Corrections to the Central Limit Theorem for Heavy-tailed Probability Densities

Henry Lam • Jose Blanchet • Damian Burch Martin Z. Bazant

Received: 29 January 2009 / Revised: 20 April 2011
© Springer Science+Business Media, LLC 2011

Abstract

Classical Edgeworth expansions provide asymptotic correction terms to the Central Limit Theorem (CLT) up to an order that depends on the number of moments available. In this paper, we provide subsequent correction terms beyond those given by a standard Edgeworth expansion in the general case of regularly varying distributions with diverging moments (beyond the second). The subsequent terms can be expressed in a simple closed form in terms of certain special functions (Dawson's integral and parabolic cylinder functions), and there are qualitative differences depending on whether the number of moments available is even, odd, or not an integer, and whether the distributions are symmetric or not. If the increments have an even number of moments, then additional logarithmic corrections must also be incorporated in the expansion parameter. An interesting feature of our correction terms for the CLT is that they become dominant outside the central region and blend natu-

[^0]rally with known large-deviation asymptotics when these are applied formally to the spatial scales of the CLT.

Keywords Edgeworth expansion • Central Limit Theorem • Regular variation • Heavy tail • Power law • Large deviations

Mathematics Subject Classification (2000) 60F05 • 60F10

1 Introduction

Let ($X_{k}: k \geq 1$) be a sequence of independent and identically distributed (iid) random variables (rv's) with mean zero and finite variance σ^{2}. If $S_{n}=X_{1}+\cdots+X_{n}$, then the standard Central Limit Theorem (CLT) says that for each fixed $x \in \mathbb{R}$,

$$
P\left(S_{n} / n^{1 / 2} \leq x\right)=P\left(N\left(0, \sigma^{2}\right) \leq x\right)+o(1)
$$

as $n \nearrow \infty$. Edgeworth expansions provide additional information about the previous error term, but only if higher moments exist. In particular, if $E\left|X_{k}\right|^{m}<\infty$ for $m \geq 3$ and assuming that the X_{k} 's are continuous random variables (or simply non-lattice) an Edgeworth expansion of order $\lfloor m-2\rfloor$ takes the form

$$
\begin{equation*}
P\left(S_{n} / n^{1 / 2} \leq x\right)=P\left(N\left(0, \sigma^{2}\right) \leq x\right)+\sum_{j=1}^{\lfloor m-2\rfloor} n^{-j / 2} P_{j}(x)+o\left(n^{-\lfloor m-2\rfloor / 2}\right) \tag{1}
\end{equation*}
$$

as $n \nearrow \infty$, where $P_{j}(\cdot)$ is appropriately defined in terms of Hermite polynomials and involves coefficients that depend on $E X_{k}^{j+2}$, for fixed $x \in \mathbb{R}$ (see Sect. 2 below). As a consequence, a traditional Edgeworth expansion cannot continue beyond the $\lfloor m-2\rfloor$ th correction term in a situation where $E\left(\left|X_{k}\right|^{\lfloor m-2\rfloor+3}\right)=\infty$. Our focus here is precisely on this situation, building on the preliminary results of Bazant [1].

In particular, our goal in this paper is to provide additional correction terms to the Edgeworth expansion and further reduce the order of the error term as $n \nearrow \infty$ in the presence of regularly varying distributions (which are basically power laws; see (2)). As we shall discuss in detail below, an interesting feature of our development is the fact that the additional correction terms are qualitatively different (giving rise to expressions involving $\log (n)$ in some cases) depending on whether the power-law decaying rate of the distribution is an integer number or not, or, when such rate is an integer, on its parity.

After this paper was completed we learned that a related set of expansion is given in Chap. 2 of Vinogradov [14]. Our results here appear to be more general than those expansions. In particular, our results apply to regularly varying tail of any real number $\alpha>2$, while Vinogradov considers only power-law tail with integer α. Also, our analysis allows us to obtain explicit expressions for the coefficients in our Edgeworth expansion in terms of special functions, an important interest in this paper that was not pursued by Vinogradov.

Our results can be applied in the context of random walks [10, 15], where corrections to the CLT are sometimes called Gram-Charlier expansions (and extended to vector random variables). As is typical for such expansions, our asymptotic formulas can be very accurate for small n, but unlike standard Gram-Charlier expansions, our corrections also become dominant at the edge of the central region and beyond, as illustrated by numerical examples in Bazant [1] (see also Theorem 3 in Sect. 4). Random walks with heavy-tailed distributions (or synonymously "fat-tailed distributions" in physics and other literatures), in particular those that are regularly varying, are increasingly used to describe stochastic processes in diverse fields, ranging from physics $[4,11]$ to economics $[5,6]$.

Edgeworth expansions are also often used in statistics and applied probability. For instance, in statistics these types of expansion have enjoyed successful applications in statistical analysis involving relatively small samples [8]. In bootstrapping, where data are resampled to calculate quantities related to the estimator, Edgeworth expansion can reduce the order of the approximation error [9]. In applied probability settings such as queueing or insurance one is often interested in approximating performance measures of a stochastic system, for instance the tail of the delay in a queueing system or the ruin probability in insurance, by means of a CLT. In some cases, one can derive corrections to such approximations [3]. These corrections are often called corrected diffusion approximations and are similar in spirit to Edgeworth expansions. In fact, our ideas here can be applied to developing higher order corrections to a class of queueing models in heavy-traffic; such development will be explored in future work.

Other types of approximation that are often applied to the distribution of S_{n} include so-called large-deviations or moderate-deviations asymptotics. In contrast to Edgeworth expansions, which approximate the distribution of S_{n} in spatial scales of order $O\left(n^{1 / 2}\right)$, large-deviations results typically provide approximations in spatial scales of order $O(n)$, whereas moderate deviations are derived in spatial scales of order $O\left(n^{1 / 2+\varepsilon}\right)$ for $\varepsilon \in(0,1 / 2)$. In situations where the increment distribution has finite logarithmic moment generating function, standard results provide an exponential decay rate to the tail of S_{n} in large-deviations or moderate-deviations scales, say for quantiles that are of the form $n x$. Using the fact that typically the rate function is twice continuously differentiable at the origin (as a function of x), one can relate (or transition from) large, moderate and CLT approximations smoothly. On the other hand, when the increment distributions are regularly varying, the large-deviations rate, as we shall recall in future sections, turns out to be basically polynomial. Given that further terms in an Edgeworth expansion reduce the polynomial (in powers of $n^{1 / 2}$) error rate of the tail estimate, one may wonder how Edgeworth expansions relate to large-deviations rates as additional correction terms are added. As we shall see, perhaps surprisingly, our additional terms blend smoothly with large and moderate deviations rates when these rates are formally applied to spatial scales of order $n^{1 / 2}$ only when the power of the regularly varying tail is non-even. In fact, our terms are obtained via the Fourier inversion of characteristic functions with extra expansion terms that play the counterpart of cumulants in the presence of regularly varying tail. These terms turn out to support the "additivity of power-law tail amplitudes" in the large-deviations regime. These formal connections to large-deviations asymptotics
are further explored in Sect. 4; there we would discuss our asymptotics in relation to the classical uniform large-deviations result by Rozovskii [13], in which the sum of iid regularly varying rv can be approximated by a sum of Gaussian distribution and heavy-tail asymptotic. We will also show that under restrictive conditions our asymptotic provides a refinement of this result in the moderate deviations region.

As we indicated earlier, our development gives rise to qualitative differences in the form of the correction terms depending on the decay rate at infinity of the increment distributions. In order to further explain such qualitative differences, let us introduce some notation. We impose the assumption that the X_{k} 's have a positive density $f_{X}(\cdot)$ of the form

$$
f_{X}(x)=(1+|x|)^{-(\alpha+1)} L(|x|),
$$

where $L(\cdot)$ is a slowly varying function (i.e. $L(x t) / L(x) \longrightarrow 1$ as $x \nearrow \infty$ for every $t>0$) so that $\operatorname{var}\left(X_{k}\right)=1$ (our development also deals with the non-symmetric case; see Sects. 2.2 and 5). Also assume that $\int_{-\infty}^{\infty}|\phi(\theta)| d \theta<\infty$ where $\phi(\theta)=$ $E e^{i \theta X_{k}}$ is the characteristic function. Denote $\eta(x)$ as the standard normal density. Theorem 2 in Sect. 2 yields that the density of $S_{n} / n^{1 / 2}$ behaves asymptotically as

$$
\begin{aligned}
f_{S_{n} / n^{1 / 2}}(x)= & \eta(x)\left[1+\sum_{\substack{3 \leq j<\alpha \\
j \text { even }}} \frac{G_{j}(x)}{n^{j / 2-1}}\right] \\
& + \begin{cases}\frac{L\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}} G_{\alpha}(x)+o\left(\frac{L\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}}\right) & \text { when } \alpha \text { is not even } \\
\frac{\zeta_{L}\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}} G_{\alpha}(x)+o\left(\frac{\zeta_{L}\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}}\right) & \text { when } \alpha \text { is even }\end{cases}
\end{aligned}
$$

as $n \nearrow \infty$, where $\zeta_{L}(x)$ is a suitable slowly varying function (see (6)) and $G_{\alpha}(x)$ is written in terms of special functions whose qualitative behaviors depend on the parity of α (see (9)).

Our approach to developing the Edgeworth expansions is standard. First we develop an appropriate Gram-Charlier series for the Fourier transform and then apply inversion. An interesting element of the analysis in our situation, however, involves the contribution of a non-analytic component in the Fourier transform. We shall build the elements of our expansion starting from the symmetric case and then extend the construction of our approximation to more general regularly varying densities. Finally, we note that our approach can be used to develop asymptotic expansion for stable limits, which will be reported in future research.

The paper is organized as follows. First, we discuss our main results in Sect. 2. Then we discuss in detail the symmetric case in Sect. 3. The formal connection to large deviations is given in Sect. 4. Section 5 studies the case of non-symmetric density.

2 Main Results

2.1 Review of Ordinary Edgeworth Expansion

Let ($X_{k}: k \geq 1$) be a sequence of iid rv's with mean zero, unit variance and with a regularly varying density. More precisely, we assume that the density $f(\cdot)$ of X_{k} satisfies

$$
\begin{align*}
f(x)= & (1+x)^{-(1+\beta)} L_{+}(x) I(x \geq 0) \\
& +(1-x)^{-(1+\gamma)} L_{-}(-x) I(x<0) \tag{2}
\end{align*}
$$

where $\beta, \gamma>2$ and $L_{+}(\cdot), L_{-}(\cdot)$ are slowly varying functions at infinity (i.e. $L_{ \pm}(c b) / L_{ \pm}(b) \rightarrow 1$ as $\left.b \rightarrow \infty\right)$ defined on \mathbb{R}. We shall write $\phi(\theta)=E \exp \left(i \theta X_{k}\right)$ for the characteristic function of X_{k} and put $\psi(\theta)=\log \phi(\theta)$. Assume $\int_{-\infty}^{\infty}|\phi(\theta)| d \theta<$ ∞. Finally, we let $S_{n}=X_{1}+\cdots+X_{n}, n \geq 1$, be the random walk generated by the X_{k} 's, set $\phi_{n}(\theta)=E \exp \left(i \theta S_{n} / n^{1 / 2}\right)=\phi^{n}\left(\theta / n^{1 / 2}\right)$ and define $\psi_{n}(\theta)=\log \phi_{n}(\theta)=$ $n \psi\left(\theta / n^{1 / 2}\right)$.

As we indicated in the introduction, our goal is to extend the standard Edgeworth expansion given by approximation (1), which is obtained from a formal expansion of the Fourier transform of $S_{n} / n^{1 / 2}$. In particular, since $\psi^{\prime}(0)=0$ we have, for fixed $\theta \in \mathbb{R}$,

$$
n \psi\left(\theta / n^{1 / 2}\right)=\sum_{j=2}^{m} \frac{\kappa_{j}(i \theta)^{j}}{j!n^{j / 2-1}}+o\left(\frac{\theta^{m}}{n^{m / 2-1}}\right)
$$

if $m<\min (\beta, \gamma)$, where κ_{j} 's are the cumulants of X_{k}. Therefore,

$$
\begin{align*}
E \exp \left(i \theta S_{n} / n^{1 / 2}\right) & =\exp \left(n \psi\left(\theta / n^{1 / 2}\right)\right) \\
& =\exp \left(-\theta^{2} / 2\right) \exp \left(\sum_{j=3}^{m} \frac{\kappa_{j}(i \theta)^{j}}{j!n^{j / 2-1}}+o\left(\frac{1}{n^{m / 2-1}}\right)\right) \\
& =\exp \left(-\theta^{2} / 2\right)\left(1+\sum_{k=1}^{\infty} \frac{1}{k!}\left(\sum_{j=3}^{m} \frac{\kappa_{j}(i \theta)^{j}}{j!n^{j / 2-1}}+o\left(\frac{1}{n^{m / 2-1}}\right)\right)^{k}\right) \\
& =\exp \left(-\theta^{2} / 2\right)\left(1+\sum_{q=3}^{m} \sum_{k=1}^{q} \frac{1}{k!} \xi_{k, q}(\theta) \frac{1}{n^{q / 2-1}}+o\left(\frac{1}{n^{m / 2-1}}\right)\right) \tag{3}
\end{align*}
$$

where $\xi_{k, q}(\theta)$ is the coefficient of $1 / n^{q / 2-1}$ in the expansion of $\left(\sum_{j=3}^{q} \kappa_{j}(i \theta)^{j} /\right.$ $\left.\left(j!n^{j / 2-1}\right)\right)^{k}$. Hence the summation in (3) has first term $\kappa_{3}(i \theta)^{3} / n^{1 / 2}$, second term $\left(\kappa_{3}^{2}(i \theta)^{6} / 72+\kappa_{4}(i \theta)^{4} / 4!\right)(1 / n)$ and so on.

