf of the entire structure
is small and is very close to the grafting lifetime. Since that part of the core can be modelled by the log-normal distribution,
the deviation of lifetime cdf from the Weibull distribution can be approximated as a chain of elements with lognormal
distribution provided that the structure is large enough.

For very large structures, the weakest-link model shows the lifetime cdf to be determined by the far-left tail of the
lifetime cdf of one RVE: P1ðlÞ ¼ ðl=slÞ

m . An analysis similar to that for the strength cdf for large-size structures leads to the
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cdf of lifetime for large size structure:

Pf ðlÞ ¼ 1�exp �

Z
V
/sðxiÞS

nm dVðxÞ

V0

� �
l
sl

� �m
" #

ð44Þ

Similar to the cdf of structural strength, the lifetime cdf of large-size structures asymptotically approaches the Weibull cdf.
Here one may also define the equivalent number of RVEs for the lifetime distribution of large-size structures:
Neq,l ¼

R
V/sðxiÞS

nm dVðxÞ=V0. This integral physically represents the number of RVEs for which a chain of Neq,l elements
subjected to a uniform stress s0 would give the same lifetime cdf as Eq. (41) does.

Note that the equivalent numbers of RVEs for the strength and lifetime distributions are different. The reason is that the
corresponding loading histories for strength and lifetime tests are different. However, the difference is small because
mn=ðnþ1Þ �m for large n.

The present theory yields for the Weibull moduli of strength and lifetime distributions a strikingly simple relation
involving the exponent of the power-law for crack growth:

m ¼
m

nþ1
ð45Þ

where m ¼Weibull modulus of lifetime distribution. This relation indicates an efficient way to obtain the Weibull modulus of
lifetime distribution without any testing of the lifetime histograms, which is time consuming and costly, and for realistically
long lifetimes virtually impossible. Aside from exponent n, one merely needs the Weibull modulus m of strength distribution,
which can be most easily determined by tests of the mean size effect (Pang et al., 2008). Exponent n of power-law for crack
growth can be obtained by the standard test of not too long duration, which measures the mean crack growth velocity.

Note from Eq. (45) that the Weibull modulus for lifetime is typically 10–30 times smaller than that for strength. This
means that, for lifetime, the size effect must be far stronger than it is for structural strength. Regrettably, there seem to be
no experiments in the literature to document it.

6. Validation by optimum fits of strength and lifetime histograms

For decades, tremendous efforts have been devoted to experimentally study the strength and lifetime distributions of
structures made of quasibrittle materials such as concrete (Weibull, 1939), fiber composites (Chiao et al., 1977; Wanger
et al., 1984; Wagner et al., 1986; Wagner, 1989) and industrial or dental ceramics (Weibull, 1939; Stanley and Inanc, 1985;
Okabe and Hirata, 1995; Salem et al., 1996; Munz and Fett, 1999; Tinschert et al., 2000; Lohbauer et al., 2002; Santos et al.,
2003). The two-parameter Weibull distribution (having zero threshold) has been widely used to fit these histograms.
However, systematic deviations have been observed—first for concrete strength (Weibull, 1939), for which the sizes with
Neq large enough to render brittle response are unattainable, and recently for the strength of coarse-grained or toughened
ceramics on the normal testing scale and fine-grained ceramics on the microscale. The present theory can fit these
deviations, which serves as a partial validation of the theory. The detail fitting algorithm is outlined in Le and Bažant
(2009).

ln λ

ln
 {

ln
 [

1/
 (

1-
P

f)]
}

N = 100

N = 1

N = 500
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Fig. 9. Lifetime distributions calculated by Eq. (40) and its logarithmic approximation.
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6.1. Strength

Fig. 10a–f shows the plots of the strength histograms of various industrial and dental ceramics on the Weibull scale
(zero threshold). The details of the experiments may be summarized as follows: (a) Sintered nitride ceramics (Si3N4),
intended for dense, high strength and high toughness materials for reciprocating engine components and turbo-chargers,
and for metal cutting tools. Gross (1996) tested 27 beams with dimensions 3.1�4�40.4 mm under four-point bending.
(b) Silicon nitride with sintering additive (Si3N4–Al2, O3–Y2O3), which enhances the bending strength and fracture
toughness. Four-point bending tests were carried out on 27 specimens with dimensions 3�4�40 mm (Santos et al.,
2003). (c) Dicor dental ceramic (tetrasilicic fluoromica glass ceramic), tested by four-point-bend beams (Tinschert et al.,
2000). Tested were 30 specimens with dimensions 1.5�3�30 mm. (d) Alumina glass composites. Tested were 30
specimens (Lohbauer et al., 2002) with dimensions 3�4�45 mm under four-point-bend loading. (e) Vitadur Alpha Core
dental ceramics (Alumina-reinforced feldspathic porcelain). Tested were 30 four-point-bend beams Tinschert et al., 2000
with dimensions 1.5�3�30 mm. (f) Zirconia-ZTP dental ceramics (partially stabilized zirconia ceramic). Tested were 30
four-point-bend beams (Tinschert et al., 2000) with dimensions 1.5�3�30 mm.

Despite rather low numbers of the specimens tested, one can discern from Fig. 10a–f that the strength histograms
plotted in Weibull scale are not straight lines, as required by the two-parameter Weibull distribution. As shown by the
solid curves in Fig. 10a–f, these histograms can be fitted as closely as the scatter permits by the present theory, in which
the Weibull scale histogram consists of two parts separated by a relatively abrupt kink. The left tail is a Weibull straight
line, and the core deviates from it to the right as strength sN increases. The core results from a chain of elements with the
Gaussian part of the RVE strength. The kink is smooth but so abrupt that it may be approximated by a point transition at
which both parts are grafted with a continuous cdf slope. The height of the grafting point characterizes the degree of
brittleness of structure, which depends on the ratio of the structure size to the material inhomogeneity size.

To fit this kind of histograms, many investigators recently switched to the three-parameter Weibull distribution, which has
a non-zero threshold. This way, they obtained better fits (Gross, 1996; Duffy et al., 1993; Stanley and Inanc, 1985) which,
however, had a somewhat higher coefficient of variation of errors and an unreasonably low modulus m of the Weibull part.

Aside from the conflict of the three-parameter Weibull cdf with the present nano-mechanical derivation, there is
experimental evidence that this cdf is not correct. Weibull (1939) tested 2868 specimens of Portland cement mortar, and
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Fig. 10. Optimum fits of strength histograms of engineering and dental ceramics: (a) Sintered Si3N4 (Gross, 1996), (b) Sintered Si3N4–Al2 O3–2O3 (Santos

et al., 2003), (c) Dicor dental ceramics (Tinschert et al., 2000), (d) Alumina glass composites (Lohbauer et al., 2002), (e) Vitadur Alpha Core dental ceramics

(Tinschert et al., 2000), (f) Zirconia-ZTP dental ceramics (Tinschert et al., 2000).
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even if these data are plotted in a scale that gives, for the three-parameter Weibull cdf, a straight line, there is a systematic
kink and deviation to the right in the high-probability range (see Fig. 10 in Bažant and Pang (2007)).

A more extensive experimental evidence against the three-parameter Weibull distribution is available for the mean size
effect curve. The three parameter Weibull distribution implies, for the large size limit, a vanishing size effect, with the
strength approaching a horizontal asymptote (Le and Bažant, 2009; Pang et al., 2008). This does not agree with the
experimental observations of the size effect curve for the large size limit (Bažant et al., 2007).

Furthermore, the present theory shows that the zero threshold is a necessary consequence of the activation energy
controlled crack jumps on the nano-scale, and of the hierarchical series-parallel coupling model for the multiscale
transition of strength statistics. In fact, based on the present analysis of chain and bundle models, the three-parameter
Weibull distribution cannot be analytically derived even if one assumes a non-zero threshold of strength cdf at nano-scale
since the parallel couplings will produce multiple thresholds (Eq. (19)).

6.2. Lifetime

Fig. 11a–c presents the lifetime histograms of various fiber composites and engineering ceramics fitted by the present
theory and the two-parameter Weibull distributions. Chiao et al. (1977) studied the lifetime histograms of Kevlar-49 fiber
composites. A total of 30 prismatic bar specimens were loaded in tension at elevated temperature (100–120 1C) under a
constant uniaxial tensile stress, which is about 70% of the mean short-time strength. Munz and Fett (1999) investigated the
lifetime histograms of MgO-doped HPSN (hot-pressed silicon nitride) loaded at the temperature of 1100 1C. Standard four-point
bend tests were used and the applied stress was about 50% of the mean short-time strength.

Similar to the strength histogram, the lifetime histogram is also seen to exhibit two parts in Weibull scale. The lower
part, which has for one RVE the same reach as the tail of the cdf of strength (i.e., cca Pf o0:001), is a straight line. The upper
part is a curve deviating to the right. It is obvious that the two-parameter Weibull distribution cannot fit both parts
simultaneously, and neither can the three-parameter Weibull distribution. The present theory is found to give optimum
fits for these histograms.

Fett and Munz (1991) studied the strength and lifetime histograms of four-point bend beams made of 99.9% Al2O3.
Thirty specimens were used for each histogram testing. Fig. 12 shows experimentally observed strength and lifetime
histograms with the optimum fits by the present theory. With one and the same set of parameters, the present theory is
seen to give excellent fits of both the strength and lifetime histograms. By the optimum fitting, the Weibull moduli for
strength and lifetime distributions are estimated to be about 30 and 1.1, respectively. Based on Eq. (45), the exponent n of
the power-law for creep crack growth in this materials (99.9% Al2O3) can be obtained, and is found to be about 26.

The fitting of these histograms reveals that the grafting probabilities of the strength and lifetime cdf’s are about the same.
This agrees well with the present theory, in which the grafting probability can be calculated as: Pgr ¼ 1�½1�Pgr,1�

Neq . Since the
grafting probabilities Pgr,1 of strength and lifetime cdf for one RVE are the same and the equivalent numbers Neq of the RVEs for
strength and lifetime distributions are about the same, then Pgr for strength and lifetime cdf’s must be about the same.

The most severe check on the theory would be to test the size effect on the mean lifetime. But again, no such test data
seem to exist.

7. Determination of RVE size for highly orthotropic materials, and way to achieve different Neq

It is clear that, to calibrate the strength and lifetime cdf, one must roughly know the RVE size. From experience with
statistically isotropic materials such as concrete and ceramics, l0 is roughly equal to, and only slightly larger than, the FPZ
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width in large notched specimens. The latter is easily identified from the tests of size effect on the mean strength (Bažant
and Kazemi, 1990; Bažant, 2005, 2004; Bažant and Planas, 1998).

In highly orthotropic materials such as uniaxial fiber composites and biological nanocomposites (Gao et al., 2003;
Chen et al., 2007), the problem is more complicated, since the length and width of the RVE are not the same. However, for
fracture initiation under axial tension, the RVE length is probably again roughly equal to the length of the fracture process
zone obtained from the size effect tests (Bažant et al., 1996). This is, of course, a point to be verified.

Within the framework of the present theory, the RVE size can also be determined from the optimum fits of strength
histograms of structures with different sizes or geometries. Unfortunately, it has not been a common practice to test
strength histograms at significantly different sizes. One main difficulty associated with histogram testing at different
structure sizes is that the size range is always limited by the capacity and set-up of loading machines.

Since Neq depends on both the structure size and the stress field, an easier way to obtain different equivalent numbers
Neq of RVEs is to test strength histograms of unnotched specimens with the same overall dimensions but different modes
of loading. For example, if we assume the Weibull statistics, a concrete beam (of length-depth ratio 4:1) in direct tension is
equivalent to a three-point bend beam whose depth is 50-times larger (Bažant and Planas, 1998).