Recall that the inverse Fourier transform of $(-i \theta)^{k} \exp \left(-\theta^{2} / 2\right)$ equals $d^{k} \eta(x) / d x^{k}$, where $\eta(x)=\exp \left(-x^{2} / 2\right) / \sqrt{2 \pi}$. In turn, we have

$$
\frac{d^{k}}{d x^{k}} \eta(x)=\eta(x)(-1)^{k} H_{k}(x),
$$

where $H_{k}(x)$ is the k th Hermite polynomial. In particular, $H_{1}(x)=x, H_{2}(x)=x^{2}-1$ and $H_{3}(x)=x^{3}-3 x$ etc. Therefore, taking inverse Fourier transforms in both sides of (3) we obtain (see Hall [9] for a derivation of the distribution function, and Evans and Swartz [7] and Sect. 3 for density function) that the density $f_{S_{n} / n^{1 / 2}}(\cdot)$ of $S_{n} / n^{1 / 2}$ satisfies

$$
\begin{equation*}
f_{S_{n} / n^{1 / 2}}(x)=\eta(x)+\eta(x) \sum_{k=3}^{m} n^{-k / 2+1} G_{k}(x)+o\left(n^{-m / 2+1}\right) \tag{4}
\end{equation*}
$$

where $G_{k}(\cdot)$ is a polynomial of degree at most $3 k$ that depends only on the first k cumulants of X_{j}. In particular, we have $G_{3}=\kappa_{3} H_{3} / 3$!, $G_{4}=\kappa_{3}^{2} H_{6} / 72+\kappa_{4} H_{4} / 4$!.

Our goal is to understand the contribution of the error term $o\left(n^{-m / 2+1}\right)$ in expansion (4) and the problem is that subsequent G_{k} 's (for $k \geq \min (\beta, \gamma)$) involve moments (or cumulants) that are not defined for X_{j}. The idea is to write $\psi(\theta)=\chi(\theta)+\xi(\theta)$ where $\chi(\cdot)$ is analytic in a neighborhood of the origin while $\xi(\cdot)$ is a non-analytic function. Dealing with the analytic component, χ, gives rise to the standard Edgeworth expansion as in (4), so the interesting part involves the analysis of $\xi(\cdot)$ which, as we shall see, yields Theorem 1 and 2, which extends (4).

2.2 Main Theorems

We first introduce the following useful property of $L_{ \pm}$(for simplicity we sometimes write L below):

$$
\begin{equation*}
L(x)=o\left(\zeta_{L}(x)\right) \tag{5}
\end{equation*}
$$

as $x \rightarrow \infty$, where the function $\zeta_{L}(x)$ is defined as

$$
\begin{equation*}
\zeta_{L}(x)=\int_{1}^{x} \frac{L(u)}{u} d u \tag{6}
\end{equation*}
$$

To prove (5), observe that the integrability of $\phi(\theta)$ implies that $f(x)$ is continuous on \mathbb{R}. Condition (2) then implies that $L_{ \pm}(x)$ are continuous on $[0, \infty)$ with $L_{+}(0)=$ $L_{-}(0)$. Now by Fatou's lemma and a change of variable we have

$$
\liminf _{x \rightarrow \infty} \frac{\zeta_{L}(x)}{L(x)}=\liminf _{x \rightarrow \infty} \int_{1 / x}^{1} \frac{L(x s)}{L(x)} \frac{1}{s} d s \geq \int_{0}^{1} \frac{1}{s} d s=\infty
$$

which shows (5).
Next let us define Dawson's integral $D(z)$ as

$$
\begin{equation*}
D(z)=e^{-z^{2}} \int_{0}^{z} e^{t^{2}} d t \tag{7}
\end{equation*}
$$

and the classical parabolic cylinder function $D_{v}(z)$ with parameter v, where $\operatorname{Re}(v)>$ -1 , as

$$
\begin{equation*}
D_{v}(z)=\sqrt{\frac{2}{\pi}} e^{z^{2} / 4} \int_{0}^{\infty} e^{-t^{2} / 2} t^{\nu} \cos \left(z t-\frac{\nu \pi}{2}\right) d t \tag{8}
\end{equation*}
$$

We state our main theorem:

Theorem 1 Assume ($X_{k}: k \geq 1$) are iid rv's with zero mean, unit variance and density following (2). Also assume $\int_{-\infty}^{\infty}|\phi(\theta)| d \theta<\infty$. We have, for fixed $x>0$,

$$
f_{S_{n} / n^{1 / 2}}(x)=\eta(x)\left[1+\sum_{3 \leq j<\min (\beta, \gamma)} \frac{G_{j}(x)}{n^{j / 2-1}}\right]+F(x, n)+o(F(x, n))
$$

as $n \rightarrow \infty$, where $G_{j}(x), j<\min (\beta, \gamma)$ are the ordinary Edgeworth coefficients (as discussed in Sect. 2.1) and $F(x, n)$ is defined according to the following cases:

Case 1: $\beta=\gamma=\alpha$

$$
F(x, n)=\left\{\begin{array}{l}
\frac{1}{\Gamma(\alpha+1) n^{\alpha / 2-1}}\left[\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} H_{\alpha}(x)\left(\zeta_{L_{+}}\left(n^{1 / 2} x\right)+\zeta_{L_{-}}\left(n^{1 / 2} x\right)\right)\right. \\
\left.\quad-\frac{1}{\sqrt{2}} \frac{d^{\alpha}}{d x^{\alpha}} D\left(\frac{x}{\sqrt{2}}\right)\left(L_{+}\left(n^{1 / 2} x\right)-L_{-}\left(n^{1 / 2} x\right)\right)\right] \\
\text { for even } \alpha \\
\frac{1}{\Gamma(\alpha+1) n^{\alpha / 2-1}}\left[\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} H_{\alpha}(x)\left(\zeta_{L_{+}}\left(n^{1 / 2} x\right)-\zeta_{L_{-}}\left(n^{1 / 2} x\right)\right)\right. \\
\left.\quad-\frac{1}{\sqrt{2}} \frac{d^{\alpha}}{d x^{\alpha}} D\left(\frac{x}{\sqrt{2}}\right)\left(L_{+}\left(n^{1 / 2} x\right)+L_{-}\left(n^{1 / 2} x\right)\right)\right] \\
\text { for odd } \alpha \\
-\sqrt{\frac{\pi}{2}} \frac{e^{-x^{2} / 4}}{\Gamma(\alpha+1) \sin (\alpha \pi) n^{\alpha / 2-1}}\left[D_{\alpha}(x) L_{+}\left(n^{1 / 2} x\right)\right. \\
\left.\quad+D_{\alpha}(-x) L_{-}\left(n^{1 / 2} x\right)\right] \\
\text { for non-integer } \alpha
\end{array}\right.
$$

Case 2: $\beta<\gamma$

$$
F(x, n)= \begin{cases}\frac{H_{\beta}(x) e^{-x^{2} / 2}}{\sqrt{2 \pi} \Gamma(\beta+1)} \frac{\left.\zeta_{+}+n^{1 / 2} x\right)}{n^{\beta / 2-1}} & \text { for integer } \beta \\ -\sqrt{\frac{\pi}{2}} \frac{D_{\beta}(x) e^{-x^{2} / 4}}{\Gamma(\beta+1) \sin (\beta \pi)} \frac{L_{+}\left(n^{1 / 2} x\right)}{n^{\beta / 2-1}} & \text { for non-integer } \beta\end{cases}
$$

Case 3: $\beta>\gamma$

$$
F(x, n)= \begin{cases}\frac{H_{\gamma}(x) e^{-x^{2} / 2} \sqrt{2 \pi} \Gamma(\gamma+1)}{\frac{\zeta L_{-}\left(n^{1 / 2} x\right)}{n^{\gamma / 2-1}}} & \text { for even } \gamma \\ -\frac{H_{\gamma}(x) e^{-x^{2} / 2}}{\sqrt{2 \pi} \Gamma(\gamma+1)} \frac{\zeta L_{-}\left(n^{1 / 2} x\right)}{n^{\gamma / 2-1}} & \text { for odd } \gamma \\ -\sqrt{\frac{\pi}{2}} \frac{D_{\gamma}(-x) e^{-x^{2} / 4}}{\Gamma(\gamma+1) \sin (\gamma \pi)} \frac{L_{-}\left(n^{1 / 2} x\right)}{n^{\gamma / 2-1}} & \text { for non-integer } \gamma\end{cases}
$$

Here $H_{k}(z), D(z)$ and $D_{v}(z)$ are Hermite polynomial of order k, Dawson's integral and classical parabolic cylinder function with parameter v, respectively.

Note that this theorem states the result for $x>0$. For $x<0$, one merely has to consider $-X_{k}$ and $-S_{n} / n^{1 / 2}$ and the result reduces to the $x>0$ case.

This result can be obtained by first considering a symmetric density and then splitting the non-symmetric density into odd and even functions which can be tackled separately using result for the symmetric case. For the symmetric case, i.e. $\beta=\gamma=\alpha$ and $L \equiv L_{+}=L_{-}$, we have a neater representation:

Theorem 2 Assume $\left(X_{k}: k \geq 1\right)$ are iid $r v$'s with unit variance and symmetric density $f(x)=(1+|x|)^{-(\alpha+1)} L(|x|)$ with $\alpha>2$. Moreover, assume $\int_{-\infty}^{\infty}|\phi(\theta)| d \theta<$ ∞. Then, for fixed $x \in \mathbb{R}$,

$$
\begin{aligned}
f_{S_{n} / n^{1 / 2}}(x)= & \eta(x)\left[1+\sum_{\substack{3 \leq j<\alpha \\
j \text { jeven }}} \frac{G_{j}(x)}{n^{j / 2-1}}\right] \\
& + \begin{cases}\frac{L\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}} G_{\alpha}(x)+o\left(\frac{L\left(n^{1 / 2} x\right)}{\left.n^{\alpha / 2-1}\right)}\right. & \text { for non-even } \alpha \\
\frac{\zeta_{L}\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}} G_{\alpha}(x)+o\left(\frac{\xi_{L}\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}}\right) & \text { for } \text { even } \alpha\end{cases}
\end{aligned}
$$

as $n \nearrow \infty$, where ζ_{L} is defined in (6). Here $G_{j}(x), j<\alpha$ are the ordinary Edgeworth coefficients (as discussed in Sect. 2.1), while $G_{\alpha}(x)$ is defined as

$$
G_{\alpha}(x)= \begin{cases}-\frac{\sqrt{2}}{\Gamma(\alpha+1)} \frac{d^{\alpha}}{d x^{\alpha}} D\left(\frac{x}{\sqrt{2}}\right) & \text { for odd } \alpha \tag{9}\\ -\sqrt{\frac{\pi}{2}} \frac{e^{-x^{2} / 4}}{\Gamma(\alpha+1) \sin (\alpha \pi)}\left[D_{\alpha}(x)+D_{\alpha}(-x)\right] & \text { for non-integer } \alpha \\ \sqrt{\frac{2}{\pi}} \frac{e^{-x^{2} / 2}}{\Gamma(\alpha+1)} H_{\alpha}(x) & \text { for even } \alpha\end{cases}
$$

where $D(z), D_{\nu}(z)$ and $H_{k}(z)$ are Dawson's integral, classical parabolic cylinder function with parameter v and Hermite polynomial of order k, respectively.

As we indicated before, the analysis behind the previous result involves understanding the behavior of the non-analytic component ξ. In fact, we obtain the following decomposition of ψ :

Proposition 1 Assume a symmetric density as in Theorem 2. We have

$$
\begin{equation*}
\psi(\theta)=\chi(\theta)+\xi(\theta)+o(\xi(\theta)) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi(\theta)=\sum_{\substack{1 \leq j<\alpha \\ j \text { even }}} \frac{(-1)^{j / 2} \kappa_{j}}{j!} \theta^{j} \tag{11}
\end{equation*}
$$

is the ordinary Taylor series expansion up to the largest moment and

$$
\xi(\theta)= \begin{cases}-\frac{\pi}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}}|\theta|^{\alpha} L\left(\frac{1}{|\theta|}\right) & \text { for non-even } \alpha \tag{12}\\ \frac{2(-1)^{\alpha / 2}}{\Gamma(\alpha+1)}|\theta|^{\alpha} \zeta_{L}\left(\frac{1}{|\theta|}\right) & \text { for even } \alpha\end{cases}
$$

is the non-analytic component. Here ζ_{L} is defined in (6).
With this decomposition, we can perform similar derivation as (3) to obtain

$$
\begin{aligned}
& E \exp \left(\theta S_{n} / n^{1 / 2}\right) \\
& \quad=\exp \left(-\theta^{2} / 2\right)\left(1+\sum_{q=3}^{m} \sum_{k=1}^{q} \frac{1}{k!} \xi_{k, q}(\theta) \frac{1}{n^{q / 2-1}}+n \xi\left(\frac{\theta}{n^{1 / 2}}\right)+o\left(n \xi\left(\frac{\theta}{n^{1 / 2}}\right)\right)\right) .
\end{aligned}
$$

Dawson's integral and the other special functions then arise as the inverse Fourier transform of $e^{-\theta^{2} / 2}|\theta|^{\alpha}$ appearing in the non-analytic term of the above expression.

The rest of the paper provides the necessary details behind the analysis of ξ and the Fourier inversion required to obtain Theorem 2 and then Theorem 1; the proof of Proposition 1 follows directly from Proposition 3, which is given in Sect. 3. As we indicated in the introduction, in Sect. 4 we shall discuss the formal connection between our expansion and that of Rozovskii [13] in the context of large deviations. It turns out that the extra term in our expansion, which comes from the non-analytic component of the characteristic function, blends smoothly with the heavy-tail asymptotic, at least in some restrictive cases. When this holds, there exists a smooth transition from central limit to large-deviations region.

3 Symmetric Density

Our goal in this section is to prove Theorem 2. As noted before, we adopt the approach of first expanding the characteristic function of a symmetric regularly varying density, and hence its cumulant generating function, followed by an inverse Fourier transform to get the stated result. In order to obtain the characteristic function for regularly varying density, it helps to first consider in detail the nature of the approximation in a simplified context, namely, that of a symmetric Pareto density.

3.1 Characteristic Function

3.1.1 Pareto Density

In this section we shall assume that

$$
\begin{equation*}
f(x)=\frac{a_{f}}{1+|x|^{1+\alpha}}, \quad x \in(-\infty, \infty) \tag{13}
\end{equation*}
$$

where a_{f} is the normalizing constant that makes $f(x)$ a well defined density. For example, $a_{f}=\pi / \sqrt{2}$ if $\alpha=3$. With this we have the simplest version of our expansion:

Proposition 2 For rv following (13), the characteristic function takes the form

$$
\phi(\theta)=1+\sum_{\substack{\leq \leq j<\alpha \\ j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{j!} \theta^{j}
$$

$$
+ \begin{cases}-\frac{\pi a_{f}}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}}|\theta|^{\alpha}+o\left(|\theta|^{\alpha}\right) & \text { for non-even } \alpha \tag{14}\\ -\frac{2(-1)^{\alpha / 2} a_{f}}{\Gamma(\alpha+1)}|\theta|^{\alpha} \log |\theta|+o\left(|\theta|^{\alpha} \log |\theta|\right) & \text { for even } \alpha\end{cases}
$$

as $\theta \rightarrow 0$, where m_{j} is the j th moment of the rv.
The proof of this theorem is divided into four cases: α is odd, even, and noninteger with the integral part being odd and even. Each case involves finding the asymptotic of an integral as below. Also note that since the density is symmetric, the characteristic function is real and symmetric. Thus we can consider only $\theta>0$ without loss of generality. Moreover, throughout the paper we shall use the notation " \sim " to denote equivalence relation i.e. $f(x) \sim g(x)$ iff $f(x) / g(x) \rightarrow 1$ as $x \searrow 0$ (or $x \nearrow \infty$ depending on context). We also use $\lfloor x\rfloor$ as the integral part of x i.e. $\max \{k \in \mathbb{N}: k \leq x\}$ and $\lceil x\rceil$ as the ceiling of x i.e. $\min \{k \in \mathbb{N}$: $k \geq x\}$.

Lemma 1 For $\theta \searrow 0$, we have the four asymptotics:
Case 1: α is odd

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{\alpha-1}\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x \sim-\pi \theta \tag{15}
\end{equation*}
$$

Case 2: α is even

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{\alpha-1} e^{i \theta x}}{1+|x|^{1+\alpha}} d x \sim-2 i \theta \log \theta \tag{16}
\end{equation*}
$$

For non-integer α, denote $q=\llcorner\alpha\lrcorner$. Then
Case 3: q is even

$$
\int_{-\infty}^{\infty} \frac{x^{q}\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x \sim 2 \theta^{\alpha-q} \Gamma(-\alpha+q) \cos \left(\frac{-\alpha+q}{2} \pi\right)
$$

Case 4: q is odd

$$
\int_{-\infty}^{\infty} \frac{x^{q} e^{i \theta x}}{1+|x|^{1+\alpha}} d x \sim 2 i \theta^{\alpha-q} \Gamma(-\alpha+q) \sin \left(\frac{-\alpha+q}{2} \pi\right)
$$

Proof We prove the lemma case by case.
Case 1: α is odd
Since α is odd, the integrand is a symmetric function, and we can write

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{x^{\alpha-1}\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x & =2 \int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x^{1+\alpha}}(\cos (\theta x)-1) d x \\
& =2 \theta \int_{0}^{\infty} \frac{u^{\alpha-1}}{\theta^{1+\alpha}+u^{1+\alpha}}(\cos u-1) d u
\end{aligned}
$$

by a change of variable $u=\theta x$ in the second equality. Since

$$
\left|\frac{u^{\alpha-1}}{\theta^{1+\alpha}+u^{1+\alpha}}(\cos u-1)\right| \leq \frac{1}{u^{2}}|\cos u-1|
$$

which is integrable, by dominated convergence theorem we get

$$
\int_{0}^{\infty} \frac{u^{\alpha-1}}{\theta^{1+\alpha}+u^{1+\alpha}}(\cos u-1) d u \rightarrow \int_{0}^{\infty} \frac{\cos u-1}{u^{2}} d u=-\frac{\pi}{2}
$$

as $\theta \rightarrow 0$. Hence Case 1 is proved.

Case 2: α is even

Note that the integrand is an odd function, and

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{x^{\alpha-1} e^{i \theta x}}{1+|x|^{1+\alpha}} d x & =2 i \int_{0}^{\infty} \frac{x^{\alpha-1} \sin (\theta x)}{1+x^{1+\alpha}} d x \\
& =2 i \theta \int_{0}^{\infty} \frac{u^{\alpha-1} \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u
\end{aligned}
$$

again by a change of variable $u=\theta x$. Note that as $\theta \rightarrow 0$, the integral blows up at $u=0$. We write

$$
\int_{0}^{\infty} \frac{u^{\alpha-1} \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u=\int_{0}^{1} \frac{u^{\alpha-1} \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u+\int_{1}^{\infty} \frac{u^{\alpha-1} \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u
$$

Now

$$
\int_{1}^{\infty} \frac{u^{\alpha-1} \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u \leq \int_{1}^{\infty} \frac{1}{u^{2}} d u<\infty
$$

On the other hand,

$$
\int_{0}^{1} \frac{u^{\alpha-1} \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u=\int_{0}^{1} \frac{u^{\alpha}}{\theta^{1+\alpha}+u^{1+\alpha}} d u+R(\theta)
$$

where

$$
|R(\theta)| \leq C \int_{0}^{1} \frac{u^{2+\alpha}}{\theta^{1+\alpha}+u^{1+\alpha}} d u \leq C \int_{0}^{1} u d u=O(1)
$$

for positive constants C and

$$
\int_{0}^{1} \frac{u^{\alpha}}{\theta^{1+\alpha}+u^{1+\alpha}} d u=\left.\frac{1}{1+\alpha} \log \left(\theta^{1+\alpha}+u^{1+\alpha}\right)\right|_{0} ^{1} \sim-\log \theta
$$

Hence Case 2 is proved.
Case 3 and 4: α is non-integer with q even and odd The proof is similar to the last two cases. For even q, we write

$$
\int_{-\infty}^{\infty} \frac{x^{q}\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x=2 \int_{0}^{\infty} \frac{x^{q}}{1+x^{1+\alpha}}(\cos (\theta x)-1) d x
$$

$$
\begin{aligned}
& =2 \theta^{\alpha-q} \int_{0}^{\infty} \frac{u^{q}}{\theta^{1+\alpha}+u^{1+\alpha}}(\cos u-1) d u \\
& \sim 2 \theta^{\alpha-q} \int_{0}^{\infty} \frac{\cos u-1}{u^{1+\alpha-q}} d u
\end{aligned}
$$

and for odd q, we write

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{x^{q} e^{i \theta x}}{1+|x|^{1+\alpha}} d x & =2 i \int_{0}^{\infty} \frac{x^{q} \sin (\theta x)}{1+x^{1+\alpha}} d x \\
& =2 i \theta^{\alpha-q} \int_{0}^{\infty} \frac{u^{q} \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u \\
& \sim 2 i \theta^{\alpha-q} \int_{0}^{\infty} \frac{\sin u}{u^{1+\alpha-q}} d u
\end{aligned}
$$

by using a change of variable $u=\theta x$ and dominated convergence theorem. We use the fact that

$$
\int_{0}^{\infty} u^{z-1}\left(e^{i u}-1\right) d u=\Gamma(z) e^{\frac{i z \pi}{2}} \quad \text { for }-1<\operatorname{Re}(z)<0
$$

to get

$$
\int_{0}^{\infty} \frac{\cos u-1}{u^{1+\alpha-q}} d u=\Gamma(-\alpha+q) \cos \left(\frac{-\alpha+q}{2} \pi\right)
$$

and

$$
\int_{0}^{\infty} \frac{\sin u}{u^{1+\alpha-q}} d u=\Gamma(-\alpha+q) \sin \left(\frac{-\alpha+q}{2} \pi\right)
$$

The lemma is then immediate.

We are now ready to prove Proposition 2. The proof basically reduces (14) into expressions in terms of the above four integrals through multiple use of l'Hospital's rule.

Proof of Proposition 2 It suffices to consider $\theta>0$. Again we consider case by case:
Case 1: α is odd
Applying l'Hospital's rule successively for $\alpha-1$ times, we have

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{a_{f} e^{i \theta x}}{1+|x|^{1+\alpha}} d x-1-\sum_{\substack{1 \leq j<\alpha \\
j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{j!} \theta^{j}}{\theta^{\alpha}} \\
& \quad=\lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{a_{f} i x e^{i \theta x}}{1+|x|^{1+\alpha}} d x-\sum_{\substack{1 \leq j<\alpha \\
j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{(j-1)!} \theta^{j-1}}{\alpha \theta^{\alpha-1}}
\end{aligned}
$$

$$
\begin{aligned}
= & \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{a_{f} i^{2} x^{2} e^{i \theta x}}{1+|x|^{1+\alpha}} d x-\sum_{\substack{\leq \leq j<\alpha \\
j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{(j-2)!} \theta^{j-2}}{\alpha(\alpha-1) \theta^{\alpha-2}} \\
& \vdots \\
= & \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{a_{f} i^{\alpha-1} x^{\alpha-1} e^{i \theta x}}{1+|x|^{1+\alpha}} d x-(-1)^{(\alpha-1) / 2} m_{\alpha-1}}{\alpha!\theta} \\
= & \frac{(-1)^{(\alpha-1) / 2} a_{f}}{\alpha!} \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{x^{\alpha-1}\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x}{\theta} \\
= & \frac{(-1)^{(\alpha+1) / 2} \pi a_{f}}{\alpha!}
\end{aligned}
$$

where the last step follows from (15). Note that the integral in each step above is finite since the moments exist up to order $\alpha-1$.
The result for odd α thus follows.
Case 2: α is even
Using the fact that

$$
\frac{d^{m}}{d k^{m}} k^{\alpha} \log k=\alpha(\alpha-1) \cdots(\alpha-m+1) k^{\alpha-m} \log k+\gamma_{\alpha-m} k^{\alpha-m}
$$

for $m=1, \ldots, \alpha-1$, where $\gamma_{\alpha-m}$ are constants, and applying l'Hospital's rule for $\alpha-1$ times, we get