Bullock (1974) tested strength histograms of unidirectional fiber composites (Thornel 300/5208) under both direct
tension and three-point bending. The specimens were made of NARMCO’s 5208 epoxy resin with Union Carbide’s Thornel
300 fibers. The specimens for tensile tests were six-ply coupons, and the volume of specimen was estimated to be about
2117 mm3. The three-point bend specimens had 15 plies and the dimensions of 76.2 �12.7�2.25 mm.
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Fig. 13 shows that the optimum fits of the strength histograms of these two specimens are reasonably good. The reason
why the histograms are not smooth is that too few specimens were tested (13 specimens in direct tension and 26 in
flexure). The deviations of these histograms from the two-parameter Weibull distribution are different because of the
finiteness of the chain. The grafting probabilities for the strength of the cdf’s of these two specimens are seen to differ by
two orders magnitude. The reason is that, in the bending specimen, the decay of stress from the maximum stress point in
both the transverse and longitudinal directions causes Neq to be much smaller. According to the fits, the volume of one RVE,
V0, for Thornel 300/5208 under tension is found to be around 0.11 mm3.

Due to the excessively small number of test specimens, these histograms can be fitted equally well by the two-
parameter Weibull distribution. The difference could be detected only if the number of data points were large enough for
the Weibull tail of one RVE to get sampled.

Previously, the strength statistics of highly orthotropic materials such as unidirectional composites has been modeled
by a chain of wide bundles (Harlow and Phoenix, 1978, 1979). However, such a model is insufficient because the Weibull
tail for one RVE would be so remote (e.g. Pf o10�8) that, contrary to experience, the Weibull distribution of strength would
be reached only for abnormally large structures (e.g. Neq4109). Yet, the Weibull distribution is seen to occupy in Fig. 13 a
major portion of the cdf of strength. It is for this reason that the RVE strength statistics requires hierarchical model with no
more than two elements coupled in parallel.

8. Size effects on mean structural strength and lifetime

Based on the weakest-link model, the mean structural strength and lifetime can be calculated as:

Mean strength : sN ¼

Z 1
0

YN
i ¼ 1

½1�P1ðsNsiðxiÞÞ� dsN ð46Þ

Mean lifetime : l ¼
Z 1

0

YN
i ¼ 1

½1�P1ðs0siðxiÞ,lÞ� dl ð47Þ

where P1¼cdf of the strength or lifetime of one RVE. The cdf of both the structure strength and lifetime can then be
calculated by the nonlocal boundary layer method. Fig. 14 shows the calculated size effect on both the mean structural
strength and lifetime of 99.9% Al2O3, based on the strength and lifetime cdf’s calibrated by Fett and Munz’s histograms
(Fig. 12). It can been seen that, for the large size limit, the curves of size effect on both the mean strength and the lifetime
tend to straight lines in the logarithmic plot. This agrees well with the power-law size effects of Weibull statistics because
the strength and lifetime cdf’s approach the Weibull distribution (Eqs. (25) and (44)) as the structure size increases. For
small sizes, both size effect curves deviate from the straight line, because the fracture process zone size (or the size of
material inhomogeneities) is not negligible compared to the structure size.

It is impossible to obtain analytical expressions for sN and l, but an approximate analytical formula for the mean
strength has been obtained by asymptotic matching (Bažant, 2004, 2005):

sN ¼
Na

D
þ

Nb

D

� �c=m
" #1=c

ð48Þ

Here parameters Na, Nb, c and m are to be determined by asymptotic properties of the size effect curve. It has been shown
that this size effect formula agrees well with the experiments on concrete (Bažant et al., 2007) and on fiber composite
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Fig. 14. Calculated size effect curves on the mean structural strength and lifetime of 99.9% Al2O3.
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(Bažant et al., 2006), as well as with the predictions of the nonlocal Weibull theory (Bažant and Novák, 2000a, 2000b),
which is an older theory (Bažant and Xi, 1991) capable of describing the mean statistical size effect and the failure
statistics of quasibrittle structures in the central range of cdf but not in the tail.

The size effect equation (Eq. (48)) converges to the large-size asymptote ðNb=DÞ1=m, which is a power-law represented
by a straight line of slope �1/m in the size effect plot of logsN versus log D. Calculation of the mean strength from the
Weibull distribution shows that the size effect exponent, m, must be equal to the Weibull modulus of strength distribution,
which represents the slope of the left tail of strength histogram plotted in Weibull scale. The other three parameters,
Na, Nb, and c, can be determined by solving three simultaneous equations expressing three asymptotic conditions,
½sN �D-l0

, ½dsN=dD�D-l0
, and ½sND1=m�D-1.

Within the framework of the present theory, the structural strength statistics must evolve with increasing size D

through three asymptotic regimes:

(1) for small sizes [roughly Neq 2 ð1,20Þ], the cdf of strength is virtually Gaussian.
(2) In the intermediate range of not too large sizes [roughly Neq 2 ð50,500Þ], the chance that the strength of the weakest

RVE would fall into the power-law tail Pf o10�3 is still very small, and so the weakest RVE is likely to be in the
Gaussian core. This means that the strength distribution should tend to the extreme value distribution of Gaussian
variables, which is the Gumbel distribution (Fisher and Tippett, 1928; Ang and Tang, 1984; Gumbel, 1958; Haldar and
Mahadevan, 2000; Bazant, 2000; van der Hofstad and Redig, 2006), representing the so-called intermediate asymptotic
regime in the sense of Barenblatt (1978, 2003).

(3) For large sizes (roughly Neq45000Þ, there is a very high chance that the strength of the weakest element would be in
the power-law tail Pf o10�3. This means that the strength cdf must converge to the extreme value distribution for
power-law tails, which is the Weibull distribution (Fisher and Tippett, 1928; Ang and Tang, 1984; Haldar and
Mahadevan, 2000).

Computations show, however, that the Gumbel statistics is not approached closely, and that the cdf for any size may be
well approximated as a Gauss–Weibull grafted distribution, with the grafting point moving from left to right as the
structure size increases.

Some researchers proposed that the deviations from the classical Weibull statistics can be explained by size and shape
dependence of the Weibull modulus, m. Batdorf (1982) derived a failure envelope of unidirectional fiber composites, which
relates the failure stress to the critical number of fiber breaks. Based on this envelope, he found the curve of the size effect
on failure stress to consist, on the log–log scale, of a sequence of linear segments of decreasing slopes, m, supposed to
imply a size-dependent Weibull modulus (Batdorf, 1982). However, this interpretation is questionable for two reasons:

(1) The failure envelope represents the mean behavior, which cannot predict the size effect on the cdf of strength, and so it
is impossible to infer a size effect on the Weibull modulus from this kind of analysis.

(2) The Weibull modulus is obtained from the mean size effect curve, which implies the hypothesis that Weibull statistics
applies. However, the present theory shows that the Weibull statistics applies only if the size of structure is
sufficiently large.

The present theory implies that Weibull modulus, m is an intrinsic material property, determined by the multiscale
transition form the nano-scale to the RVE scale; m is equal to the minimum of the sum of the Weibull tail powers among
all the possible cuts separating the hierarchical model into two halves (Bažant et al., 2009). At macro-level, if the structure
follows the weakest-link model, then the exponent of the power-law tail, which is equal to the Weibull modulus, remains
unchanged.

It has been argued that the mean lifetime and the mean strength can be related by an equation of the same form as
Eq. (38) (Bažant et al., 2009; Bažant and Le, 2009; Le et al., 2009). This is true for sufficiently large structures ðNeq4500Þ for
which the strength and lifetime cdf are approaching the Weibull distribution.

For small size structures, whose strength cdf is predominantly Gaussian, the mean strength and mean lifetime are not
related by a simple power-law. However, calculation (Fig. 14) shows that the size effect on mean lifetime can be
reasonably approximated by an equation of a similar form as Eq. (48):

l ¼
Ca

D
þ

Cb

D

� �j=m
" #ðnþ1Þ=j

ð49Þ

where m¼Weibull modulus of strength cdf, and n¼exponent of power-law for creep crack growth. Similar to the size
effect on the mean strength, the values of Ca, Cb and s can be derived by matching three asymptotic conditions: ½l�D-l0

,
½dl=dD�D-l0

, and ½lDðnþ1Þ=m�D-1. Note that parameter j in Eq. (49) is generally not equal to parameter c in Eq. (48) based
on the fitting of the size effects on the mean strength and lifetime for the entire size range. Nevertheless, in the previous
studies (Bažant et al., 2009; Bažant and Le, 2009; Le et al., 2009) it was assumed that c¼j, which is good enough only for
the fitting of size effect curves on the strength and lifetime of large structures, particularly for Neq4500.
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It is obvious that the size effect on the mean structural lifetime is much stronger than that on the mean strength. This is
physically plausible. Consider two geometrically similar beams, with size ratio 1:8. Let the nominal strength of the small
beam be B. Due to the size effect on the mean strength, the nominal strength of the large beam is about B=2. If one applied
a nominal load B=2 to both beams, the large beam will fail within standard laboratory testing period (i.e. about 5 min)
while the small beam is expected to survive at that load for decades if not forever.

An important practical merit of the present theory is that it provides a way to determine the strength and lifetime
distributions without any histogram testing. If the test data on the mean curve of the size effect on the mean strength and
on the rate of crack growth are available, they can be used to calibrate the present model. This will then yield not only the
strength distribution but also the lifetime distribution.

Although the need to fabricate similar specimens of significantly different sizes may be regarded as inconvenient, the
curve of mean size effect can be calibrated with much fewer tests. This curve also exhibits much less error because the mean
generally has a much smaller coefficient of variation than the individual data (precisely 1=

ffiffiffiffiffiffi
Nd

p
times smaller, where

Nd¼number of individual data points). A similar property applies to the regression line (such as the size effect curve). Testing
for the mean size effect requires three to four different sizes with only 3–6 specimens for each size. For the histogram testing,
at least a few hundred specimens are needed in order to obtain any information on the left tail of probability distribution.

9. The stress-life curve of quasibrittle structures under constant load and its size effect

In Section 5.2, the power-law for creep crack growth was applied to the lifetime test for one RVE to derive its lifetime
distribution (Eq. (37)). Now we use the same equation to study the stress-life curve. Let us consider constant stresses of
two levels, s01 and s02, to be applied separately to the same RVE. By Eq. (37), the random lifetimes associated with these
two stress levels can be related as:

l2 ¼
sn

01

sn
02

l1 ð50Þ

Similarly, we can consider nominal stresses of two levels (s1 and s2) to be applied to a structure with many RVEs. The
stress in each RVE may be considered to be proportional to the nominal stress, and so the ratio of stresses on each RVE for
these two load cases is s1=s2. Therefore, we can use Eq. (50) to describe the relation between the random lifetime and the
applied stress for each RVE.

At the reference stress s1, the failure probability of entire structure is Pf ¼ 1�
QN

i ¼ 1½1�P1ðlÞ�. Then, by Eq. (50), the
failure probability of structure subjected to nominal stress s2 is Pf ¼ 1�

QN
i ¼ 1f1�P1½ðsn

1=sn
2Þl�g. Therefore, the mean

structural lifetimes for these two stresses can be related by sn
1l1 ¼ sn

2l2, which means that the stress-life under constant
load follows the law:

l ¼ C=sn
0 ð51Þ

where C¼constant. This inverse power-law has the same form as the stress-life curve of structures under fatigue load
(Basquin’s law, 1910), although the exponents for these two load cases are very different.