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{a_{f} e^{i \theta x}}{1+|x|^{1+\alpha}} d x-1-\sum_{\substack{\leq j<\alpha \\
j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{j!} \theta^{j}}{\theta^{\alpha} \log \theta} \\
& \quad=\lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{a_{f} i^{\alpha-1} x^{\alpha-1} e^{i \theta x}}{1+|x|^{1+\alpha}} d x}{\alpha!\theta \log \theta+\gamma_{1} \theta} \\
& \quad=\frac{a_{f} i^{\alpha-1}}{\alpha!} \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{x^{\alpha-1} e^{i \theta x}}{1+|x|^{1+\alpha}} d x}{\theta \log \theta} \\
& =-\frac{2(-1)^{\alpha / 2} a_{f}}{\alpha!}
\end{aligned}
$$

where the last equality follows from (16).
The result for even α thus follows.
Case 3 and 4: α is non-integer with q even and odd.
Following the same line of proof as the previous two cases, we get, for even q,

$$
\lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{a_{f} e^{i \theta x}}{1+|x|^{1+\alpha}} d x-1-\sum_{\substack{\leq j<\alpha \\ j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{j!} \theta^{j}}{\theta^{\alpha}}
$$

$$
\begin{aligned}
& =\lim _{\theta \rightarrow 0} \frac{i^{q} a_{f} \int_{-\infty}^{\infty} \frac{x^{q}\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x}{\alpha(\alpha-1) \cdots(\alpha-q+1) \theta^{\alpha-q}} \\
& =\frac{(-1)^{q / 2} a_{f} \Gamma(\alpha-q+1)}{\Gamma(\alpha+1)} \cdot 2 \Gamma(-\alpha+q) \cos \left(\frac{-\alpha+q}{2} \pi\right) \\
& =\frac{2(-1)^{q / 2} \pi a_{f} \cos \left(\frac{-\alpha+q}{2} \pi\right)}{\Gamma(\alpha+1) \sin ((-\alpha+q) \pi)} \\
& =-\frac{(-1)^{q / 2} \pi a_{f}}{\Gamma(\alpha+1) \sin \left(\frac{\alpha-q}{2} \pi\right)} \\
& =-\frac{(-1)^{q / 2} \pi a_{f}}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2} \cos \frac{q \pi}{2}} \\
& =-\frac{\pi a_{f}}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}}
\end{aligned}
$$

and for odd q,

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{a_{f} e^{i \theta x}}{1+|x|^{1+\alpha}} d x-1-\sum_{1 \leq j<\alpha} \frac{(-1)^{j / 2} m_{j}}{j!} \theta^{j}}{\theta^{\alpha}} \\
& =\lim _{\theta \rightarrow 0} \frac{i^{q} a_{f} \int_{-\infty}^{\infty} \frac{x^{q} e^{i \theta x}}{1+|x|^{1+\alpha}} d x}{\alpha(\alpha-1) \cdots(\alpha-q+1) \theta^{\alpha-q}} \\
& =\frac{(-1)^{(q+1) / 2} a_{f} \Gamma(\alpha-q+1)}{\Gamma(\alpha+1)} \cdot 2 \Gamma(-\alpha+q) \sin \left(\frac{-\alpha+q}{2} \pi\right) \\
& =\frac{2(-1)^{(q+1) / 2} \pi a_{f} \sin \left(\frac{-\alpha+q}{2} \pi\right)}{\Gamma(\alpha+1) \sin ((-\alpha+q) \pi)} \\
& =\frac{(-1)^{(q+1) / 2} \pi a_{f}}{\Gamma(\alpha+1) \cos \left(\frac{\alpha-q}{2} \pi\right)} \\
& =\frac{(-1)^{(q+1) / 2} \pi a_{f}}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2} \sin \frac{q \pi}{2}} \\
& =-\frac{\pi a_{f}}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}}
\end{aligned}
$$

by using the reflection property of gamma function and also the double-angle and sum-of-angle trigonometric identities.
We have proven the proposition.

3.1.2 Regularly Varying Density

We are going to extend the result in Proposition 2 to density with regularly varying tail in the form

$$
\begin{equation*}
f(x)=\frac{L(|x|)}{1+|x|^{1+\alpha}}, \quad x \in(-\infty, \infty) \tag{17}
\end{equation*}
$$

where L is a continuous slowly varying function on $[0, \infty)$.
Proposition 3 For rv following (17), the characteristic function takes the form

$$
\begin{align*}
\phi(\theta)= & 1+\sum_{\substack{2 \leq j<\alpha \\
j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{j!} \theta^{j} \\
& + \begin{cases}-\frac{\pi}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}}|\theta|^{\alpha} L\left(\frac{1}{|\theta|}\right)+o\left(|\theta|^{\alpha} L\left(\frac{1}{|\theta|}\right)\right) & \text { for non-even } \alpha \\
\frac{2(-1)^{\alpha / 2}}{\Gamma(\alpha+1)}|\theta|^{\alpha} \zeta_{L}\left(\frac{1}{|\theta|}\right)+o\left(|\theta|^{\alpha} \zeta_{L}\left(\frac{1}{|\theta|}\right)\right) & \text { for even } \alpha\end{cases} \tag{18}
\end{align*}
$$

as $\theta \rightarrow 0$, where m_{j} is the j th moment of the $r v$ and ζ_{L} is defined in (6).
To prove Proposition 3, we need the following property of slowly varying function:

Lemma 2 Let L be a slowly varying function that is continuous on $[0, \infty)$. Then for any $\delta>0$, we can pick an $\eta>0$ such that for $0<\theta<\eta$,

$$
\frac{L\left(\frac{x}{\theta}\right)}{L\left(\frac{1}{\theta}\right)} \leq \begin{cases}C x^{\delta} & \text { for } x>1 \tag{19}\\ C x^{-\delta} & \text { for } x \leq 1\end{cases}
$$

where C is a positive constant.
Proof First by Proposition 0.8 on pp. 22-23 in Resnick [12], there exists $c>0$ such that

$$
\begin{equation*}
(1-\delta) x^{-\delta} \leq \frac{L(x t)}{L(t)} \leq(1+\delta) x^{\delta} \tag{20}
\end{equation*}
$$

for all $x \geq 1$ and $t \geq c$. In particular, the first inequality in (19) holds with $\eta=1 / c$. Since L is slowly varying, we have $t^{\delta} L(t) \rightarrow \infty$ as $t \rightarrow \infty$ and so there exists $b>c$ such that $t^{\delta} L(t) \geq 1$ for all $t \geq b$. Since L is continuous on $[0, \infty)$, we have $a:=\sup _{t \in[0, b]} L(t)<\infty$. Now let $0<x \leq 1$ and $t \geq b$ be given. If $x t \geq b$, we have $L(x t) \leq(1 /(1-\delta)) x^{-\delta} L(t)$ (by replacing t by $x t$ and x by $1 / x$ in the first inequality of (20)). If $x t \leq b$, we have

$$
L(x t) \leq a \leq a t^{\delta} L(t) \leq a b^{\delta} x^{-\delta} L(t)
$$

Hence setting $C=1 /(1-\delta)+a b^{\delta}$, we have $L(x t) \leq C x^{-\delta} L(t)$ for all $0<x \leq 1$ and all $t \geq b$, which proves the second inequality in (19) with $\eta=1 / b$. Setting $\eta=$ $(1 / c) \wedge(1 / b)$ gives the overall result.

We now state the correspondence of Lemma 1 for regularly varying density:

Lemma 3 For $\theta \searrow 0$, we have the four asymptotics:
Case 1: α is odd

$$
\int_{-\infty}^{\infty} \frac{x^{\alpha-1} L(|x|)\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x \sim-\pi \theta L\left(\frac{1}{\theta}\right)
$$

Case 2: α is even

$$
\int_{-\infty}^{\infty} \frac{x^{\alpha-1} L(|x|) e^{i \theta x}}{1+|x|^{1+\alpha}} d x \sim 2 i \theta \zeta_{L}\left(\frac{1}{\theta}\right)
$$

where ζ_{L} is defined in (6). For non-integer α, denote $q=\llcorner\alpha\lrcorner$ as the integral part of α. Then
Case 3: q is even

$$
\int_{-\infty}^{\infty} \frac{x^{q} L(|x|)\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x \sim 2 \theta^{\alpha-q} L\left(\frac{1}{\theta}\right) \Gamma(-\alpha+q) \cos \left(\frac{-\alpha+q}{2} \pi\right)
$$

Case 4: q is odd

$$
\int_{-\infty}^{\infty} \frac{x^{q} L(|x|) e^{i \theta x}}{1+|x|^{1+\alpha}} d x \sim 2 i \theta^{\alpha-q} L\left(\frac{1}{\theta}\right) \Gamma(-\alpha+q) \sin \left(\frac{-\alpha+q}{2} \pi\right)
$$

Proof Again we prove the lemma case by case.
Case 1: α is odd
We follow similar line of proof as in Lemma 1. Using a change of variables $u=\theta x$ we obtain

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{x^{\alpha-1} L(|x|)\left(e^{i \theta x}-1\right)}{1+|x|^{1+\alpha}} d x \\
& \quad=2 \theta \int_{0}^{\infty} \frac{u^{\alpha-1} L\left(\frac{u}{\theta}\right)}{\theta^{1+\alpha}+u^{1+\alpha}}(\cos u-1) d u \\
& \quad=2 \theta L\left(\frac{1}{\theta}\right) \int_{0}^{\infty} \frac{u^{\alpha-1}}{\theta^{1+\alpha}+u^{1+\alpha}} \cdot \frac{L\left(\frac{u}{\theta}\right)}{L\left(\frac{1}{\theta}\right)} \cdot(\cos u-1) d u
\end{aligned}
$$

Now using Lemma 2, for θ small enough, we can pick $0<\delta<1$ such that

$$
\begin{aligned}
& \frac{u^{\alpha-1}}{\theta^{1+\alpha}+u^{1+\alpha}} \cdot \frac{L\left(\frac{u}{\theta}\right)}{L\left(\frac{1}{\theta}\right)} \cdot(1-\cos u) \\
& \quad \leq \frac{C}{u^{2+\delta}}(1-\cos u) I(u \leq 1)+\frac{C}{u^{2-\delta}}(1-\cos u) I(u>1)
\end{aligned}
$$

for some $C>0$, for small enough θ. Note that the majorizing function is integrable. Also note that by the definition of slow variation we have

$$
\frac{L\left(\frac{u}{\theta}\right)}{L\left(\frac{1}{\theta}\right)} \rightarrow 1
$$

as $\theta \rightarrow 0$ for all $u>0$. So by dominated convergence theorem,

$$
\int_{0}^{\infty} \frac{u^{\alpha-1}}{\theta^{1+\alpha}+u^{1+\alpha}} \cdot \frac{L\left(\frac{u}{\theta}\right)}{L\left(\frac{1}{\theta}\right)} \cdot(\cos u-1) d u \rightarrow \int_{0}^{\infty} \frac{1}{u^{2}}(\cos u-1) d u
$$

and the asymptotic follows.
Case 2: α is even
We write

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{x^{\alpha-1} L(|x|) e^{i \theta x}}{1+|x|^{1+\alpha}} d x & =2 i \int_{0}^{\infty} \frac{x^{\alpha-1} L(x) \sin (\theta x)}{1+x^{1+\alpha}} d x \\
& =2 i \theta \int_{0}^{\infty} \frac{u^{\alpha-1} L\left(\frac{u}{\theta}\right) \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u \\
& =2 i \theta\left[\int_{0}^{1} \frac{u^{\alpha-1} L\left(\frac{u}{\theta}\right) \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u+\int_{1}^{\infty} \frac{u^{\alpha-1} L\left(\frac{u}{\theta}\right) \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u\right]
\end{aligned}
$$

For the second integral, if we choose $0<\delta<1$ in Lemma 2, we have the following bound

$$
\begin{equation*}
\left|\int_{1}^{\infty} \frac{u^{\alpha-1} L\left(\frac{u}{\theta}\right) \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u\right| \leq L\left(\frac{1}{\theta}\right) \int_{1}^{\infty} \frac{u^{\alpha-1} C u^{\delta}}{\theta^{1+\alpha}+u^{1+\alpha}} d u \leq M_{1} L\left(\frac{1}{\theta}\right) \tag{21}
\end{equation*}
$$

for some $C, M_{1}>0$, for small enough θ.
For the first integral, we write

$$
\int_{0}^{1} \frac{u^{\alpha-1} L\left(\frac{u}{\theta}\right) \sin u}{\theta^{1+\alpha}+u^{1+\alpha}} d u=\int_{0}^{1} \frac{u^{\alpha} L\left(\frac{u}{\theta}\right)}{\theta^{1+\alpha}+u^{1+\alpha}} d u+R(\theta)
$$

where

$$
\begin{equation*}
|R(\theta)| \leq M_{2} L\left(\frac{1}{\theta}\right) \int_{0}^{1} \frac{u^{\alpha+2} u^{-\delta}}{\theta^{1+\alpha}+u^{1+\alpha}} d u \leq M_{3} L\left(\frac{1}{\theta}\right) \tag{22}
\end{equation*}
$$

for some $M_{2}, M_{3}>0,0<\delta<2$ and θ small enough.
Now do a change of variable $x=u / \theta$ back, we get

$$
\begin{equation*}
\int_{0}^{1} \frac{u^{\alpha} L\left(\frac{u}{\theta}\right)}{\theta^{1+\alpha}+u^{1+\alpha}} d u=\int_{0}^{\frac{1}{\theta}} \frac{x^{\alpha} L(x)}{1+x^{1+\alpha}} d x \sim \int_{1}^{\frac{1}{\theta}} \frac{L(x)}{x} d x \tag{23}
\end{equation*}
$$

Combining (21), (22) and (23), we obtain the result for even α.
Case 3 and 4: α is non-integer with q even and odd
Using the same line of proof as Lemma 1 and Case 1, and taking $0<\rho_{1}<\alpha-q$ and $0<\rho_{2}<2-\alpha+q$, we get the stated result.

The proof of Proposition 3 is similar to that of Pareto density, and hence we only outline the proof below. Proposition 1 then follows immediately by letting $\psi=\log \phi$ and applying a Taylor expansion. In doing so one just has to verify that the nonanalytic term in ϕ is the only term of that order in the expansion of ψ to conclude the result.

Outline of Proof of Proposition 3 Again it suffices to consider $\theta>0$. Suppose first that α is even. Recall from (5) that $L(1 / \theta)=o\left(\zeta_{L}(1 / \theta)\right)$ as $\theta \searrow 0$, and observe that ζ_{L} is continuously differentiable with $(d / d \theta)\left(\theta^{\beta} \zeta_{L}(1 / \theta)\right)=\theta^{\beta-1}\left(\beta \zeta_{L}(1 / \theta)-\right.$ $L(1 / \theta)$) for all $\beta>0$. Hence we have

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{L(x) e^{i \theta x}}{1+|x|^{1+\alpha}} d x-1-\sum_{\substack{1 \leq j<\alpha \\
j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{j!} \theta^{j}}{\theta^{\alpha} \zeta_{L}\left(\frac{1}{\theta}\right)} \\
& =\lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{L(x) i x e^{i \theta x}}{1+|x|^{1+\alpha}} d x-\sum_{\substack{1 \leq j<\alpha \\
j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{(j-1)!} \theta^{j-1}}{\theta^{\alpha-1}\left(\alpha \zeta_{L}\left(\frac{1}{\theta}\right)-L\left(\frac{1}{\theta}\right)\right)} \\
& =\lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{L(x) i x e^{i \theta x}}{1+|x|^{1+\alpha}} d x-\sum_{\substack{1 \leq j<\alpha \\
j \text { even }}} \frac{(-1)^{j / 2} m_{j}}{(j-1)!} \theta^{j-1}}{\theta^{\alpha-1} \alpha \zeta_{L}\left(\frac{1}{\theta}\right)} \\
& \quad \vdots \\
& =\frac{(-1)^{(\alpha-1) / 2} \lim _{\theta \rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{L(x) x^{\alpha-1} e^{i \theta x}}{1+|x|^{1+\alpha}} d x}{\theta \zeta_{L}\left(\frac{1}{\theta}\right)}}{\alpha!} \\
& =\frac{2(-1)^{\alpha / 2}}{\alpha!}
\end{aligned}
$$

by Lemma 3 in the last equality.
Suppose that α is not even. Let k be the smallest integer that is less than α and set $q=k+1$ if k is odd and $q=k+2$ if k is even. For convenience, let $R_{0}(\theta)=\phi(\theta)-\sum_{0 \leq j \leq \alpha} m_{j}(i \theta)^{j} / j$! denote the auxiliary term in (18) and set $L_{\theta}(x)=L(x / \theta) / L(1 / \theta)$. Moreover, let

$$
E_{k}(x)=e^{i x}-\sum_{j=0}^{k} \frac{(i x)^{j}}{j!}
$$

and

$$
C_{k}(x)=\frac{E_{k}(x)+E_{k}(-x)}{2}=\cos x-\sum_{0 \leq j \leq k / 2} \frac{(-1)^{j} x^{2 j}}{(2 j)!}
$$

Then there exists $b>0$ such that $\left|C_{k}(x)\right| \leq b\left(1+|x|^{k}\right)$ and $C_{k}(x) \leq b|x|^{q}$. Since α is not an even integer, we have $k<\alpha<q$ and we choose δ so small that $0<\delta<$ $\min (\alpha-k, q-\alpha)$. By Lemma 2, there exists $C, \eta>0$ such that for $0<\theta \leq \eta$ we have $L_{\theta}(x) \leq C x^{\delta}$ if $x \geq 1$ and $L_{\theta}(x) \leq C x^{-\delta}$ if $0<x \leq 1$. Then we have

$$
\begin{array}{llll}
k+\delta-\alpha-1<-1 & \text { and } \quad & x^{-\alpha-1} L_{\theta}(x)\left|C_{k}(x)\right| \leq C b x^{k+\delta-\alpha-1} & \text { for } x \geq 1 \\
q-\delta-\alpha-1>-1 & \text { and } & x^{-\alpha-1} L_{\theta}(x)\left|C_{k}(x)\right| \leq C b x^{q-\delta-\alpha-1} & \text { for } 0<x \leq 1
\end{array}
$$

Also by the symmetry of $f(x)$, we have

$$
\begin{aligned}
R_{0}(\theta) & =\int_{-\infty}^{\infty} f(x) E_{k}(\theta x) d x=\int_{0}^{\infty} f(x) C_{k}(\theta x) d x=\frac{1}{\theta} \int_{0}^{\infty} f\left(\frac{x}{\theta}\right) C_{k}(x) d x \\
& =\theta^{\alpha} L\left(\frac{1}{\theta}\right) \int_{0}^{\infty} \frac{1}{\theta^{\alpha+1}+x^{\alpha+1}} C_{k}(x) L_{\theta}(x) d x
\end{aligned}
$$

Since $L_{\theta}(x) \rightarrow 1$, by dominated convergence, we have

$$
\lim _{\theta \searrow 0} \int_{0}^{\infty} \frac{1}{\theta^{\alpha+1}+x^{\alpha+1}} C_{k}(x) L_{\theta}(x) d x=\int_{0}^{\infty} x^{-\alpha-1} C_{k}(x) d x
$$

Setting $L(x)=1$ and using Proposition 2 implies that $\int_{0}^{\infty} x^{-\alpha-1} C_{k}(x) d x$ is equal to the constant in (18). This concludes the result for non-even α.

3.2 Beyond Edgeworth Expansion

We will now prove the main theorem for the symmetric case, namely Theorem 2. First of all we need to evaluate the following integrals, which corresponds to a Fourier inversion of the non-analytic component of the expansion studied in Sect. 3.1:

Lemma 4

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}|\theta|^{\alpha} d \theta \\
& \quad= \begin{cases}2 \sqrt{2}(-1)^{(\alpha-1) / 2} \frac{d^{\alpha}}{d x^{\alpha}} D\left(\frac{x}{\sqrt{2}}\right) & \text { for odd } \alpha \\
\sqrt{\frac{\pi}{2}} \sec \frac{\alpha \pi}{2} e^{-x^{2} / 4}\left[D_{\alpha}(x)+D_{\alpha}(-x)\right] & \text { for non-integer } \alpha \\
(-1)^{\alpha / 2} \sqrt{2 \pi} e^{-x^{2} / 2} H_{\alpha}(x) & \text { for even } \alpha\end{cases}
\end{aligned}
$$

where $D(z), D_{v}(z)$ and $H_{k}(z)$ are Dawson's integral, classical parabolic cylinder function with parameter v and Hermite polynomial of order k, respectively.

Proof Consider the following cases:
Case 1: α is odd Observe that

$$
\int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}|\theta|^{\alpha} d \theta=2 \int_{0}^{\infty} \cos (\theta x) e^{-\theta^{2} / 2} \theta^{\alpha} d \theta
$$

$$
\begin{aligned}
& =2(-1)^{(\alpha-1) / 2} \frac{d^{\alpha}}{d x^{\alpha}} \int_{0}^{\infty} \sin (\theta x) e^{-\theta^{2} / 2} d \theta \\
& =2(-1)^{(\alpha-1) / 2} \frac{d^{\alpha}}{d x^{\alpha}} \operatorname{Im}\left[\int_{0}^{\infty} e^{i \theta x-\theta^{2} / 2} d \theta\right] \\
& =2(-1)^{(\alpha-1) / 2} \frac{d^{\alpha}}{d x^{\alpha}} \operatorname{Im}\left[e^{-x^{2} / 2} \int_{-i x}^{\infty-i x} e^{-q^{2} / 2} d q\right]
\end{aligned}
$$

by letting $q=\theta-i x$. We evaluate the integral

$$
\int_{-i x}^{\infty-i x} e^{-q^{2} / 2} d q
$$

by forming a closed anti-clockwise rectangular contour from $-i x$ to $R-i x$ to R to 0 to $-i x$. The contour integral is zero by analyticity. Note that

$$
\int_{0}^{\infty} e^{-q^{2} / 2} d q=\sqrt{\frac{\pi}{2}}
$$

The integral from $R-i x$ to R tends to zero as $R \rightarrow \infty$. By a change of variable $t=q / i \sqrt{2}$, the integral along the segment from 0 to $-i x$ is

$$
\int_{0}^{-i x} e^{-q^{2} / 2} d q=i \sqrt{2} \int_{0}^{-x / \sqrt{2}} e^{t^{2}} d t=-i \sqrt{2} e^{x^{2} / 2} D\left(\frac{x}{\sqrt{2}}\right)
$$

where $D(z)$ is the Dawson's integral. Therefore we have

$$
\int_{-i x}^{\infty-i x} e^{-q^{2} / 2} d q=\sqrt{\frac{\pi}{2}}+i \sqrt{2} e^{x^{2} / 2} D\left(\frac{x}{\sqrt{2}}\right)
$$

and the result follows.
Case 2: α is non-integer
Again we have

$$
\int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}|\theta|^{\alpha} d \theta=2 \int_{0}^{\infty} \cos (\theta x) e^{-\theta^{2} / 2} \theta^{\alpha} d \theta
$$

Using sum-of-angle formula and (8), we can write the classical parabolic cylinder function as

$$
\begin{aligned}
D_{\alpha}(x)= & \sqrt{\frac{2}{\pi}} \cos \frac{\alpha \pi}{2} e^{x^{2} / 4} \int_{0}^{\infty} e^{-t^{2} / 2} t^{\alpha} \cos (t x) d t \\
& +\sqrt{\frac{2}{\pi}} \sin \frac{\alpha \pi}{2} e^{x^{2} / 4} \int_{0}^{\infty} e^{-t^{2} / 2} t^{\alpha} \sin (t x) d t
\end{aligned}
$$

Since the first term is even while the second term is odd in x, we have

$$
D_{\alpha}(x)+D_{\alpha}(-x)=2 \sqrt{\frac{2}{\pi}} \cos \frac{\alpha \pi}{2} e^{x^{2} / 4} \int_{0}^{\infty} e^{-t^{2} / 2} t^{\alpha} \cos (t x) d t
$$

The result follows.
Case 3: α is even
Note that the integral now becomes analytic and the result is obvious by the discussion in Sect. 2.1.

We are now ready to prove Theorem 2:
Proof of Theorem 2 We follow the proof outline of Evans and Swartz [7]. First note that we can express the characteristic function

$$
\psi(\theta)=\chi(\theta)+\xi(\theta)+R(\theta)
$$

where χ and ξ are as defined in (11) and (12), and R is the error term. Also let

$$
\lambda(\theta)=\chi(\theta)+\frac{\theta^{2}}{2}+\xi(\theta)
$$

be the expansion of characteristic function but trimming the first term and the error term.

Let

$$
w_{n}(\theta)=\sum_{k=0}^{\lfloor\alpha / 2-1\rfloor} \frac{(n \lambda(\theta / \sqrt{n}))^{k}}{k!}
$$

and $q_{n}(\theta)$ be the expansion of $w_{n}(\theta)$ up to order

$$
\begin{cases}1 / n^{\alpha / 2-1} L\left(\frac{n^{1 / 2}}{|\theta|}\right) & \text { for non-even } \alpha \\ 1 / n^{\alpha / 2-1} \zeta_{L}\left(\frac{n^{1 / 2}}{|\theta|}\right) & \text { for even } \alpha\end{cases}
$$

In other words,

$$
\begin{aligned}
q_{n}(\theta)= & 1+\sum_{4 \leq j<\alpha} \sum_{k=1}^{j} \frac{1}{k!} \xi_{k, j}(\theta) \frac{1}{n^{j / 2-1}} \\
& + \begin{cases}-\frac{\pi}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}} \frac{|\theta|^{\alpha} L\left(n^{1 / 2} /|\theta|\right)}{n^{\alpha / 2-1}} & \text { for non-even } \alpha \\
\frac{2(-1)^{\alpha / 2}}{\Gamma(\alpha+1)} \frac{|\theta|^{\alpha} \zeta_{L}\left(n^{1 / 2} /|\theta|\right)}{n^{\alpha / 2-1}} & \text { for even } \alpha\end{cases}
\end{aligned}
$$

where $\xi_{k, j}(\theta)$'s are defined as in (3). Also let $r_{n}(\theta)=w_{n}(\theta)-q_{n}(\theta)$ be the error of this trimming. It is easy to verify through direct expansion that $r_{n}(\theta)$ is a sum consisting of terms written as $P_{k}(\theta, n) n^{-k}$, where $k \geq \alpha / 2-1$ and $P_{k}(\theta, n)$ is a sum of terms in the form

$$
c|\theta|^{b} \times \begin{cases}\left(\frac{L\left(n^{1 / 2}\right)}{|\theta|}\right)^{d} & \text { for non-even } \alpha \\ \left(\frac{\zeta_{L}\left(n^{1 / 2}\right)}{|\theta|}\right)^{d} & \text { for even } \alpha\end{cases}
$$

for $c \in \mathbb{R}, b>0$ and $d \in \mathbb{N}$ (and note that for $k=\alpha / 2-1$ the terms in $P_{k}(\theta, n)$ must have $d=0$).