As shown in Fig. 15a and b, Eq. (51) agrees well with the recent experimental results on the stress-life curve of 99.9%
Al2O3 and tetragonal zirconia polycrystal (TZP) (Kawakubo, 1995). Eq. (51) predicts the structural lifetime at low stress
based on the structural lifetime at high stress. From the temperature effect on the fracture energy of concrete (Bažant and
Prat, 1988), one finds that n� 24. Let ft denote the tensile strength of concrete obtained in a test lasting about 5 min. For
applied stress 0.2ft, Eq. (51) predicts the lifetime of the specimen to be about 5:7� 1011 years, which is longer than the age
of universe (1.375�1010 years); for 0.5ft, Eq. (51) predicts about 160 years.
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Analyzing the size effect on the mean structural lifetime (Eq. (49)), one obtains the constant C in Eq. (51), which yields:

sn
0l ¼ C ¼ sn

0

Ca

D
þ

Cb

D

� �j=m
" #ðnþ1Þ=j

ð52Þ

As shown in the log–log plot of Fig. 15c, the stress-life curve shifts to the left horizontally as the structure size increases.
Eq. (52) makes it possible to predict the mean lifetime of large engineering structures under moderate stress from the
lifetime tests of a small structure under high stress.

10. Effect of temperature on strength and lifetime distributions

The present theory justifies the Arrhenius factor for the temperature dependence of strength and lifetime distributions.
This dependence naturally arises from the temperature dependence of the crack growth rate on the nano-scale, which is
transferred over the scales without any change to the crack growth rate on the macro-scale. The Arrhenius type of
temperature effect on the growth rate of macro-cracks in concrete has been shown to lead to the correct temperature
dependence of the fracture energy of concrete (Bažant and Prat, 1988).

Generally, many activation energy barriers exist on the surface of the free energy potential of a nano-element (Krausz
and Krausz, 1988). Various extraneous factors, such as temperature range and corrosive agents, influence the dominant
activation energy barrier, Q0. Its value may be assumed to dominate and to be approximately independent of temperature,
T, within a certain range. This simplification allows avoiding the details of the transition rate theory, with its changing
activation energy barriers.

Consider that one RVE is subjected to two different temperatures T1 and T2, and assume that this temperature
difference causes no change in Q0. Based on Eq. (36), the RVE strengths at these two temperatures are related as:

s2 ¼ s1exp
Q0

ðnþ1Þk

1

T2
�

1

T1

� �� �
ð53Þ

provided that the change of T causes no chemical reactions altering the material properties. Eq. (53) makes it possible to
predict the cdf of structure strength at temperature T2 if the cdf of strength at temperature T1 is known:

Pf ðsÞjT2
¼ Pf ðC1sÞjT1

ð54Þ

where

C1 ¼ exp
Q0

ðnþ1Þk

1

T2
�

1

T1

� �� �
: ð55Þ

Similar analysis also applies to the lifetime distribution. Based on Eq. (37), the cdf of structural lifetime at temperature
T2 can be deduced from the lifetime cdf at temperature T1:

Pf ðlÞjT2
¼ Pf ðC2lÞjT1

ð56Þ

where

C2 ¼ exp
Q0

k

1

T2
�

1

T1

� �� �
ð57Þ

On the Weibull scale, the strength cdf or lifetime cdf at temperature T2 can simply be obtained through a horizontal shift of
the strength or lifetime cdf at temperature T1 by the distance of ln C1 or ln C2, respectively.

Chiao et al. (1977) investigated the lifetime histograms of organic fiber (Kevlar 49) composites at elevated temperature
(100 and 110 1C). Bar specimens were subjected to a constant uniform tensile stress equal to 67% of the mean tensile
strength. Here the lifetime histogram at 100 1C is first fitted by the nonlocal boundary layer approach, and the lifetime
histogram at 110 1C is then obtained by extrapolating the calibrated lifetime cdf for 100 1C, based on Eq. (56).

Fig. 16 shows that the horizontal shift predicted by the present theory yields excellent fits of both histograms. These fits
show that the dominant activation energy barrier of this organic fiber composite in the temperature range 100–110 1C is
Q0¼0.79 eV (and Q0=k¼ 9225 K).

The temperature dependence of the strength and lifetime cdf’s thus provides an effective way to determine the
dominant Q0. Eq. (53) indicates not only the effect of temperature on the random strength of one RVE, but also the
temperature dependence of the mean strength of structure. If the mean structural strengths, s1 and s2, are measured at
two different temperatures T1 and T2, and if the temperature difference is not so large as to cause a change of Q0, then

Q0 ¼ ðnþ1Þk log
s2

s1

� �
1

T2
�

1

T1

� ��1

ð58Þ

where exponent n of the power law for crack growth rate can be obtained by the standard test measuring the crack growth
velocity. Alternatively, if the mean structural lifetimes l1 and l2 are measured at two different temperatures, then the
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dominant activation energy barrier can be determined without knowing n, i.e.,

Q0 ¼ klog
l2

l1

 !
1

T2
�

1

T1

� ��1

ð59Þ

If test data are available for both the mean structural strengths and the lifetimes at two different temperatures, then, based
on Eqs. (58) and (59), one can determine both the dominant activation energy barrier Q0 and the exponent n of the power-
law for crack growth rate.

11. Summary of new results

Various recently published results are given better and more coherent justifications, and are amalgamated into a
common context to set up a unified theory of statistical strength, crack growth rate and lifetime of structures.
Furthermore, several new results are obtained here to complete the theory. They are as follows:

1. The nano-crack propagating through an atomic lattice is an unnecessarily restrictive basis for the theory. The same
results are obtained if the nano-scale crack propagates through a disordered nano-structure in a sequence involving
many jumps over activation energy barriers.

2. The previous analytical proof of the additivity of power-law tail exponents of the cdf of bundle strength (or parallel
coupling) model (Bažant and Pang, 2006, 2007) was restricted to perfectly brittle and perfectly ductile elements. Here it
is shown that the analytical proof can be extended to gradually softening elements.

3. Daniels’ proof that the strength of a bundle of brittle elements converges to the Gaussian distribution is extended to a
bundle of gradually softening elements, and the additivity of tail exponents is also proven.

4. The stress-life curve of quasibrittle structures under constant load and its size effect are derived theoretically.
5. A random walk model for the propagation of crack front through atomic lattice is here refined by proper boundary

conditions and solved for a simplified situation by Laplace transform.
6. Further comparisons with experimental data strengthen the support for the present theory.

12. Concluding remark

The present research demonstrates that the size effect on structure strength or lifetime is a crucial distinguishing
characteristic of the failure properties of quasibrittle materials. Without testing for the size effect, the identification of
material properties is ambiguous, and also more tedious. So far mostly ignored in the testing of ceramics and composites,
the size effect has long been studied in concrete research.
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Appendix A. The random walk of a crack in an atomic lattice

Atomic lattice crack: As a crack propagates through an atomic lattice, the separation d between the opposite atoms
across the nano-crack gradually increases by jumps, as shown in Fig. 17a. The force Fb transmitted between the opposite
atoms and the corresponding interatomic potential function PbðdÞ are related as Fb ¼ @PbðdÞ=@d and plotted in Fig. 17b and
c. The pair with the peak value of the bond force, which corresponds to the point of maximum slope of the curve PbðdÞ
(state 3 in Fig. 17b and c), is normally defined as the front of a nano-scale cohesive crack. The real nano-crack ends at the
atomic pair where the bond force drops to 0 (state 5 in Fig. 17b and c), at which point the adjacent lattice cells may
undergo a gross distortion.

The atomic pairs between states 3 and 5 represent the cohesive zone (or the FPZ), defined as the zone in which the bond
force decreases with increasing separation (Barenblatt, 1959). State 4 represents the limit of stability, at which the curve
PbðdÞ reaches a certain critical downward slope (equal in magnitude to the stiffness of the confinement within the
surrounding solid). State 5, at which the atomic pair separation greatly increases, must lie immediately next to state 4
because the transition from state 4 to state 5 is unstable, and thus dynamic and fast. A continuum model of this process
leads to the diagram already shown in Fig. 2b, where the undulations correspond to the successive jumps da over the
activation energy barriers.

Random walk model: The possibility of both forward and backward crack front jumps suggests that the nano-crack
propagation should be treated as a random walk problem. The movement of the front of the cohesive crack (state 3 in
Fig. 17a) represents a random walk biased by the energy release rate favoring the forward jumps and restricted by the tip
(state 5) of the real crack (this contrasts with a macro-scale cohesive crack whose front cannot jump backward because of
irreversible damage at the macro-level).

The lattice boundary at x¼ la, in front of the crack, is an absorbing boundary of the random walk of crack front. Before
the real crack opens, the opposite boundary at x¼0 is a reflecting boundary of the random walk. However, the situation
gets more complicated after the bonds of the atomic pair at crack mouth separate by several atomic spacings. This break,
which produces the real crack (state 5), is irreversible. It is a sudden instability emitting a sound wave carrying energy
which cannot be recovered. The tip of the real crack (state 5) represents a reflecting boundary that moves forward as a
function of the random walk. One thus faces a generalized random walk problem, which is beyond the present study.

The simplest model for nano-crack propagation is a one-dimensional biased random walk on a lattice with a constant
stress-driven drift. The probability density for the position of the random walk satisfies the Fokker–Planck equation, whose
solution is related to the first passage problem (Redner, 2001). As shown below, the diffusion of a crack becomes
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Fig. 17. Fracture of atomic lattice block.
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significant compared to its stress-driven drift only if the Péclet number roughly satisfies the criterion Pe o4, where Pe
¼ 2ðla=daÞðVa=VT Þ. Although diffusion always dominates in the limit of zero stress, this condition is not met in normal
situations. Indeed, for la � 300da and the aforementioned values of Va and VT , one gets Pe � 80, and the failure probability
corresponding to Pe¼2 is of the order of 10�12 per lifetime, which is far too low to be of practical interest. Hence, the
random walk aspect can safely be neglected compared to nano-crack drift driven purely by stress, which justifies the
preceding analysis.

The random walk can nevertheless be important for certain situations, such as corrosion assisted fracture at very low
applied stress. So, to show the nature of the problem, let us consider here at least a simplified one-dimensional random
walk with fixed boundaries, in which the crack tip, initially located at x0, moves at the drift velocity v¼ daf1 (Fig. 18a). For
simplicity, the forcing (or bias) is assumed to be constant (uniform), even though in fracture mechanics it actually varies
with the crack length.

When the crack-tip moves to the right, the crack propagates; when to the left, it shortens (i.e., is closing). At x¼ 0, there
is a reflecting boundary, and at x1¼ la an absorbing boundary. When the crack tip forms at x¼0, it will begin to move in the
positive x direction. The random walk of the crack tip can at most reach x¼ la, which represents a complete fracture of the
lattice block (in reality, the lattice block will fail earlier due to instability, which is not captured by the random walk
model). The probability p(x,t) at time t of the crack tip being at position x, called the occupation probability, satisfies the
Fokker–Plank equation (Redner, 2001; Risken, 1989):

@pðx,tÞ

@t
þv

@pðx,tÞ

@x
�D @

2pðx,tÞ

@x2
¼ 0 ð60Þ

where D¼ 1
2 nTd

2
ae�Q0=kT¼diffusivity. The absorbing and reflecting boundary conditions are p(x¼ la, t)¼0 and

vpð0,tÞ�D½@pðx,tÞ=@x�jx ¼ 0 ¼ 0, respectively. The initial condition is: pðx,0Þ ¼ dðx�x0Þ, where dðxÞ ¼ Dirac delta function.
To solve Eq. (60), one may apply the Laplace transform in the time domain (s¼transform parameter):

spðx,sÞ�pðx,0Þþv
@pðx,sÞ

@x
¼D @

2pðs,tÞ

@x2
ð61Þ

The general solution of Eq. (61) is simply given by:

pðx,sÞ ¼ A1expða1xÞþA2expða2xÞ ðxrx0Þ ð62Þ

pðx,sÞ ¼ A3expða1xÞþA4expða2xÞ ðx4x0Þ ð63Þ

where a1,2 ¼ ðv7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2þ4Ds
p

Þ=2D¼ laðPeþPsÞ, Pe¼ vla=2D¼ 2ðla=daÞðVa=VT Þ and Ps ¼ la
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2þ4Ds
p

=2D. The Péclet number,
Pe, measures the relative dominance of stress-driven drift over stress-independent diffusion. Constants A1, A2, A3 and A4

are to be determined by the boundary and initial conditions: (1) pðla,sÞ ¼ 0, (2) �vpð0,tÞþD½@pðx,sÞ=@x�jx ¼ 0 ¼ 0,
(3) Continuity of p(x,s) at x¼x0: p(x¼x0

þ
,s)¼ p(x¼x0� ,s), (4) Discontinuity of spatial derivative of p(x,s) at x¼x0:

v = drift velocity 
      of crack tipx0

v
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Fig. 18. (a) 1-D idealization of random walk of crack tip and (b) mean failure time as a function of Péclet number.
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½@pðx,sÞ=@x�jx ¼ xþ
0
�½@pðx,sÞ=@x�jx ¼ x�

0
¼�1=D. By solving for these constants, one obtains the flux of occupation probability at

the absorbing boundary as:

jðla,sÞ ¼ �D @pðx,sÞ

@x
jx ¼ la ð64Þ

jðla,sÞ ¼
ePeð1�x0=laÞ½Pe sinhðx0Ps=laÞþPscoshðx0Ps=laÞ�

Pe sinhPsþPscoshPs
ð65Þ

The Laplace transform of the flux of occupation probability j(la, s) can be written as:

jðla,sÞ ¼

Z 1
0

jðla,tÞe�stdt ð66Þ

jðla,sÞ ¼

Z 1
0

jðla,tÞ 1�stþ
s2t2

2!
. . .