We first show that

$$
\int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2} q_{n}(\theta) \frac{d \theta}{2 \pi}
$$

is a good approximation to $f_{S_{n} / \sqrt{n}}(x)=\int_{-\infty}^{\infty} e^{-i \theta x+n \psi(\theta / \sqrt{n})} d \theta / 2 \pi$. After that we will verify using Lemma 4 that this approximation is the one shown in Theorem 2. Consider

$$
\begin{align*}
& \left|\int_{-\infty}^{\infty}\left[e^{-i \theta x+n \psi(\theta / \sqrt{n})}-e^{-i \theta x-\theta^{2} / 2} q_{n}(\theta)\right] \frac{d \theta}{2 \pi}\right| \\
& \leq \int_{-\delta \sqrt{n}}^{\delta \sqrt{n}}\left|e^{n \psi(\theta / \sqrt{n})}-e^{-\theta^{2} / 2} q_{n}(\theta)\right| \frac{d \theta}{2 \pi} \\
& \quad+\int_{\theta \notin(-\delta \sqrt{n}, \delta \sqrt{n})} e^{-\theta^{2} / 2}\left|q_{n}(\theta)\right| \frac{d \theta}{2 \pi}+\int_{\theta \notin(-\delta \sqrt{n}, \delta \sqrt{n})}\left|\phi\left(\frac{\theta}{\sqrt{n}}\right)\right|^{n} \frac{d \theta}{2 \pi} \tag{24}
\end{align*}
$$

for any δ. Later we are going to choose the value of δ to bound our error.
We first consider the third integral in (24). By non-lattice assumption, given any δ, we can find $\tau_{\delta}<1$ such that $|\phi(y)| \leq \tau_{\delta}$ for any $y>\delta$. Hence

$$
\int_{\theta \notin(-\delta \sqrt{n}, \delta \sqrt{n})}\left|\phi\left(\frac{\theta}{\sqrt{n}}\right)\right|^{n} \frac{d \theta}{2 \pi} \leq \tau_{\delta}^{n-1} \int_{\theta \notin(-\delta \sqrt{n}, \delta \sqrt{n})}\left|\phi\left(\frac{\theta}{\sqrt{n}}\right)\right| \frac{d \theta}{2 \pi}=o\left(n^{-p}\right)
$$

for any $p>0$. The last equation follows from our assumption that ϕ is integrable.
Now consider the second integral in (24). Note that for any $\beta \geq 0$,

$$
\begin{equation*}
\int_{\theta \notin(-\delta \sqrt{n}, \delta \sqrt{n})} e^{-\theta^{2} / 2} \theta^{\beta} d \theta=o\left(n^{-p}\right) \tag{25}
\end{equation*}
$$

for any $p>0$. Also, for any $\alpha>2$ and slowly varying function U,

$$
\begin{align*}
\int_{\theta \notin(-\delta \sqrt{n}, \delta \sqrt{n})} e^{-\theta^{2} / 2}|\theta|^{\alpha} U\left(\frac{n^{1 / 2}}{|\theta|}\right) d \theta & \leq C_{q} \int_{\theta \notin(-\delta \sqrt{n}, \delta \sqrt{n})} e^{-\theta^{2} / 2}|\theta|^{\alpha-q} n^{q / 2} d \theta \\
& =o\left(n^{-p}\right) \tag{26}
\end{align*}
$$

for any $q>0$ and C_{q} a positive constant depending on q. Again $p>0$ is arbitrary. By plugging in the expansion of q_{n}, together with observations (25) and (26), we conclude that the second integral in (24) is $o\left(n^{-p}\right)$ for any $p>0$.

Finally consider the first integral in (24)

$$
\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}}\left|e^{n \psi(\theta / \sqrt{n})}-e^{-\theta^{2} / 2} q_{n}(\theta)\right| \frac{d \theta}{2 \pi}
$$

$$
\leq \int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 2}\left|e^{n \psi(\theta / \sqrt{n})+\theta^{2} / 2}-w_{n}(\theta)\right| \frac{d \theta}{2 \pi}+\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 2}\left|r_{n}(\theta)\right| \frac{d \theta}{2 \pi}
$$

By our observation on $r_{n}(\theta)$ that it can be written as a sum of $P_{k}(\theta, n) n^{-k}$ with conditions on P_{k} and k, together with the fact that $\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 2}|\theta|^{b} d \theta<\infty$ for any $b>0$ and the slowly varying functions L and ζ_{L} grow slower than any polynomial, we can verify that

$$
\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 2}\left|r_{n}(\theta)\right| \frac{d \theta}{2 \pi}= \begin{cases}o\left(\frac{L\left(n^{1 / 2}\right)}{n^{2 / 2-1}}\right) & \text { for non-even } \alpha \\ o\left(\frac{\left(L^{(n / 2 / 2}\right)}{n^{\alpha / 2-1}}\right) & \text { for even } \alpha\end{cases}
$$

Now consider the first part. We use the estimate

$$
\begin{align*}
\left|e^{\alpha}-\sum_{j=0}^{\gamma} \frac{\beta^{j}}{j!}\right| & \leq\left|e^{\alpha}-e^{\beta}\right|+\left|e^{\beta}-\sum_{j=0}^{\gamma} \frac{\beta^{j}}{j!}\right| \\
& \leq\left(|\alpha-\beta|+\frac{|\beta|^{\gamma+1}}{(\gamma+1)!}\right) e^{\max \{\alpha, \beta\}} \tag{27}
\end{align*}
$$

where we use mean value theorem in the last inequality. Also, we can find δ small enough so that for $\theta \in[-\delta, \delta]$, we have

$$
\left|\psi(\theta)+\frac{\theta^{2}}{2}\right| \leq \frac{\theta^{2}}{4} \quad \text { and } \quad|\lambda(\theta)| \leq \frac{\theta^{2}}{4}
$$

which implies that, for $\theta \in[-\delta \sqrt{n}, \delta \sqrt{n}]$, we get

$$
\begin{equation*}
\left|n \psi\left(\frac{\theta}{\sqrt{n}}\right)+\frac{\theta^{2}}{2}\right| \leq \frac{\theta^{2}}{4} \quad \text { and } \quad\left|n \lambda\left(\frac{\theta}{\sqrt{n}}\right)\right| \leq \frac{\theta^{2}}{4} \tag{28}
\end{equation*}
$$

Using the above estimates (27) and (28),

$$
\begin{align*}
& \int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 2}\left|e^{n \psi(\theta / \sqrt{n})+\theta^{2} / 2}-w_{n}(\theta)\right| \frac{d \theta}{2 \pi} \\
& \leq \int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}\left|n R\left(\frac{\theta}{\sqrt{n}}\right)\right| \frac{d \theta}{2 \pi} \\
& \quad+\left.\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}\left|\frac{n \lambda(\theta / \sqrt{n})}{(\lfloor\alpha / 2-1\rfloor+1)!}\right|\right|^{\lfloor\alpha / 2-1\rfloor+1} \frac{d \theta}{2 \pi} \tag{29}
\end{align*}
$$

Now since

$$
\lambda(\theta)=o\left(\theta^{2+p}\right)
$$

for $\theta \in[-\delta \sqrt{n}, \delta \sqrt{n}]$ and some small $p>0$, it is easy to see that the second integral in (29)

$$
\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}\left|\frac{n \lambda(\theta / \sqrt{n})}{(\lfloor\alpha / 2-1\rfloor+1)!}\right|^{\lfloor\alpha / 2-1\rfloor+1} \frac{d \theta}{2 \pi}=o\left(\frac{1}{n^{\alpha / 2-1}}\right)
$$

On the other hand, we have

$$
R(\theta)= \begin{cases}o\left(|\theta|^{\alpha} L\left(\frac{1}{|\theta|}\right)\right) & \text { for non-even } \alpha \tag{30}\\ o\left(|\theta|^{\alpha} \zeta_{L}\left(\frac{1}{|\theta|}\right)\right) & \text { for even } \alpha\end{cases}
$$

Suppose that α is non-even. For given ϵ, we can choose δ small enough such that for $\theta \in[-\delta, \delta]$,

$$
R(\theta) \leq \epsilon|\theta|^{\alpha} L\left(\frac{1}{|\theta|}\right)
$$

which implies that for $\theta \in[-\delta \sqrt{n}, \delta \sqrt{n}]$,

$$
n R\left(\frac{\theta}{\sqrt{n}}\right) \leq \epsilon \frac{|\theta|^{\alpha}}{n^{\alpha / 2-1}} L\left(\frac{n^{1 / 2}}{|\theta|}\right)
$$

and the first integral in (29)

$$
\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}\left|n R\left(\frac{\theta}{\sqrt{n}}\right)\right| \frac{d \theta}{2 \pi} \leq \epsilon \int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4} \frac{|\theta|^{\alpha}}{n^{\alpha / 2-1}} L\left(\frac{n^{1 / 2}}{|\theta|}\right) \frac{d \theta}{2 \pi}
$$

Note that by Lemma 2 we can pick $M>0$ and any $\rho_{1}, \rho_{2}>0$ such that

$$
\frac{L\left(\frac{n^{1 / 2}}{|\theta|}\right)}{L\left(n^{1 / 2}\right)} \leq \begin{cases}C|\theta|^{-\rho_{1}} & \text { for }|\theta|<1 \\ C|\theta|^{\rho_{2}} & \text { for }|\theta| \geq 1\end{cases}
$$

for $n>M$. So by dominated convergence theorem and that

$$
\begin{equation*}
\frac{L\left(\frac{n^{1 / 2}}{|\theta|}\right)}{L\left(n^{1 / 2}\right)} \rightarrow 1 \tag{31}
\end{equation*}
$$

as $n \rightarrow \infty$ for all fixed nonzero θ, we have

$$
\begin{aligned}
& \int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4} \frac{|\theta|^{\alpha}}{n^{\alpha / 2-1}} L\left(\frac{n^{1 / 2}}{|\theta|}\right) \frac{d \theta}{2 \pi} \\
& \quad=\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}|\theta|^{\alpha} \frac{L\left(n^{1 / 2} /|\theta|\right)}{L\left(n^{1 / 2}\right)} \frac{d \theta}{2 \pi} \frac{L\left(n^{1 / 2}\right)}{n^{\alpha / 2-1}} \\
& \quad \leq \int_{-\infty}^{\infty} e^{-\theta^{2} / 4}|\theta|^{\alpha} \frac{L\left(n^{1 / 2} /|\theta|\right)}{L\left(n^{1 / 2}\right)} \frac{d \theta}{2 \pi} \frac{L\left(n^{1 / 2}\right)}{n^{\alpha / 2-1}} \\
& \quad \sim \int_{-\infty}^{\infty} e^{-\theta^{2} / 4}|\theta|^{\alpha} \frac{d \theta}{2 \pi} \frac{L\left(n^{1 / 2}\right)}{n^{\alpha / 2-1}}
\end{aligned}
$$

as $n \nearrow \infty$. Hence

$$
\limsup _{n \rightarrow \infty} \frac{\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}\left|n R\left(\frac{\theta}{\sqrt{n}}\right)\right| \frac{d \theta}{2 \pi}}{L\left(n^{1 / 2}\right) / n^{\alpha / 2-1}} \leq \epsilon C
$$

for some constant $C>0$. Since ϵ is arbitrary, we get

$$
\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}\left|n R\left(\frac{\theta}{\sqrt{n}}\right)\right| \frac{d \theta}{2 \pi}=o\left(\frac{L\left(n^{1 / 2}\right)}{n^{\alpha / 2-1}}\right)=o\left(\frac{L\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}}\right)
$$

for any fixed x. The case for even α is the same except L is replaced by ζ_{L} that is also a slowly varying function.

We can therefore conclude that

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left[e^{-i \theta x+n \psi(\theta / \sqrt{n})}-e^{-i \theta x-\theta^{2} / 2} q_{n}(\theta)\right] \frac{d \theta}{2 \pi} \\
& \quad= \begin{cases}o\left(\frac{L\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}}\right) & \text { for non-even } \alpha \\
o\left(\frac{\zeta_{L}\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}}\right) & \text { for even } \alpha\end{cases}
\end{aligned}
$$

We now evaluate $\int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2} q_{n}(\theta) \frac{d \theta}{2 \pi}$. Note that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2} q_{n}(\theta) \frac{d \theta}{2 \pi} \\
& \quad=\eta(x)\left[1+\sum_{\substack{3 \leq j<\alpha \\
j \text { even }}} \frac{G_{j}(x)}{n^{j / 2-1}}\right]+\int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2} n \xi\left(\frac{\theta}{n^{1 / 2}}\right) \frac{d \theta}{2 \pi}
\end{aligned}
$$

where G_{j} 's are the ordinary Edgeworth coefficients. So it suffices to focus on the last term

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2} n \xi\left(\frac{\theta}{n^{1 / 2}}\right) \frac{d \theta}{2 \pi} \\
& \quad= \begin{cases}-\frac{\pi}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}} \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}|\theta|^{\alpha} L\left(\frac{n^{1 / 2}}{|\theta|}\right) \frac{d \theta}{2 \pi} \frac{1}{n^{\alpha / 2-1}} & \text { for non-even } \alpha \\
\frac{2(-1)^{\alpha / 2}}{\Gamma(\alpha+1)} \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}|\theta|^{\alpha} \zeta_{L}\left(\frac{n^{1 / 2}}{|\theta|} \frac{d \theta}{2 \pi} \frac{1}{n^{\alpha / 2-1}}\right. & \text { for even } \alpha\end{cases}
\end{aligned}
$$

By dominated convergence theorem and (31), we have for odd α,

$$
\begin{aligned}
- & \frac{\pi}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}} \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}|\theta|^{\alpha} L\left(\frac{n^{1 / 2}}{|\theta|}\right) \frac{d \theta}{2 \pi} \frac{1}{n^{\alpha / 2-1}} \\
& =-\frac{\pi}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}} \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}|\theta|^{\alpha} \frac{L\left(\frac{n^{1 / 2}}{|\theta|}\right)}{L\left(n^{1 / 2}\right)} \frac{d \theta}{2 \pi} \frac{L\left(n^{1 / 2}\right)}{n^{\alpha / 2-1}} \\
& \sim-\frac{\pi}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}} \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}|\theta|^{\alpha} \frac{d \theta}{2 \pi} \frac{L\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}}
\end{aligned}
$$

$$
=-\frac{\sqrt{2}}{\alpha!} \frac{d^{\alpha}}{d x^{\alpha}} D\left(\frac{x}{\sqrt{2}}\right) \frac{L\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}}
$$

by using Lemma 4 in the last equality.
For non-integral and even α essentially the same argument follows, again noting that $\zeta_{L}(x)$ is also a slowly varying function for proving the even α case.