� �
dt ð67Þ

jðla,sÞ ¼ E 1�s/tSþ
s2

2!
/t2S . . .

� �
ð68Þ

where E is the exit probability at x¼ la, which equals 1 because the system is bounded; /tS¼ the mean exit time, which is
equivalent to the mean failure time of the lattice block. The MacLaurin expansion of the Laplace transform of the
occupation probability thus contains complete information about all the moments of the first passage time. In particular,
we can easily compute the mean /tS:

/tS¼�
@jðla,sÞ

@s

				
s ¼ 0

ð69Þ

It should be noted that there are other analytical methods to arrive directly at the mean first passage time (Redner, 2001;
Risken, 1989), but our approach also provides the variance and all higher moments, if desired.

Substituting Eq. (64) into Eq. (69), one obtains a simple formula for the mean exit time, or the mean failure time, of the
lattice block:

/tS¼
l2a

2D
1�x0=la

Pe
þ

coshPe

Pe2ePe
�

coshðPex0=laÞ

Pe2ePex0=la

� �
ð70Þ

Fig. 18b shows the mean failure time /tS as a function of Péclet number Pe. For small Péclet numbers ðPe-0Þ, the mean
failure time is the characteristic time for nano-crack diffusion across the lattice block, l2a=2D. For large Pe, the mean failure
time approaches ðla�x0Þ=v, which is the time for stress-driven drift across the lattice block without significant back
diffusion. As shown in Fig. 18b, the transition between diffusion dominance and drift dominance occurs within a relatively
narrow range of Pe values. The analytical solution shows that, for Pe44, the fracture process is well approximated by
purely stress-dependent drift.

Nevertheless, at extremely low stress corresponding to a very low Péclet number, diffusion dominates, and the random
walk analysis then shows that the far left-tail ðPf o10�12

Þ of strength cdf follows an exponential function instead of a
power law. So, an exponential tail of the strength distribution must in fact lie far beyond the power-law tail considered
here. However, this tail corresponds to such low failure probability that it is unlikely to be of interest in most practical
engineering problems.
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Bažant, Z.P., Jirásek, M., 2002. Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. ASCE 128 (11), 1119–1149.
Bažant, Z.P., Kazemi, M.T., 1990. Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock

and concrete. Int. J. Fract. 44, 111–131.

J.-L. Le et al. / J. Mech. Phys. Solids 59 (2011) 1291–1321 1319



Author's personal copy
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Bažant, Z.P., Planas, J., 1998. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press.
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a Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
b Departments of Civil Engineering and Materials Science, Northwestern University, 2145 Sheridan Road, CEE/A135, Evanston, Illinois 60208, United States

a r t i c l e i n f o

Article history:

Received 10 July 2010

Received in revised form

16 January 2011

Accepted 2 March 2011
Available online 21 March 2011

Keywords:

Fracture

Statistical modeling

Probabilistic mechanics

Side effect

Structural safety

a b s t r a c t

This paper extends the theoretical framework presented in the preceding Part I to the

lifetime distribution of quasibrittle structures failing at the fracture of one representa-

tive volume element under constant amplitude fatigue. The probability distribution of

the critical stress amplitude is derived for a given number of cycles and a given

minimum-to-maximum stress ratio. The physical mechanism underlying the Paris law

for fatigue crack growth is explained under certain plausible assumptions about the

damage accumulation in the cyclic fracture process zone at the tip of subcritical crack.

This law is then used to relate the probability distribution of critical stress amplitude to

the probability distribution of fatigue lifetime. The theory naturally yields a power-law

relation for the stress-life curve (S-N curve), which agrees with Basquin’s law.

Furthermore, the theory indicates that, for quasibrittle structures, the S-N curve must

be size dependent. Finally, physical explanation is provided to the experimentally

observed systematic deviations of lifetime histograms of various ceramics and bones

from the Weibull distribution, and their close fits by the present theory are demon-

strated.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For many structures, such as aircraft, ships, bridges and biomedical implants, the fatigue lifetime is an essential aspect
of design. However, when a long lifetime is required, it is next to impossible to obtain the lifetime histogram purely
experimentally, by waiting until the test structure or material specimen fails. Therefore, one must rely on a realistic theory
of failure probability that can be calibrated and verified indirectly through its predictions other than the histograms of
fatigue strength and lifetime.

The concept of fatigue lifetime, which is usually characterized in terms of the stress-life (S-N) curve representing the plot
of the applied nominal stress amplitude versus the critical number of load cycles, was pioneered by Wöhler (1860), who
conducted rotating bend tests of fatigue lifetime of alloys for railroad car axles. Basquin (1910) subsequently proposed a
simple power-law relation between the lifetime and the stress amplitude for fully reversed, constant-amplitude fatigue
loading. The minimum-to-maximum stress ratio and the average stress have further been shown to affect the S-N curve
significantly (Gerber, 1874; Goodman, 1899; Soderberg, 1939; Morrow, 1968), though not its power-law form.
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After the advent of fracture mechanics, it has generally been agreed that the fatigue lifetime should be determined from
the growth rate of a fatigue crack. Paris and Erdogan (1963) proposed a power-law for the fatigue crack growth rate, called
the Paris law, which expresses this rate as a power-law function of the stress amplitude. Its integration up to the critical
crack length yields the fatigue lifetime. The resulting stress amplitude–lifetime relation follows the same power law as the
Basquin law.

Various aspects of the Paris law have been researched for decades. Weertman (1966) and Rice (1967) independently
proposed damage accumulation models derived on the basis of tensile yielding or slip in the reversed plastic zone of
metals ahead of the crack. Considering the plastic superposition for unloading, Rice (1967) showed that the size of the
reversed plastic zone, which is mostly embedded within the FPZ for monotonic loading and determines the propagation of
a fatigue crack, is proportional to DK2=f 2

y (where DK ¼ stress intensity factor amplitude and fy¼yield strength of metal).
Another type of damage model considers the cyclic plastic strain in the reverse yield zone at the crack tip (Coffin, 1962).
These plasticity-based models for metals have predicted the exponent of Paris law to be 4, in agreement with the
experimental observations for most metals.

For quasibrittle materials, experiments showed that the Paris law is still applicable but the exponent of Paris law, n, is
significantly higher, specifically n� 10 for concrete (Bažant and Xu, 1991), and n� 30 for both alumina ceramics (Ogawa,
1995) and zirconia dental ceramics (Studarta et al., 2007a). However, a theoretical justification of Paris law for quasibrittle
materials has been lacking and will be attempted here.

For decades, extensive efforts have been devoted to probabilistic modeling of fatigue lifetime based on histogram testing
as well as theoretical analysis. A simple way to model the fatigue lifetime is to directly implement the cyclic loading history
into the creep lifetime model (Phoenix, 1978a,b; Tierney, 1983). However, such an approach is not consistent with the
experimental observations in two respects: (1) The model always predicts that the structure would fail slower under a cyclic
load varying between Pmin and Pmax than it would fail under a constant load equal to Pmax, whereas the experiments show
that under the cyclic loading the failure may come faster, which is explained by a build-up of residual stresses (Suresh, 1998).
(2) The model predicts the exponents of the power laws for the S-N curves for constant and cyclic loading to be the same.
However, recent experiments on ceramics show these exponents to be very different (Kawakubo, 1995).

A more sophisticated approach was to model the fatigue crack propagation probabilistically as a Markov process
(Sobczyk and Spencer, 1992; Mihashi, 1983). However, various assumptions with no physical justification had to be
introduced for the transition rates of this process. A simplified approach was to randomize the parameters of the Paris law
by a certain stationary stochastic process (Yang et al., 1983; Yang and Donath, 1983; Yang and Manning, 1991), but the
distribution functions for its parameters again lacked physical justifications.

Besides various theoretical attempts for fatigue lifetime distribution, the statistics of fatigue lifetime of quasibrittle
materials, such as engineering and dental ceramics and cortical bones, is often modelled, for the sake of simplicity, by
some empirical probability density function (pdf). The most widely used pdf’s are the two- and three- parameter Weibull
distributions (Studarta et al, 2007a,b; Sakai and Hoshide, 1995). However, it is found that the two-parameter Weibull
distribution does not fit the histograms well. The three-parameter Weibull distribution improves the fits, but its finite
threshold was recently shown to be impossible for strength and lifetime statistics (Bažant et al., 2009; Pang et al., 2008).
Furthermore, different types of pdf’s with the same mean and same variance have very different tails within the range of
design lifetimes corresponding to a tolerable failure probability such as o10�6 (Melchers, 1987; Duckett, 2005; NKB,
1978). For instance, when the Weibull modulus is 24, the distance between the failure load of probability Pf¼10�6 and the
mean failure load, measured in terms of the standard deviations of strength, nearly doubles when the cdf of structure
strength changes from Gaussian to Weibullian. For a much smaller Weibull modulus, which is typical for lifetime
distribution of quasibrittle structures, this distance becomes still much larger (Bažant et al., 2009; Le and Bažant, 2009;
Pang et al., 2008). Hence, a mechanics-based theory is necessary and is attempted here.

Based on the theoretical framework presented in the preceding Part I (Le et al., this issue), we will first derive the
probability distribution of fatigue strength, defined as the critical stress amplitude for a given number of cycles and a given
minimum-to-maximum stress ratio. The probability distribution of fatigue lifetime will then be deduced from the cdf of
fatigue strength and the law of fatigue crack growth.

2. Statistics of fatigue strength on the nanoscale

A simple and clear physical basis for the probability of fracture growth exists only on the atomic scale. The jumps of the
front of an interatomic crack represent a quasi-steady process because, even at the rate of missile impact, the interatomic
bonds break at roughly the rate of only one per 100 thermal vibrations of an atom. Consequently, on the atomic scale, the
crack jump probability must be the same as the crack jump frequency. So, following Bažant and Pang (2007) and Le et al.
(this issue, Part I), we begin by analyzing the fatigue fracture of a nanoscale element.

As shown in Fig. 1(a), we consider the structure to be subjected to a cyclic load, which can be characterized by two
quantities: the stress amplitude Ds¼ smax�smin and the stress ratio R¼ smin=smax. The corresponding stress history for a
nanoscale element is hard to determine, especially for the first few cycles during which the residual stress field builds up
rapidly. However, when focused on the high cycle fatigue, the first few cycles are not of particular interest. After a few
cycles, the stress profile for the nanoscale element stabilizes (Fig. 1(b)). The stress amplitude on the nanoscale
Dt¼ tmax�tmin and the nanoscale stress ratio Rt ¼ tmin=tmax can thus be related to the stress amplitude Ds and the stress
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ratio R on the macroscale: Dt¼ c1Ds and Rt ¼ c2R. Parameters c1 and c2 are empirical but could conceivably be determined
through a detailed micro-mechanical analysis of the build-up of residual stresses.

Consider the fracture of a nano-element, either an atomic lattice block or a disordered nano-structure (Fig. 1 in Le et al.,
this issue, Part I). From the transition rate theory (Eqs. (4)–(6) of Part I), the frequency of failure of a nano-element under
constant stress t can be written as

fa ¼ nT e�Q0=kT

Z ac

a0

VaðaÞ da
� �

t2

E1kT
ð1Þ

where Q0 is the dominant activation energy barrier on the free energy potential surface, k the Boltzmann constant, T the
absolute temperature, and nT ¼ kT=h, h¼ 6:626� 10�34 Js¼Planck constant¼(energy of a photon)/(frequency of its
electromagnetic wave), where VaðaÞ is the activation volume, a the relative crack length¼a=la, a the effective crack length
based on the equivalent linear elastic fracture mechanics, la the characteristic dimension of the nano-element, and E1 the
Young’s elastic modulus of the nano-element.

For the cyclic stress at the nanoscale, t¼ tðtÞ, it may be assumed that the energy bias between two subsequent
equilibrium states depends only on the current stress, but not on the stress history. Therefore, for a given number of cycles
N0, the frequency of occurrence of failure events is

fa ¼
nT e�Q0=kT

N0tc

Z ac

a0

VaðaÞ da
� � Z N0tc

0

t2ðtÞ

E1kT
dt ð2Þ

where tc the duration of each cycle. At the atomic scale, there is no residual stress build-up at the crack tip, and an applied
compressive stress cannot cause any breakage of atomic bonds or any rupture of nano-particle connections. Therefore, the
compressive stress does not contribute to the failure of the nano-element. For the stress history depicted in Fig. 1(b),
Eq. (2) becomes

fa ¼
e�Q0=kT

3E1h

Z ac

a0

VaðaÞ da
� �

ðt2
maxþtmax/tminSþ/tminS

2
Þ ð3Þ

where /xS¼maxðx,0Þ. Since it is realistic to assume a quasi-steady process (Le et al., this issue), the failure probability Pf

of the nano-element is proportional to the frequency of failure events. Therefore,

PfpCT f ðRtÞDt2 ¼ CT f ðRtÞðc1DsÞ2 ð4Þ

where f ðRtÞ ¼ ð1þ/RtSþ/RtS2Þ=ð1�RtÞ
2, CT ¼HT ½

R ac

a0
VaðaÞ da�, and HT ¼ e�Q0=kT=3E1h. Eq. (4) shows that the distribution

of fatigue strength of a nano-element follows a power law with zero threshold.

3. Fatigue growth rate of subcritical crack at different scales

In the previous studies (Bažant et al., 2009; Le et al., 2009; Bažant and Le, 2009; Le et al., this issue), it was shown that
the growth rate of subcritical crack provides a link between the cdf of monotonic strength and the cdf of creep lifetime. The
cyclic crack growth law can provide the same, and it has also been used as the damage accumulation law (Christensen,
2008) to account for the cyclic loading history with varying loading amplitude.

In fatigue analysis, a realistic damage accumulation law is needed for all material scales involved in the multi-scale
transition of the fatigue strength statistics (see the next section). Similar to the previous studies of lifetime (Bažant et al.,
2009; Le et al., 2009), the crack growth rate law at RVE scale is again used to relate the probability distribution of fatigue
strength and the probability distribution of fatigue lifetime. Based on the frequency of crack jumps in the nano-element,

tt

Negligible for 
fatigue lifetime

�max

�min

�

�max

�min

�

Fig. 1. (a and b) Stress-history at macro and nano-scales.
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the velocity of nano-crack growth under constant stress t is (Eq. (27) of Le et al., this issue, Part I):

_a ¼ daf1 ¼ n1e�Q0=kT K2
a ð5Þ

where _a ¼ da=dt, Ka is the stress intensity factor of nano-element, n1 ¼ d2
a ðg1alaÞ=E1h, g1 the geometry constant such that

g1a be the perimeter of the radially growing crack front, and da the spacing of atoms or nano-particles. Consider now the
case of cyclic stress. For each load cycle, the distance of nano-crack advance is given by danano ¼

R tc

0
_aðtÞ dt. So, the nano-

crack growth rate per cycle can be written as

da

dN
¼ ne�Q0=kTDK2

a ð6Þ

where n¼ n1tcf ðRtÞ=3. Therefore, the fatigue crack growth rate at nanoscale follows a power-law function of the stress
amplitude with the exponent equal to 2. Furthermore, Eq. (6) also implies that the fatigue crack growth rate depends on
the stress ratio for RtZ0. For Rto0, the fatigue crack growth rate is independent of the stress ratio because the
compressive stress does not contribute to the crack growth at the nanoscale. On the macroscale, extensive experimental
observations document that the fatigue crack growth of quasibrittle materials follows the Paris law (e.g., Paris and
Erdogan, 1963; Bažant and Planas, 1998; Bažant and Xu, 1991):

da

dN
¼ Ae�Q0=kTDKn ð7Þ

where A and n are the empirical parameters, and DK is the amplitude of the macroscale stress intensity factor.
Eq. (6) has the same form as the Paris law except for two features: (1) Parameter A of the Paris law is a function of the

stress ratio only, but the parameter n in the equation for the fatigue crack growth rate at nanoscale is a function of both the
stress ratio and the crack length. (2) The exponent of the power law for fatigue crack growth at nanoscale is 2, although
experiments show that, for brittle as well as quasibrittle materials such as concrete and ceramics, the exponent is typically
much higher, i.e., n¼10 for concrete (Bažant and Xu, 1991), and n¼30 for alumnina ceramics (Ogawa, 1995) or zirconia
dental ceramics (Studarta et al., 2007a) (while for metals typically n¼2 to 4). As the macro-crack propagates under the
fatigue loads, a fracture process zone (FPZ) forms at the crack tip (Fig. 2(a)). In that FPZ, the cyclic load produces
microcracks. Compared to the FPZ under monotonic loading, the cyclic FPZ is expected to be narrower but longer. Since the
size of cyclic FPZ does not change significantly as the fatigue crack propagates, the constant A must characterize the
average of the growth rate of all the nanocracks with different lengths inside the cyclic FPZ. Hence, the constant A should
not depend on the size of the macrocrack.

The difference between the exponents of the power-law for crack growth rates at the macro- and nano-scales is also
found in the case of creep crack growth. In the recent studies (Bažant et al., 2009; Le et al., this issue, Part I), the power-law
form of creep crack growth rate law with its high exponent value has been explained by considering the equality of nano
and macro energy dissipation rates in the macro-FPZ. So, a similar approach will be used here. During each load cycle, the
energy DP� dissipated in one load cycle by the macrocrack must be equal to the sum of the energies dissipated in that
cycle by all the active nanocracks ai (i¼ 1,2,: :,Na) in the cyclic FPZ. This requires that

DP� ¼
XNa

i ¼ 1

DP�i ð8Þ

Here the energy dissipation DP�i for a nanocrack ai during one load cycle can be expressed as

DP�i ¼
Z tc

0

dP�i
dt

� �
dt¼

Z tc

0
G _ai dt¼ BiðRtiÞe

�Q0=kTDK4
ai ð9Þ

and

BiðRtÞ ¼
nitcð1þ

P4
i ¼ 1 /RtiS

i
Þ

5Eið1�RtiÞ
4

ð10Þ

where Kai is the stress intensity factor of nanocrack ai, Ei the elastic modulus of the nano-element containing the nanocrack
ai, and ni ¼ d2

aðg1aiÞ=Eih.
It is reasonable to expect that the amplitudes of the nanoscale stress intensity factors are roughly proportional to the

amplitude of the macroscale stress intensity factor, i.e., DKai ¼oiDK where oi are some constants. At the same time, the
nanoscale stress ratios can be considered to be proportional to the macroscale stress ratio, i.e., Rti ¼ ciR. Within the first
few cycles, the residual stress field builds up and the stress on the cyclic FPZ gets stabilized. Thereafter, ci will not vary
significantly with the number of cycles. So, Eq. (8) may be re-written as

DP� ¼ e�Q0=kT
XNa

i ¼ 1

nitcð1þ
P4

i ¼ 1 /ciRS
i
Þoi

5Eið1�ciRÞ
4

" #
DK4 ð11Þ

The stress history of the cyclic FPZ is illustrated by the stress history of the nano-structure sketched in Fig. 1(b).
During each load cycle, the varying stress causes the macro-crack to propagate with a varying velocity. Since only

structures that fail after very many load cycles are considered here, the variation of macro-crack velocity within one load
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cycle is not of particular interest. What matters is the overall crack advance during one cycle. Hence, it is useful to consider
the same crack under a constant load se that would have the same rate of energy dissipation as the crack during one
load cycle:

DP� ¼
Z tc

0
G _a dt¼ GðseÞDa ð12Þ

Here the stress intensity factor corresponding to se can always be written as KðseÞ ¼ mðRÞDK. With Eq. (11), one thus
obtains the rate of crack propagation per load cycle as

da

dN
¼ e�Q0=kT

XNa

i ¼ 1

BiE

m2ðRÞ

" #
DK2 ð13Þ

The number of active nanocracks Na in the cyclic FPZ can be expressed in a multiscale framework. In the cyclic FPZ at
the tip of the macro-crack, there are q1 mesocracks, which have their own cyclic meso-FPZs. In each of these meso-FPZs,
there are q2 microcracks which contain their own cyclic micro-FPZs. In each of these micro-FPZs, there are q3 sub-
microcracks, etc., all the way down to the nanoscale. If there are s scales between the macro- and nano-scales, then the
number of nanocracks in the macro-FPZ is

Na ¼ q1q2 . . . qs ð14Þ

Consider the cyclic FPZ at the ith material scale. During one load cycle, the load-deformation curve of the FPZ can be
represented by Fig. 2(b). The energy dissipation during one load cycle is Wi, as shown by the area enclosed by the
hysteresis loop in Fig. 2(b). It has been argued that the load-deformation hysteresis loop in the cyclic FPZ could be
described by a constitutive law that does not depend on the maximum or the minimum loads (Fig. 2(c)) (Rice, 1967).
Therefore, the energy dissipation per cycle, which governs the number of active sub-scale cracks in the cyclic FPZ, is a
function of loading amplitude DPi at ith material scale.

Since DPipDKi, the number of active sub-scale cracks in the FPZ at ith material scale must be a function of DKi, i.e.,
qi ¼fðDKiÞ. It may be expected that there is no characteristic value of DKi at which the function f changes its behavior.
Therefore, the function f should be self-similar, i.e., a power law (Barenblatt, 2003), which gives qipDKr

i . Noting that the
amplitude of the stress intensity factor for the FPZ at all the scales is approximately proportional to the macro-scale stress
intensity factor DK , one obtains the number of active nanocracks inside the macroscale cyclic FPZ as

Na ¼ kDKrs ð15Þ

Static FPZ

a
Cyclic FPZ

ΔPi
Pi

W

Exaggerated

ui

Δui

�

�

Wi

Fig. 2. (a) Cyclic fracture process zone, (b) and (c) Load-displacement curve of meso-scale cyclic FPZ.
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It is obvious that Na increases very rapidly as DK increases, whereas the ratio in the function Bi depends only weakly on
DK. Therefore, one may replace ni, ci, Ei and oi by some effective mean values na, ca, Ea and oa. By this replacement and
with Eq. (15), one could re-write Eq. (13) as

da

dN
¼ e�Q0=kT FðRÞDKrsþ2 ð16Þ

where

FðRÞ ¼
natcEoað1þ

P4
i ¼ 1 /caRSi

Þ

5Eað1�caRÞ4m2ðRÞ
ð17Þ

Setting rsþ2¼ n, one obtains the Paris law for fatigue crack growth rate, Eq. (16). The present analysis shows that the
exponent of Paris law at nanoscale is 2, and the exponent increases to n� 10230 at macroscale. The reason is that the
number of active nanocracks in the macro-cyclic FPZ rapidly increases with the applied stress amplitude.