4 Beyond Central Limit Region

Although this paper concerns expansions in the central limit region, we devote this section to an interesting connection of our extra term with the large deviations of regularly varying rv's. In particular, we will see that, in the case of non-even α, our extra term blends smoothly with the heavy-tail asymptotic, or formally an additivity of power-law tail amplitudes (see Chap. 1 in Bouchaud and Potters [5] for related discussion) beyond the central limit regime. Hence, in some sense, one can interpret this tail additivity as a property that originates from the non-analytical behavior of the characteristic function expansion.

By local analysis (see for example, Bender and Orszag [2])

$$
\frac{d^{\alpha}}{d x^{\alpha}} D\left(\frac{x}{\sqrt{2}}\right) \sim(-1)^{\alpha} \frac{\alpha!}{\sqrt{2} x^{1+\alpha}}
$$

as $x \rightarrow \infty$ and for non-integral v,

$$
D_{v}(z) \sim \begin{cases}z^{v} e^{-z^{2} / 4} & \text { as } z \rightarrow+\infty \\ \frac{\sqrt{2 \pi}}{\Gamma(-\nu)} e^{z^{2} / 4}|z|^{-v-1} & \text { as } z \rightarrow-\infty\end{cases}
$$

So for odd and non-integral α,

$$
G_{\alpha}(x) \sim x^{-(1+\alpha)}
$$

as $x \rightarrow \infty$. Note that the result for non-integral α follows from the observation that the negative side of D_{α} in $G_{\alpha}(x)$ dominates and the reflection property of gamma function. Thus when α is non-even, we get

$$
\begin{equation*}
G_{\alpha}(x) \frac{L\left(n^{1 / 2} x\right)}{n^{\alpha / 2-1}} \sim \frac{L\left(n^{1 / 2} x\right)}{x^{1+\alpha} n^{\alpha / 2-1}} \tag{32}
\end{equation*}
$$

for $x \rightarrow \infty$.
On the other hand, Rozovskii [13], proved a result for regularly varying rv on the whole axis:

$$
\begin{equation*}
P\left(S_{n}>x\right)=\left[\bar{\Phi}\left(\frac{x}{\sqrt{n}}\right)+n P\left(X_{k}>x\right)\right](1+o(1)) \tag{33}
\end{equation*}
$$

uniformly for $x>\sqrt{n}$, where $\bar{\Phi}(\cdot)$ denotes the complementary normal distribution. In other words,

$$
\lim _{n \nearrow \infty} \sup _{x>\sqrt{n}}\left|\frac{P\left(S_{n}>x\right)}{\bar{\Phi}(x / \sqrt{n})+n P\left(X_{k}>x\right)}-1\right|=0
$$

In particular, the result implies that for $x>\sqrt{(\alpha-2) n \log n}$, the large-deviations asymptotic (the second term on the right hand side) dominates i.e. $P\left(S_{n}>x\right) \sim$ $n P\left(X_{k}>x\right)$. If we assume the existence of density, this can be written as

$$
f_{S_{n} / \sqrt{n}}(x) \sim n f(x \sqrt{n}) \cdot \sqrt{n}
$$

for $x>\sqrt{(\alpha-2) \log n}$, which is exactly (32). In other words, the non-analytic term matches exactly with the large-deviations asymptotic.

However, for even α our extra term resembles standard Edgeworth expansion, and there is no region on the real axis that this can coincide with the large-deviation asymptotic.

To rigorously show the validity of the connection would require knowledge about the second-order variation of the slowly varying function L i.e. how fast $L(x t) / L(x) \rightarrow 1$ for given t. This will be a direction for future research, but in this paper we are satisfied that at least in special cases this connection is easily seen to be valid:

Theorem 3 Assume $\left(X_{k}: k \geq 1\right)$ are iid $r v$'s with unit variance and symmetric Pareto density $f(x)=a_{f} /\left(b_{f}+|x|^{\alpha+1}\right)$ where α is non-even, and a_{f} and b_{f} are constants. Then we have the asymptotic

$$
\begin{equation*}
f_{S_{n} / n^{1 / 2}}(x)=\eta(x)\left[1+\sum_{\substack{3 \leq j<\alpha \\ j \text { even }}} \frac{G_{j}(x)}{n^{j / 2-1}}\right]+\frac{G_{\alpha}(x)}{n^{\alpha / 2-1}}+o\left(\frac{G_{\alpha}(x)}{n^{\alpha / 2-1}}\right) \tag{34}
\end{equation*}
$$

uniformly over $x \leq \sqrt{(\alpha-2) \log n}$, where $G_{j}(x)$ are defined as in Theorem 2.

In other words, the refined moderate deviations over the range $x \leq \sqrt{(\alpha-2) \log n}$ is the same as the Edgeworth expansion together with our additional term.

Proof The proof is a simple adaptation from the proof of Theorem 2. Note that in that proof we bound uniformly the error of Edgeworth expansion over the real axis, but this error can be too coarse for x outside the central limit region. It suffices, therefore, to refine our error estimate so that it always has smaller order than our Edgeworth expansion over $x \leq \sqrt{(\alpha-2) \log n}$. In other words, we need to show that the error of our approximation using Edgeworth expansion is of order $o\left(L\left(n^{1 / 2} x\right) /\left(x^{1+\alpha} n^{\alpha / 2-1}\right)\right)$ for any $x \leq \sqrt{(\alpha-2) \log n}$.

We will first prove the result for the odd α case. An easy examination of our proof of Theorem 2 would reveal that for Pareto rv, the only error that needs further refinement is that caused by

$$
\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}\left|n R\left(\frac{\theta}{\sqrt{n}}\right)\right| \frac{d \theta}{2 \pi}
$$

For this we need a finer estimate of $R(\theta)$, which in turn needs a finer version of Case 1 in Lemma 1. Note that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{a_{f} x^{\alpha-1}\left(e^{i \theta x}-1\right)}{b_{f}+|x|^{1+\alpha}} d x \\
& \quad=2 a_{f} \int_{0}^{\infty} \frac{x^{\alpha-1}(\cos (\theta x)-1)}{b_{f}+x^{1+\alpha}} d x \\
& \quad=2 a_{f} \theta \int_{0}^{\infty} \frac{u^{\alpha-1}(\cos u-1)}{b_{f} \theta^{1+\alpha}+u^{1+\alpha}} d u \\
& \quad=2 a_{f} \theta \int_{0}^{\infty} \frac{\cos u-1}{u^{2}} d u-2 a_{f} b_{f} \theta^{2+\alpha} \int_{0}^{\infty} \frac{(\cos u-1)}{u^{2}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u
\end{aligned}
$$

The first part becomes $-a_{f} \pi \theta$, while the second part is

$$
\begin{aligned}
& -2 a_{f} b_{f} \theta^{2+\alpha} \int_{0}^{\infty} \frac{(\cos u-1)}{u^{2}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u \\
& \quad=-2 a_{f} b_{f} \theta^{2+\alpha}\left[\int_{0}^{\epsilon} \frac{(\cos u-1)}{u^{2}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u+\int_{\epsilon}^{\infty} \frac{(\cos u-1)}{u^{2}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u\right]
\end{aligned}
$$

where ϵ is a small number. Note that for $0<u<\epsilon$ we have $(\cos u-1) / u^{2}$ bounded around -1 . Hence

$$
\begin{aligned}
\left|\int_{0}^{\epsilon} \frac{(\cos u-1)}{u^{2}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u\right| & \leq C \int_{0}^{\epsilon} \frac{1}{b_{f} \theta^{1+\alpha}+u^{1+\alpha}} d u \\
& =\frac{C}{\theta^{\alpha}} \int_{0}^{\frac{\epsilon}{\theta}} \frac{1}{b_{f}+x^{1+\alpha}} d x \\
& \leq \frac{C}{\theta^{\alpha}}
\end{aligned}
$$

where C are positive constants. Obviously

$$
\int_{\epsilon}^{\infty} \frac{(\cos u-1)}{u^{2}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u=O(1)
$$

Therefore

$$
\int_{-\infty}^{\infty} \frac{a_{f} x^{\alpha-1}\left(e^{i \theta x}-1\right)}{b_{f}+|x|^{1+\alpha}} d x=-2 a_{f} \pi \theta+O\left(\theta^{2}\right)
$$

and hence $R(\theta)=O\left(|\theta|^{1+\alpha}\right)$. Replacing (30) with this estimate of $R(\theta)$ and applying the same argument as in the proof of Theorem 2 implies that

$$
\int_{-\delta \sqrt{n}}^{\delta \sqrt{n}} e^{-\theta^{2} / 4}\left|n R\left(\frac{\theta}{\sqrt{n}}\right)\right| \frac{d \theta}{2 \pi}=O\left(\frac{1}{n^{\alpha / 2-1 / 2}}\right)=o\left(\frac{L\left(n^{1 / 2} x\right)}{x^{1+\alpha} n^{\alpha / 2-1}}\right)
$$

for $x \leq \sqrt{(\alpha-2) \log n}$. This leads to a uniform estimate of our error in the Edgeworth expansion that always has order less than $G_{\alpha}(x) / n^{\alpha / 2-1}$ over $x \leq \sqrt{(\alpha-2) \log n}$.

Now for non-integer α, when $q=\lfloor\alpha\rfloor$ is even, Case 3 in Lemma 1 can be written as

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{a_{f} x^{q}\left(e^{i \theta x}-1\right)}{b_{f}+|x|^{1+\alpha}} d x \\
& \quad=2 a_{f} \theta^{\alpha-q} \int_{0}^{\infty} \frac{u^{q}}{b_{f} \theta^{1+\alpha}+u^{1+\alpha}}(\cos u-1) d u \\
& \quad=2 a_{f}\left[\theta^{\alpha-q} \int_{0}^{\infty} \frac{\cos u-1}{u^{1+\alpha-q}} d u-b_{f} \theta^{1+\alpha} \int_{0}^{\infty} \frac{\cos u-1}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u\right]
\end{aligned}
$$

Now

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\cos u-1}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u \\
& \quad=\int_{0}^{\epsilon} \frac{\cos u-1}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u+\int_{\epsilon}^{\infty} \frac{\cos u-1}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u
\end{aligned}
$$

for small $\epsilon>0$. Clearly the second integral is bounded. Consider the first integral

$$
\begin{aligned}
\left|\int_{0}^{\epsilon} \frac{\cos u-1}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u\right| & \leq C \int_{0}^{\epsilon} \frac{u^{1-(\alpha-q)}}{b_{f} \theta^{1+\alpha}+u^{1+\alpha}} d u \\
& =\frac{C}{\theta^{\alpha-1+(\alpha-q)}} \int_{0}^{\frac{\epsilon}{\theta}} \frac{y^{1-(\alpha-q)}}{b_{f}+y^{1+\alpha}} d y \\
& =O\left(\frac{1}{\theta^{\alpha-1+(\alpha-q)}}\right)
\end{aligned}
$$

where C is a positive constant, and a substitution $u=\theta y$ is used in the first equality. Hence

$$
\int_{-\infty}^{\infty} \frac{a_{f} x^{q}\left(e^{i \theta x}-1\right)}{b_{f}+|x|^{1+\alpha}} d x=2 a_{f} \theta^{\alpha-q} \Gamma(-\alpha+q) \cos \left(\frac{-\alpha+q}{2} \pi\right)+O\left(\theta^{2}\right)
$$

When $q=\lfloor\alpha\rfloor$ is odd, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{a_{f} x^{q} e^{i \theta x}}{b_{f}+|x|^{1+\alpha}} d x \\
& \quad=2 i a_{f} \theta^{\alpha-q} \int_{0}^{\infty} \frac{u^{q} \sin u}{b_{f} \theta^{1+\alpha}+u^{1+\alpha}} d u \\
& \quad=2 i a_{f}\left[\theta^{\alpha-q} \int_{0}^{\infty} \frac{\sin u}{u^{1+\alpha-q}} d u-b_{f} \theta^{1+\alpha} \int_{0}^{\infty} \frac{\sin u}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u\right]
\end{aligned}
$$

Now

$$
\begin{aligned}
\int_{0}^{\infty} & \frac{\sin u}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u \\
\quad & =\int_{0}^{\epsilon} \frac{\sin u}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u+\int_{\epsilon}^{\infty} \frac{\sin u}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u
\end{aligned}
$$

for small $\epsilon>0$. Clearly the second integral is bounded. Consider the first integral

$$
\begin{aligned}
\left|\int_{0}^{\epsilon} \frac{\sin u}{u^{1+\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u\right| & \leq C \int_{0}^{\epsilon} \frac{1}{u^{\alpha-q}\left(b_{f} \theta^{1+\alpha}+u^{1+\alpha}\right)} d u \\
& =\frac{C}{\theta^{\alpha+(\alpha-q)}} \int_{0}^{\frac{\epsilon}{\theta}} \frac{1}{y^{\alpha-q}\left(b_{f}+y^{1+\alpha}\right)} d y \\
& =O\left(\frac{1}{\theta^{\alpha+(\alpha-q)}}\right)
\end{aligned}
$$

where C is a positive constant, and a substitution $u=\theta y$ is used in the first equality. Hence

$$
\int_{-\infty}^{\infty} \frac{a_{f} x^{q} e^{i \theta x}}{b_{f}+|x|^{1+\alpha}} d x=2 i a_{f} \theta^{\alpha-q} \Gamma(-\alpha+q) \sin \left(\frac{-\alpha+q}{2} \pi\right)+O(\theta)
$$

Therefore

$$
R(\theta)= \begin{cases}O\left(|\theta|^{\ulcorner\alpha\urcorner+1}\right) & \text { when }\llcorner\alpha\lrcorner \text { is even } \\ O\left(|\theta|^{\ulcorner\alpha\urcorner}\right) & \text { when }\llcorner\alpha\lrcorner \text { is odd }\end{cases}
$$

and the same argument as the odd α case holds.

5 Non-symmetric Density

With the result for symmetric density in hand, we can generalize our results to the non-symmetric counterpart, namely Theorem 1. The main idea is to write a nonsymmetric density as

$$
f(x)=r(x)+s(x)
$$

where

$$
\begin{equation*}
r(x)=\frac{1}{2}[f(x)+f(-x)] \tag{35}
\end{equation*}
$$

is a symmetric function, and

$$
\begin{equation*}
s(x)=\frac{1}{2}[f(x)-f(-x)] \tag{36}
\end{equation*}
$$

is an odd function. The symmetric function r can be easily handled using the results in the last section, and the odd function s can also be dealt with by slight modification. Indeed we have the following proposition:

Proposition 4 For rv following (2), we can decompose its density as

$$
f(x)=r(x)+s(x)
$$

where r and s are defined by (35) and (36), respectively. Then r and s must be regularly varying and have the same order $\alpha \equiv \min (\beta, \gamma)$, and we can write

$$
\begin{equation*}
r(x)=\frac{L_{r}(x)}{1+|x|^{1+\alpha}}, \quad s(x)=\frac{L_{s}(x)}{1+|x|^{1+\alpha}}, \quad-\infty<x<\infty \tag{37}
\end{equation*}
$$

where L_{r} is even and L_{s} is odd, and they are both continuous slowly varying functions. Also define

$$
m_{n}^{(r)}=\int_{-\infty}^{\infty} x^{n} r(x) d x, \quad m_{n}^{(s)}=\int_{-\infty}^{\infty} x^{n} s(x) d x \quad \text { for } 0 \leq n \leq \alpha-1
$$

as the "moments" of r and s. The cumulant generating function takes the form

$$
\psi(\theta)=\chi(\theta)+\xi(\theta)+o(\xi(\theta))
$$

where

$$
\chi(\theta)=1+\sum_{1 \leq j<\alpha} \kappa_{j} \frac{(i \theta)^{j}}{j!}
$$

is the ordinary Taylor series expansion up to the largest cumulant, and
$\xi(\theta)=\left\{\begin{array}{l}\frac{2 i^{\alpha}}{\Gamma(\alpha+1)}|\theta|^{\alpha}\left[\zeta_{L_{r}}\left(\frac{1}{|\theta|}\right) \pm i \frac{\pi}{2} L_{s}\left(\frac{1}{|\theta|}\right)\right] \quad \text { for even } \alpha \\ \frac{2 i^{\alpha}}{\Gamma(\alpha+1)}|\theta|^{\alpha}\left[\pm \zeta_{L_{s}}\left(\frac{1}{|\theta|}\right)+i \frac{\pi}{2} L_{r}\left(\frac{1}{|\theta|}\right)\right] \quad \text { for odd } \alpha \\ -\frac{2 \pi}{\Gamma(\alpha+1) \sin (\alpha \pi)}|\theta|^{\alpha}\left[\cos \frac{\alpha \pi}{2} L_{r}\left(\frac{1}{|\theta|}\right) \mp i \sin \frac{\alpha \pi}{2} L_{s}\left(\frac{1}{|\theta|}\right)\right] \quad \text { for non-integer } \alpha\end{array}\right.$
is the non-analytic component. Here \pm and \mp both refer to the cases when $\theta>0$ or $\theta<0$.

Proof That r and s are regularly varying, have the same order and are continuous is obvious. Now define $\phi_{r}(\theta)$ and $\phi_{s}(\theta)$ as the Fourier transforms, or "characteristic functions" of r and s. Since r is symmetric, by the same argument as Proposition 3, we get

$$
\begin{align*}
\phi_{r}(\theta)= & 1+\sum_{\substack{2 \leq j<\alpha \\
j \text { even }}} m_{j}^{(r)} \frac{(i \theta)^{j}}{j!} \\
& + \begin{cases}-\frac{\pi}{\Gamma(\alpha+1) \sin \frac{\alpha \pi}{2}}|\theta|^{\alpha} L_{r}\left(\frac{1}{|\theta|}\right)+o\left(|\theta|^{\alpha} L_{r}\left(\frac{1}{|\theta|}\right)\right) & \text { for non-even } \alpha \\
\frac{2(-1)^{\alpha / 2}}{\Gamma(\alpha+1)}|\theta|^{\alpha} \zeta_{L_{r}}\left(\frac{1}{|\theta|}\right)+o\left(|\theta|^{\alpha} \zeta_{L_{r}}\left(\frac{1}{|\theta|}\right)\right) & \text { for even } \alpha\end{cases} \tag{39}
\end{align*}
$$

Now consider the odd function s. Note that the role played by odd and even α (or q) is reversed because of odd instead of even function. Also note that $\phi_{s}(\theta)=-\phi_{s}(-\theta)$, so it suffices to prove the result for $\theta>0$ and the $\theta<0$ case follows. Following similar line of proof as Proposition 3, we get

$$
\begin{align*}
\phi_{s}(\theta)= & \sum_{\substack{1 \leq j<\alpha \\
j \text { odd }}} m_{j}^{(s)} \frac{(i \theta)^{j}}{j!} \\
& + \begin{cases}\frac{i \pi}{\Gamma(\alpha+1) \cos \frac{\alpha \pi}{2}}|\theta|^{\alpha} L_{s}\left(\frac{1}{\theta}\right)+o\left(|\theta|^{\alpha} L_{s}\left(\frac{1}{\theta}\right)\right) & \text { for non-odd } \alpha \\
\frac{2 i^{\alpha}}{\Gamma(\alpha+1)}|\theta|^{\alpha} \zeta_{L_{s}}\left(\frac{1}{\theta}\right)+o\left(|\theta|^{\alpha} \zeta_{L_{s}}\left(\frac{1}{\theta}\right)\right) & \text { for odd } \alpha\end{cases} \tag{40}
\end{align*}
$$

for $\theta>0$. Adding (39) and (40), and noting that the representation can be carried over to cumulant generating function, we obtain the stated result.

We also need a correspondence of Lemma 4 for odd function, the proof of which is very similar and is thus omitted:

Lemma 5

$$
\begin{align*}
& \int_{-\infty}^{\infty} e^{-i \theta x-\theta^{2} / 2}\left(\pm|\theta|^{\alpha}\right) d \theta \\
& \quad= \begin{cases}2 \sqrt{2} i^{\alpha+1} \frac{d^{\alpha}}{d x^{\alpha}} D\left(\frac{x}{\sqrt{2}}\right) & \text { for even } \alpha \\
-\sqrt{2 \pi} e^{-x^{2} / 2} i^{\alpha} H_{\alpha}(x) & \text { for odd } \alpha \\
i \sqrt{\frac{\pi}{2}} \csc \frac{\alpha \pi}{2} e^{-x^{2} / 4}\left[D_{\alpha}(x)-D_{\alpha}(-x)\right] & \text { for non-integer } \alpha\end{cases} \tag{41}
\end{align*}
$$

where $D(z), H_{k}(z)$ and $D_{v}(z)$ are Dawson integral, Hermite polynomial of order k and classical parabolic cylinder function with parameter v, respectively. Here

$$
\pm|\theta|^{\alpha}= \begin{cases}|\theta|^{\alpha} & \text { for } \theta>0 \\ -|\theta|^{\alpha} & \text { for } \theta<0\end{cases}
$$

The proof of Theorem 1 follows easily from Proposition 4 and Lemma 5:
Proof of Theorem 1 By (2) we can write L_{r} and L_{s} as

$$
\begin{align*}
L_{r}(x) & =\frac{1}{2}\left[L_{+}(|x|)+L_{-}(|x|)\right], \quad L_{s}(x)= \pm \frac{1}{2}\left[L_{+}(|x|)-L_{-}(|x|)\right] \quad \text { when } \\
\beta & =\gamma \\
L_{r}(x) & \sim \frac{1}{2} L_{+}(|x|), \quad L_{s}(x) \sim \pm \frac{1}{2} L_{+}(|x|), \quad \text { when } \beta<\gamma \\
L_{r}(x) & \sim \frac{1}{2} L_{-}(|x|), \quad L_{s}(x) \sim \mp \frac{1}{2} L_{-}(|x|), \quad \text { when } \beta>\gamma \tag{42}
\end{align*}
$$

where the \pm and \mp signs correspond to $x \geq 0$ and $x<0$. We can proceed similarly as in the proof of Theorem 2 by substituting (42) into L_{r} and L_{s}, and using Lemma 5. Note the use of (5) in obtaining the $\beta<\gamma$ and $\beta>\gamma$ cases.

Acknowledgement We are grateful for the helpful suggestions from the editor and anonymous reviewer, which improves our formulation and arguments throughout the paper.

References

1. Bazant, M.Z.: 18.366 Random Walks and Diffusion, Lecture Notes, MIT OpenCourseWare, http://ocw.mit.edu/OcwWeb/Mathematics/18-366Fall-2006/LectureNotes/index.htm (See the notes and supplementary material for lecture 7) (2006)
2. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory, 2nd edn. Springer, Berlin (1999)
3. Blanchet, J., Glynn, P.: Complete corrected diffusion approximations for the maximum of a random walk. Ann. Appl. Probab. 16(2), 951-983 (2006)
4. Bouchaud, J.P., Georges, M.: Anomalous diffusion in disordered media: Statistical mechanisms, models, and physical applications. Phys. Rep. 195(4-5), 127-293 (1990)
5. Bouchaud, J.P., Potters, M.: Theory of Financial Risks. Cambridge University Press, Cambridge (2000)
6. Embrechts, P., Kluppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (1997)
7. Evans, M., Swartz, T.: Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford Statistical Science Series (2000)
8. Field, C.A., Ronchetti, E.: Small Sample Asymptotics. Institute of Mathematical Statistics, Lecture Notes Monograph Series. (1990)
9. Hall, P.: The Bootstrap and Edgeworth Expansion. Springer, Berlin (1992)
10. Hughes, B.: Random Walks and Random Environments, vol. 1. Clarendon Press, Oxford (1996)
11. Metzler, R., Klafter, J.: The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77 (2000)
12. Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, Berlin (1987)
13. Rozovskii, L.V.: Probabilities of large deviations of sums of independent random variables with common distribution function in the domain of attraction of the normal law. Theory Probab. Appl. 34(4), 625-644 (1989)
14. Vinogradov, V.: Refined Large Deviation Limit Theorems. Longman, Harlow (1994)
15. Weiss, G.H.: Aspects and Applications of the Random Walk. North-Holland, Amsterdam (1994)

[^0]: H. Lam (\boxtimes)

 Department of Mathematics and Statistics, Boston University, 111 Cummington Street, Boston, MA 02215, USA
 e-mail: khhlam@gmail.com
 H. Lam
 e-mail: khhlam@math.bu.edu
 J. Blanchet

 Department of Industrial Engineering and Operations Research, Columbia University, 500 West 120th Street, New York, NY 10027, USA
 e-mail: jose.blanchet@columbia.edu
 D. Burch

 Department of Mathematics, Massachusetts Institute of Technology, Building 2, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
 M.Z. Bazant

 Department of Chemical Enginnering, Massachusetts Institute of Technology, 25 Ames Street, Room 66-552, Cambridege , MA 02139, USA
 e-mail: bazant@mit.edu