It has been documented that the growth rate of fatigue cracks mildly depends on the stress ratio (Bažant and Planas,
1998; Andersons et al., 2004). The present analysis implies such dependence, though not in a precise explicit manner.

It must be emphasized that the present analysis is based on certain hypotheses about the self-similarity of the function
f. Plausible though they seem to be, they do not lead to a rigorous mathematical proof. Experimental verification, based on
other predictions of the theory, especially the size effect, is essential.

The characteristics of self-similarity are expected to hold for a wide range of medium stress amplitudes but not for very
small or very large amplitudes. In fact, the growth rate of fatigue cracks is known to deviate from the power-law form for
very small or very large stress amplitude, as confirmed by many experiments (Bažant and Planas, 1998; Andersons et al.,
2004; Ogawa, 1995; Studarta et al., 2007a). For small stress amplitudes, the reason may be that the distinction between
the static and cyclic FPZs gets blurred. For very large amplitudes, the reason may be that the maximum stress intensity
factor during the load cycle is approaching the fracture toughness (Suresh, 1998), at which the crack propagates
dynamically. However, the practical interest usually falls into the medium amplitude range.

Bažant and Xu (1991) observed the crack growth in a series of geometrically similar notched concrete beams under fatigue
loading. The subsequent effective crack lengths were determined from the measured stiffness values. A marked size effect on
the Paris law was observed (Fig 3(a)). The following size-dependent Paris law has been proposed (Bažant and Xu, 1991):

da

dN
¼ A0 1þ

D0

D

� �n=2

DKn ð18Þ

where D0 is a constant characterizing both the material property and specimen geometry, D the size (or characteristic
dimension) of the structure, and A0 an empirical constant. As for exponent n, Fig. 3a suggests that it decreases slightly with the
structure size D and may be approximately considered as constant (n¼10.6). This seems to be a general feature of quasibrittle
materials, whereas the tests on metals show n to increase with D (Barenblatt and Botvina, 1981; Ritchie, 2005). But since Eq. 18
is here used only at the RVE level, the size dependence of n is not of concern here. Optimum fitting of experimental data
(Fig. 3(a)) with Bažant’s size effect law with parameters determined from LEFM functions (Bažant and Planas, 1998; Bažant,
2005) indicated that the FPZ at load cycling with the amplitude of 80% of the maximum monotonic load is about 10 times
longer than it is for monotonic loading. Such a big difference in the FPZ size needs to be further verified by numerical
simulations with, e.g., the lattice-particle model.

Similar to the size effect on the Paris law, it has been experimentally observed that the threshold of stress intensity
factor amplitude, at which the crack growth rate becomes too slow to discern, is also subjected to a size effect (Kitagawa
and Takahashi, 1976; Tanaka et al., 1981). If we assume that there is a threshold value of the fatigue growth rate vth which
cannot be experimentally detected (Suresh, 1998), then Eq. (18) leads to

A0 1þ
D0

D

� �n=2

DKn
th ¼ vth ð19Þ
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Fig. 3. (a) Size effect on the fatigue crack growth rate, (b) and (c) Size effect on the threshold of stress intensity factor amplitude.
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or :
DKth

DK0
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD0=D

p ð20Þ

or :
Dsth

Ds0
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD=D0

p ð21Þ

where DK0 ¼ ðvth=A0Þ1=n, Ds0 ¼DK0D�1=2
0 kðaÞ�1, kðaÞ is the dimensionless stress intensity factor. Figs. 3(b) and (c) show that Eqs.

(19) and (20) agree well with the measured size effect on the threshold of stress intensity factor amplitude for various engineering
alloys (Kitagawa and Takahashi, 1976; Tanaka et al., 1981). The original data were referred to the initial crack length a0, which can
be considered as the characteristic dimension, D, of the structure (a0 was much smaller than the specimen size).

4. Multi-scale transition of statistics of fatigue strength

To relate the probability distributions of fatigue strength at nano- and macro-scales, a certain approximate statistical
multiscale transition framework is required. The capability of numerical simulations of the multi-scale transition of
statistics is limited, for two reasons: (1) the uncertainties in the physical laws across various scales are difficult to quantify
(Graham-Brady et al., 2006; Williams and Baxer, 2006), and (2) our interest in the far-out tail probability (Pf o10�6) would
require at least 108 simulations, which is currently beyond conventional computational means (methods such as the
importance sampling would not help because they depend on a prior hypothesis about the tail; Bažant et al., 2007).

In the previous studies (Bažant and Pang, 2006, 2007; Le et al., this issue), the multiscale transition of strength
distribution is represented by a hierarchical model (Fig. 3c in the preceding paper Le et al., this issue), which consists of series
couplings (the chain model) and parallel couplings (the fiber bundle model). Physically, the parallel coupling represents the
load re-distribution mechanisms at different scales as well as the condition of compatibility between one scale and its sub-
scale. The series model represents (in the sense of the weakest-link model) the localization of damage at each scale.

4.1. Chain model

Consider a chain of elements (or links) subjected to cyclic loading with a prescribed number of cycles and stress ratio.
The fatigue strength Dsc of the chain, i.e., the critical stress amplitude that leads to failure, is determined by the smallest
fatigue strength of all the elements. Since the chain survives if and only if all its elements survive, one can calculate the
survival probability of the chain, 1�Pf , from the joint probability theorem. Assuming that the random fatigue strengths of
the elements are statistically independent, one concludes that the failure probability of the chain with nc elements is

Pf ,chainðDscÞ ¼ 1�Pnc

i ¼ 1½1�PiðDscÞ� ð22Þ

Using this equation and the same method as used in Bažant and Pang (2007) for static loads, one can easily prove for
cyclic loading two essential asymptotic properties of the chain model: (1) If the cdf’s of fatigue strengths of all the
elements have a power-law tail of exponent p, then the cdf of fatigue strength of the whole chain has also a power-law tail
and its exponent is also p; and (2) when nc is large enough, the cdf of fatigue strength of the chain approaches the Weibull
distribution Pf ¼ 1�e�nc ðDsc=s0Þ

p

, where s0 is a scaling constant.

4.2. Bundle model

Part I of this paper Le et al. (this issue) investigates the strength distribution of a bundle model with softening elements
(Fig. 3(b) in Le et al., this issue). In Part II, we are interested in the cdf of the fatigue strength Dsb of the bundle for a
prescribed stress ratio R and a given number of cycles N0. We will analyze some asymptotic properties of this cdf by
considering a bundle with two elements having random strength and the same cross section, although a generalization to
any number of elements in the bundle would be straightforward.

Consider a bundle under cyclic loading with a prescribed stress ratio R. For a given stress ratio R and for N0 loading
cycles, the fatigue strength Dsi (i¼1, 2) of the elements is assumed to be known. The elements are numbered so that
Ds1oDs2. Fig. 4(a–c) shows the loading histories of both the bundle and its two elements. The bundle reaches its strength
limit and fails at the N0th cycle. After the first N1 cycles, the first element fails and the second element carries the entire
load for the remaining N0�N1 cycles.

The first element is subjected to a cyclic load with stress amplitude Dsb and stress ratio R. Under cyclic load, some
subcritical crack inside the element grows from its original length a0 to a critical length ac at which the first element fails.
The growth rate of the subcritical crack can be described by the Paris law (Eqs. (7) or (16)). By separating the variables and
integrating the Paris law from the original crack length to the length ac, one obtains

Dsne

b N1 ¼ eQ0=kT I1 ð23Þ

where ne is the exponent of the Paris law for one element, I1 ¼ A�1l1�ne=2
e1

R ac

a0
k�ne

e1 ðaÞ da, le1 the characteristic size of the first
element, a¼ a=le ¼ relative crack length and ke1 the dimensionless stress intensity factor of the first element. It is clear
that, for a particular element, I1 must be a constant for different cyclic loads as long as the stress ratio is kept constant.
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Therefore, one can easily obtain the critical number of cycles N1 of the first element in terms of its fatigue strength:

N1 ¼N0Dsne

1 =Ds
ne

b ð24Þ

The second element experiences, for the first N1 cycles, the same load history as the first element does. After the first
element fails, the stress in the second element doubles, i.e., the stress amplitude becomes 2Dsb, because both elements
have the same elastic stiffness and the same deformation. However, the stress ratio in the second element still remains to
be R. The second element eventually fails at N0 th cycle (Fig. 4(c)). Therefore, one can integrate the Paris law for the second
element taking into account its increased stress amplitude:

Dsne

b N1þð2DsbÞ
ne ðN0�N1Þ ¼ eQ0=kT I2 ð25Þ

where I2 ¼ A�1l1�ne=2
e2

R ac

a0
k�ne

e2 ðaÞ da; le2 is the characteristic size of the second element, and ke2 the dimensionless stress
intensity factor of the second element. Similar to the analysis for the first element, one can replace eQ0=kT I2 of the second
element by Dsne

2 N0. Therefore,

Dsne

b N1þð2DsbÞ
ne ðN0�N1Þ ¼Dsne

2 N0 ð26Þ

Substituting Eq. (24) into Eq. (26), one can express the fatigue strength of the bundle as a function of the fatigue
strengths of each element:

Dsb ¼ Dsne

1 ð1�1=2ne ÞþDsne

2 =2ne
� �1=ne

ð27Þ

If the fatigue strength of the bundle does not exceed a certain value S, then the fatigue strengths of elements are bounded
by the region O2ðSÞ shown as Fig. 5. Assuming that the fatigue strengths of two elements are independent random
variables, then the cdf of fatigue strength of the bundle is given by

G2ðSÞ ¼ 2

Z
O2ðSÞ

f1ðDs1Þf2ðDs2Þ dDs1 dDs2 ð28Þ

where fi is the probability density function (pdf) of the fatigue strength of the ith element (i¼1,2).
The foregoing analysis can be readily extended to a bundle with nb elements. Eq. (27) can be generalized as

Dsb ¼
Xnb

i ¼ 1

½biðneÞDsi�
ne

( )1=ne

ð29Þ
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Fig. 4. (a–c) Loading history of bundle and its fibers.
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where biðneÞ ¼ ½ðnb�iþ1Þne=nne

b �ðnb�iÞne=nne

b �
1=ne . One can easily show that bi ¼ 1=nb for ne¼1, and bi ¼ ðnb�iþ1Þ=nb for

ne-1. The cdf of fatigue strength of the bundle can then be written as

Gnb
ðSÞ ¼ nb!

Z
Onb
ðSÞ

Ynb

i ¼ 1

fiðDsiÞ dDs1D ds2 . . . dDsnb
ð30Þ

Here Onb
ðSÞ is the feasible region of fatigue strengths of in all the elements, which is defined by the following inequalities:

Xnb

i ¼ 1

biðneÞDsne

i

" #1=ne

rS ð31Þ

Ds1rDs1 . . .rDsnb�1rDsnb
ð32Þ

Two important asymptotic properties of the cdf of fatigue strength of the bundle are of particular interests. The first is
the type of cdf of fatigue strength of large bundles. Consider the following two extreme values of ne:

1) When ne¼1, the fatigue strength of the bundle is simply the sum of the fatigue strengths of all the elements. This is the
same as the mathematical representation of the cdf of strength of a plastic bundle, in which each element deforms at
constant stress after its strength limit is reached. By virtue of the Central Limit Theorem, the cdf of fatigue strength
must follow the Gaussian distribution except for its far left tail.

2) When ne-1, the fatigue strength of the bundle may be written as

Dsb ¼max Ds1,
nb�1

nb
Ds2, . . . ,

1

nb
Dsnb

� �
ð33Þ

where Ds1,Ds2, . . .Dsnb
are the fatigue strengths of the elements ordered according to the sequence of their breaks, i.e.,

according to increasing strength. This is the same as the mathematical formulation of the cdf of strength of a brittle
bundle, in which the stress in each element drops to zero as soon as its strength limit is reached. The strength
distribution of a brittle bundle can be described by the recursive equation of Daniels (1945), who further showed that
the monotonic strength distribution of brittle bundles approaches the Gaussian distribution as the number of elements
tends to infinity.

Therefore, one may expect that the cdf of fatigue strength of large bundles should approach the Gaussian distribution
for any value of neZ1. Also, the rate of convergence to the Gaussian distribution should be bounded by the rates of
convergence to the Gaussian distribution for the brittle and plastic bundles, which are Oðn�1=3

b ðlog nbÞ
2
Þ (Smith, 1982) and

Oðn�1=2
b Þ (Bažant and Pang, 2007), respectively.
Another important property is the tail of the cdf of fatigue strength of the bundle. Let us assume that the fatigue

strength of each element has a cdf with a power-law tail, i.e., PiðDsÞ ¼ ðDs=s0Þ
pi . Considering the transformation yi ¼Dsi=S,

we can re-write Eq. (30) as

Gnb
ðSÞ ¼ nb!S

p1þp2þ ...þpnb

Z
Onb
ð1Þ

Ynb

i ¼ 1

piy
pi�1
i

spi

0

 !
dy1 dy2 . . .dynb

ð34Þ

where Onb
ð1Þ is the corresponding feasible region of the normalized fatigue strength. Thus it is proven that, if the fatigue

strength of each element has a cdf with a power-law tail, then the cdf of fatigue strength of the bundle will also have a
power-law tail, and the power-law exponent will be the sum of the exponents of the power-law tails of the cdf’s of fatigue
strength of all the elements in the bundle. As shown in Part I (Le et al., this issue), this tail property also holds true for the
cdf of monotonic strength of bundles consisting of elements with arbitrary load-sharing rules.

The reach of the power-law tail is also an important property (Bažant and Pang, 2007). Based on the aforementioned
two extreme cases (ne¼1 and ne-1), the reach of the power-law tail of cdf of fatigue strength of the bundle can be

Δ�2
Δ�2 Δ�2

nn
ne = 2

ne = 5
2S

ne = 10
2S 2S

Δ�1 Δ�1 Δ�1

SS S S

Fig. 5. Feasible region of fatigue strengths.
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estimated. The mathematical representation of the cdf of fatigue strength of bundle is the same as the mathematical
representation of the cdf of strength of a plastic bundle for ne¼1, or a brittle bundle for ne-1. As previously shown
(Bažant and Pang, 2007), the reach of the power-law tail of the cdf of strength of a bundle rapidly decreases with an
increasing number nb of elements, and does so at the rate of ðPt1=nbÞ

nb for a plastic bundle and at the rate of
ðPt1=nbÞ

nb�ðPt1=3nbÞ
nb for a brittle bundle, where Pt1 is the reach of the power-law tail of the cdf of fatigue strength of

one element. Therefore, one may expect that, for neZ1, the reach of the power-law tail will shrink with an increasing
number of elements at the rate of ðPt1=nbÞ

nb�ðPt1=3nbÞ
nb .

4.3. Probability distribution of fatigue strength of one RVE

Recent studies (Bažant and Pang, 2006, 2007) showed that the representative volume element (RVE) can statistically be
represented by a hierarchical model consisting of bundle of chains, each of which consists of sub-bundles of sub-chains,
each of which consists of sub-sub-bundles of sub-sub-chains, etc., down to nano-scale elements (Fig. 3(c) in Le et al., this
issue). No more than two chains can be coupled in parallel to prevent the reach of the power-law tail from being too short,
and the chains must be long enough to extend the reach of the tail. The hierarchical model from Fig. 3(c) in Le et al. (this
issue) may now be used to calculate the cdf of fatigue strength of one RVE.

The cdf of fatigue strength of each sub-chain can be calculated from the joint probability theorem (Eq. (22)). For the cdf
of fatigue strength of sub-bundles, one must specify the exponent of the Paris law. Based on the aforementioned analysis of
the multi-scale transition of fracture kinetics, the exponent of the Paris law must be equal to 2 at the nanoscale and then
increase through the higher scales. Comparing the foregoing derivations of the cdf’s of the fatigue and monotonic strengths
of bundles, one would expect that the cdf of fatigue strength of a bundle at the nanoscale should be similar to the cdf of
monotonic strength of a plastic bundle, while the cdf of fatigue strength of a bundle at an upper scale should be similar to
the cdf of strength of a brittle bundle.

Fig. 6(a) and (b) display the calculated cdf of fatigue strength of one RVE on the Weibullian and Gaussian probability
papers, respectively. On the Weibull scale (Fig. 6(a)), the lower portion of the calculated cdf of fatigue strength is seen to be
a straight line, which represents the Weibull distribution (whose tail is a power-law). This result is consistent with the
conclusion of the foregoing analysis: In the chain and bundle models, the power-law tail of cdf of fatigue strength is
indestructible.

The upper part of the calculated cdf begins to diverge from the straight line at Pf � 3� 10�4. Hence the cdf core does not
follow the Weibull distribution. As shown in Fig. 6(b), the upper portions of the cdf’s can be fitted quite closely by straight
lines on the Gaussian probability paper. Therefore, the cdf of fatigue strength of one RVE can be approximately described
by a Gaussian distribution with a Weibull tail grafted on the left at the probability of about 10�4

210�3, which can be
mathematically described as follows:

P1ðDsf Þ ¼ 1�e�ðDsf =s0Þ
m

ðDsf rDsgrÞ ð35Þ

P1ðDsf Þ ¼ Pgrþ
rf

dG

ffiffiffiffiffiffi
2p
p

Z Dsf

Dsgr

e�ðs
0�mGÞ

2=2d2
G ds0 ðDsf 4DsgrÞ ð36Þ

Here Dsf is the nominal fatigue strength, which is a critical load parameter of the dimension of stress; Dsf ¼ cnDPm=bD or
cnDPm=D2 for two- or three-dimensional scaling; DPm is the maximum load amplitude under which the structure fails for
a given number of cycles N0 and a prescribed stress ratio R; cn the parameter chosen such that cnP=bD or cnP=D2 represent
the maximum principal stress in the structure; b the structure thickness in the third dimension; D the characteristic
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Fig. 6. (a and b) Calculated cdf of fatigue strength of one RVE.
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structure dimension or size; m is the Weibull modulus (equal to the tail exponent); s0 the scale parameter of the Weibull
tail; mG and dG are the mean and standard deviations of the Gaussian core if Dsf is considered extended to �1;
rf the scaling parameter required to normalize the grafted cdf such that P1ð1Þ ¼ 1; and Pgr the grafting
probability¼1�exp½�ðDsgr=s0Þ

m
�. Finally, continuity of the probability density function at the grafting point requires that

ðdP1=dDsf ÞjDsþgr
¼ ðdP1=dDsf ÞjDs�gr

.

Note that, for one RVE, the cdf of fatigue strength has a similar form as the cdf of monotonic strength as calculated in
the preceding paper (Le et al., this issue). The locations of grafting points Pf of these two cdf’s are similar, too. The reason is
that the chain models for fatigue strength and monotonic strength share the same equation, and that the formulations of
the bundle models for the fatigue strength and the monotonic strength are analogous.

5. Probabilistic distribution of fatigue lifetime

Now consider the tests of fatigue strength and fatigue lifetime made on the same RVE. In the fatigue strength test, the
RVE is subjected to a cyclic load with a prescribed number of cycles N0 and a given stress ratio R, and the critical load
amplitude (i.e., the fatigue strength Dsf ), at which the RVE fails, is recorded. In the fatigue lifetime test, the load amplitude
DP0 and the stress ratio R are prescribed, and recorded is the critical number of cycles Nf at which the RVE fails.

The cyclic failure of the RVE consists of two stages: (1) crack initiation and (2) crack propagation. In this study, we
consider the growth of the dominant subcritical crack in the RVE. In the crack initiation stage, this dominant subcritical
crack represents the distributed damage based on the equivalent linear elastic fracture mechanics. An RVE fails under
cyclic load when the dominant subcritical crack grows from its original length a0 to a critical length ac.

The growth rate of this subcritical crack follows the Paris law (Eq. (7)). By separation of variables,

DsnN¼

Z ac

a0

da
Akn
ðaÞln�1

0

ð37Þ

where Ds¼ ðPmax�PminÞ=bl0 is the nominal stress amplitude, a¼ a=l0 the dimensionless crack size, kðaÞ the dimensionless
stress intensity factor of the RVE, and l0 the RVE size. Applying Eq. (37) to the tests of both fatigue strength and fatigue
lifetime, one can relate the fatigue strength for the given number of cycles to the fatigue lifetime Nf for the given load
amplitude:

Dsf ¼Ds0ðNf =N0Þ
1=n

ð38Þ

Although the Paris law has been here physically justified as a mean behavior, it is now used for one RVE to link the
randomness of fatigue strength and of fatigue lifetime. This is a simplification. Eq. (37) implies that the randomness of
fatigue strength or fatigue lifetime is caused by the randomness of the dominant subcritical crack, whereas the dominance
of cracks is determined by their geometry, size and local fracture energy. This is consistent with the conclusion drawn from
the random particle model (Grassl and Bažant, 2009).

Note that the foregoing analysis is valid only for the case of constant loading amplitude. For variable amplitude
fatigue, the crack growth rate is strongly influenced by the load history. For instance, single tensile overloads or high
amplitude–low amplitude block loading sequences can retard the crack advance (Suresh, 1998). The present framework
can possibly be extended to variable amplitude fatigue provided that the effects of stress ratio and load history on the
crack growth rate are explicitly known. However, this is a more complicated subject, which is beyond the scope of
this paper.

Substituting Eq. (38) into Eqs. (35) and (36), one obtains the probability distribution of fatigue lifetime of one RVE:

for Nf oNgr : P1ðNf Þ ¼ 1�exp½�ðNf =sNÞ
m
�; ð39Þ

for Nf ZNgr : P1ðNf Þ ¼ Pgrþ
rf

dG

ffiffiffiffiffiffi
2p
p

Z gN
1=n

f

gN1=n
gr

e�ðN
0�mGÞ

2=2d2
G dN0 ð40Þ

where g¼Ds0N�1=n
0 , Ngr ¼ ðDsgr=Ds0Þ

nN0, sN ¼ sn
oN0Ds�n

0 , and m ¼m=n. Similar to the cdf of fatigue strength, the tail
probability distribution of fatigue lifetime follows the Weibull distribution, which has a power-law tail. The core of the cdf
of fatigue lifetime, which is expressed by Eq. (40), does not follow the Gaussian distribution.

For structures that fail at the initiation of a macro-crack from one RVE, the RVE must be defined as the smallest material
volume whose failure triggers the failure of the structure. Statistically, such structures can be modelled as a chain of RVEs.
According to the joint probability theorem and the assumption that the fatigue lifetimes of the RVEs are independent
random variables, the cdf of structure lifetime under a prescribed cyclic load can be written as

Pf ðNf ,Ds0Þ ¼ 1�
Yns

i ¼ 1

½1�P1ðNf ,Ds0sðxiÞÞ� ð41Þ

or lnð1�Pf Þ ¼
Xns

i ¼ 1

ln½1�P1ðNf ,Ds0sðxiÞÞ� ð42Þ
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where ns is the number of RVEs in the structure, Ds0sðxiÞ the amplitude of maximum principal stress at the center of the
ith RVE, Ds0 the amplitude of maximum principal stress in the structure, and sðxiÞ the dimensionless stress field (such that
max sðxiÞ ¼ 1). Here we assume that the amplitudes of the minor and medium principal stresses are fully statistically
correlated to the maximum one. If they were uncorrelated, each principal stress amplitude would require a separate
element in the chain.

For sufficiently large structures, the tail part of the lifetime cdf of one RVE determines the failure of the entire structure.
The approximation lnð1�xÞ ¼�x then furnishes the cdf of fatigue lifetime of large structures:

Pf ðNf Þ ¼ 1�exp �

Z
V

sðxiÞ
nm dVðxÞ

V0

� �
Nf

sN

� �m
" #

ð43Þ

where V0 ¼ l30 is the RVE size. Eq. (43) indicates that the cdf of fatigue lifetime of large-size structures follows the Weibull
distribution. This distribution corresponds to the perfectly brittle failure behavior, to which the extreme value statistics (or
infinite weakest-link model) apply. Based on this distribution, one may conveniently define an equivalent number of RVEs
as Neq,Nf

¼
R

V sðxiÞ
nm dVðxÞ=V0, which represents the number of RVEs for which a chain of Neq,Nf

elements subjected to a
uniform stress amplitude Ds0 gives the same lifetime cdf as Eq. (41) does.

For structures of intermediate and small sizes, the cdf of fatigue lifetime does not follow the Weibull distribution. Then
the equivalent number of RVEs depends on the failure probability. Therefore, one must rely on the original equation of the
weakest-link model (Eq. (41)). In the preceding paper (Le et al., this issue), a nonlocal boundary layer model is adopted to
calculate the cdf’s of strength and creep lifetime of structures with general geometry (Eq. (26) of the preceding paper
(Le et al., this issue)). This method is now used for the probability distribution of fatigue lifetime. The logarithmic form of
the finite chain model (Eq. (42)) can then be re-written as

ln½1�Pf ðDs0,Nf Þ� ¼
l0
V0

Z
OM

lnf1�P1½sðxMÞDs0,Nf �g dOþ
Z

VI

lnf1�P1½sðxÞDs0,Nf �g
dVðxÞ

V0
ð44Þ

where P1 is the cdf of fatigue lifetime of one RVE for a given stress amplitude, and sðxÞDs0 the amplitude of nonlocal stress
for one RVE. For very large structures, the boundary layer becomes negligible compared to the structure size and the
nonlocal stress in the interior becomes the local stress. Therefore, Eq. (44) eventually leads to Eq. (43).

6. Optimum fits of fatigue lifetime histograms

Experimental studies of statistics of fatigue lifetime have been pursued for decades. The two-parameter Weibull
distribution has been widely used to fit the observed histograms (Studarta et al., 2007a,b; Hoshide, 1995; Bigleya et al.,
2007), but significant deviations have consistently been found.

Fig. 7 presents the optimum fits of lifetime histograms of various quasibrittle structures, such as ceramics and cortical
bones, by both the two-parameter Weibull distribution and the present theory. The experiments are summarized as
follows: (a)–(e) Structural alumina ceramics (99% Al2O3): Round bar specimens were tested under fully reversed cyclic
load produced by a rotating bending machine (Sakai and Fujitani, 1989; Sakai and Hoshide, 1995). Five stress levels
were used and 20 specimens were tested for each stress level. (f) and (g) Dental ceramic composites: Glass infiltrated
Al2O3–ZrO2 with feldspathic glass (Inc-VM7) (Fig. 7f) and yttria-stabilized ZrO2 with feldspathic glass (TZP-CerS)
(Fig. 7(g)). For each material, 30 specimens with size 4 mm �5 mm �50 mm were tested under fully reversed cyclic
bending (Studarta et al., 2007a, 2007b). (h) and (i) Equine cortical bones: Specimens of different sizes, with dimensions
10.5 mm �10 mm �3 mm (Fig. 7(h)) and 21 mm �10 mm �3 mm (Fig. 7(i)), were extracted from 14 race horses with
ages between 2 and 6 years. For each size, six specimens were subjected to direct tensile cyclic loads (Bigleya et al., 2007).
Since these specimens came from different horses, the statistical parameters obtained from the histogram fitting represent
average values for the tested group of horses.

As seen in Fig. 7, the lifetime histograms do not follow a straight line on the Weibull scale. Instead, they consist of two
parts separated by a kink. The lower part of the histogram follows a straight line, whereas the upper part of the histogram
diverges to the right from the straight line. Clearly, the two-parameter Weibull distribution cannot fit such histograms
closely. On the other hand, the present theory gives an excellent fit for both parts of the histogram.

The Weibull modulus is determined by the slope of the lower part of the histogram, which can be much larger than the
Weibull modulus obtained by using the Weibull distribution to fit the entire histogram. This makes a large difference for
very low failure probability such as 10�6. Furthermore, the present theory can match quite well the location of the kink,
which characterizes the quasi-brittleness of structure.

To improve the fits, the three-parameter Weibull distribution, which has a finite threshold, has also been adopted for fatigue
lifetime (Sakai and Hoshide, 1995). However, for monotonic strength, significant deviations to the right have been found in the
high probability range provided that a sufficient number of specimens (at least 500) have been tested (e.g., Weibull, 1939).

Unfortunately, for the cdf of fatigue lifetime, the number of specimens for histogram testing has typically been
small (about 30). In that case, the deficiency of the three-parameter Weibull distribution cannot be observed
experimentally. Nevertheless, its use is unsound for other reasons. For example, it implies that a cyclic load below a
certain threshold will never lead to failure. This contradicts the well-established transition rate theory with random walk
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analysis (Redner, 2001), which shows that the lifetime is finite under arbitrarily small loads (even a zero load) although it
may be longer than the age of the universe.

7. Size effect on stress-life curve

The foregoing analysis (Eq. (41)) shows that the cdf of fatigue lifetime depends on the structure size as well as the
geometry (which is introduced through the stress distribution). Naturally, the mean fatigue lifetime Nf , too, must depend
on the structure size and geometry. According to the weakest-link model,

Nf ¼

Z 1
0

Yns

i ¼ 1

½1�P1ðDs0sðxiÞ,N
0Þ� dN0 ð45Þ

An analytical expression for Nf seems impossible. However, similar to previous analysis of the size effect on the mean
strength and creep lifetime (Bažant, 2004, 2005; Bažant and Novák, 2000; Le et al., this issue), one may use the
approximation:

Nf ¼
Ca

D
þ

Cb

D

� �c=m
" #1=c

ð46Þ

where m is the Weibull modulus of fatigue lifetime. The values of Ca, Cb and c ensue by matching three asymptotic
conditions: ½Nf �D-l0

, ½dNf =dD�D-l0
, and ½Nf D1=m �D-1.
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Fig. 7. (a–i) Optimum fits of histograms of fatigue lifetime.
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In the derivation of the cdf of fatigue strength of one RVE, the Paris law was integrated to obtain a simple equation that
relates the fatigue lifetime and the applied stress amplitude (Eq. (37)). Consider now that two cyclic load histories with the
same stress ratio but different stress amplitudes (Ds01 and Ds02) are applied to the same RVE. Based on Eq. (37), one finds
that the fatigue lifetimes of RVE for these two load histories are related by

N2 ¼
Dsn

01

Dsn
02

N1 ð47Þ

Similarly, consider further that two cyclic load histories that give the same nominal stress ratio (s1,min=s1,max ¼

s2,min=s2,max) but different nominal stress amplitudes (Ds1 and Ds2) are applied to the same structure. Since the stress in

each RVE is proportional to the nominal stress, the ratio of stress amplitudes on each RVE for these two load cases is

Ds1=Ds2.

For the first loading history, having nominal stress amplitude Ds1, the failure probability of the whole structure is

Pf ¼ 1�
Qns

i ¼ 1½1�P1ðNf Þ�. Based on Eq. (47), the failure probability of the structure under the second load history, having

nominal stress amplitude Ds2, can be written as: Pf ¼ 1�
Qns

i ¼ 1f1�P1½ðDsn
1=Dsn

2ÞNf �g. Therefore, the mean fatigue lifetimes

for these two load histories are related by Dsn
1N1c ¼Dsn

2N2c . This leads to a general relation between the mean fatigue

lifetime and the nominal stress amplitude:

Nf Dsn
0 ¼ C ð48Þ

where C is a constant. This is the well-known power law form for the stress-life (S-N) curve (or Basquin’s law) for the
fatigue loading, which is supported by numerous test data on quasibrittle materials such as ceramics (Kawakubo, 1995;
Sakai and Hoshide, 1995; Lee et al., 1995) and cortical bones (Turner et al., 2001). It should nevertheless be emphasized
that the S-N curve is here derived from the Paris law, which can be physically justified by assuming self-similarity of the
function relating the number of microcracks to the applied stress amplitude. For very small or very large stress amplitudes,
self-similarity may not be valid. Therefore, similar to the Paris law, one may expect the S-N curve to deviate from the
power-law form for very low or very large stress amplitudes (Suresh, 1998). Note also that the slope of S-N curve is
determined by the Paris law exponent n at the level of one RVE, and thus is not affected by size dependence of n.

Because of the size effect on the mean fatigue lifetime (Eq. (46)), constant C in Eq. (48) must depend on the structure
size and geometry:

Nf Dsn
0 ¼ C ¼Dsn

0

Ca

D
þ

Cb

D

� �j=m
" #1=j

ð49Þ

Eq. (49) implies that, on a bilogarithmic plot, the S-N curve must shift horizontally to the left as the structure size
increases. Fig. 8 shows the experimentally measured S-N curves of Sintered SiC under three-point bending and uniaxial
tension fitted by Eq. (49) (Okabe and Hirata, 1995). Due to the difference in stress distribution, for the same specimen, the
equivalent size of the specimen under three-point bending is much smaller than it is under uniaxial tension. As indicated
as Fig. 8, there is a marked size effect on the S-N curve. For the same applied nominal stress amplitude, the lifetime of

Okabe and Hirata 1995
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3-pt bending
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Uniaxial tension
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Fig. 8. Size effect on the S-N curve.
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specimen under three point bending is about six orders of magnitude longer than the lifetime of specimen under uniaxial
tension.

Eq. (49) is particularly important for the design process since it allows one to determine the mean lifetime of full-scale
structures under relatively low stress amplitude from the laboratory tests on prototypes under relatively high stress
amplitude.

8. Closing: three essential points

1. The only scale at which the probability distribution of failure properties can be clearly and easily determined is the
nanoscale. The reason is that the breakage of interatomic bonds is a quasi-steady process, for which the probability is
proportional to the frequency.

2. One property whose multiscale transition is known to be simple and easy is the activation energy control of rate
processes. But it is not the only such property. Another is the tail of the probability distribution of strength. The finding
that a power-law tail of cdf of fatigue strength is indestructible and that its exponent increases through multiscale
transitions is an enabling feature of the present theory of fatigue as well as the preceding analogous theory of
monotonic strength. The power-law tail of cdf with varying exponent across the scales is justified by the analysis of
series and parallel couplings. Furthermore, the power-law for the mean rate of growth of a fatigue crack is physically
explained by the equality of energy dissipation rates on the macro- and nano-scales.

3. The size effect is a salient feature of all quasibrittle failure. It affects not only the monotonic strength and static (or
creep) lifetime, but also the fatigue strength and the type of its probability distribution. It leads to marked deviations
from the Weibull distribution of lifetime, and its form deviates from the classical Weibull size effect. Considering brittle
fracture as the large-size limit of quasibrittle fracture also enhances the understanding of brittle fracture itself.
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