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The classical Poisson-Boltzmann �PB� theory of electrolytes assumes a dilute solution of point charges with
mean-field electrostatic forces. Even for very dilute solutions, however, it predicts absurdly large ion concen-
trations �exceeding close packing� for surface potentials of only a few tenths of a volt, which are often
exceeded, e.g., in microfluidic pumps and electrochemical sensors. Since the 1950s, several modifications of
the PB equation have been proposed to account for the finite size of ions in equilibrium, but in this two-part
series, we consider steric effects on diffuse charge dynamics �in the absence of electro-osmotic flow�. In this
first part, we review the literature and analyze two simple models for the charging of a thin double layer, which
must form a condensed layer of close-packed ions near the surface at high voltage. A surprising prediction is
that the differential capacitance typically varies nonmonotonically with the applied voltage, and thus so does
the response time of an electrolytic system. In PB theory, the differential capacitance blows up exponentially
with voltage, but steric effects actually cause it to decrease while remaining positive above a threshold voltage
where ions become crowded near the surface. Other nonlinear effects in PB theory are also strongly suppressed
by steric effects: The net salt adsorption by the double layers in response to the applied voltage is greatly
reduced, and so is the tangential “surface conduction” in the diffuse layer, to the point that it can often be
neglected compared to bulk conduction �small Dukhin number�.

DOI: 10.1103/PhysRevE.75.021502 PACS number�s�: 82.45.Gj, 61.20.Qg

I. INTRODUCTION

In this two-part series, we develop a simple analytical
theory for the dynamics of electrolytes, taking into account
steric effects of finite ion size. Motivated by recent experi-
ments in microfluidics, microbatteries, and electrochemical
sensors, our motivation is to describe the response of an
electrolyte to an applied voltage of several volts, which is
large enough to cause crowding of ions near a surface, even
if the bulk solution is very dilute and in the absence of sur-
face reactions. The ions thus lose their classical Poisson-
Boltzmann distribution, which has major implications for
their dynamics.

As a guide to the reader, we summarize the main results.
The present “Part I” begins in this section with a historical
review of dilute solution theory, its limitations at large volt-
ages, and attempts to account for steric hindrance, specific
interactions, and many-body electrostatics. As a first approxi-
mation, we focus only on steric effects and analyze the dy-
namical response of a thin diffuse layer to a large applied
voltage, using two simple continuum models �Sec. II�. The
key results, common to both steric models, are �i� the diffuse
layer’s differential capacitance is bounded and decreases at
large voltage �Sec. III�, and �ii� it cannot easily engulf
enough ions to perturb the bulk concentration or to conduct
significant tangential currents �Sec. IV�. These predictions
are completely opposite to those of dilute solution theory
�based on the Gouy-Chapman model of the diffuse layer�. In
the companion paper, “Part II” �1�, we propose general, time-
dependent equations with steric constraints and revisit the
parallel-plate charging problem in more detail.

A. Dilute solution theory

For the past century, dilute solution theory has provided
the standard model of electro-diffusion of ions �2–4� and
electrokinetic phenomena �5,6�. The fundamental assumption
is that the chemical potential of a pointlike ion i in a dilute
solution has the simple form

�i = kT ln ci + zie� , �1�

where zie is the charge, ci the concentration, and � the elec-
trostatic potential, determined in a mean-field approximation
by Poisson’s equation,

− � · �� � �� = � = �
i

zieci, �2�

typically with a constant permittivity �. The form �1� is
sometimes called the “ideal” component of the chemical po-
tential �7�, to which various “excess” components at finite
concentration can be added �see below�.

In many situations, it is assumed that the ions are in qua-
sithermal equilibrium with a Boltzmann distribution,

ci = ci
0e−zie�/kT �3�

with a reference concentration ci
0, in which case Eq. �2� re-

duces to the Poisson-Boltzmann equation �PB�. For example,
to analyze a thin double layer, it is natural to choose ci

0 to be
the concentration of species i in the nearby neutral bulk so-
lution. In most situations, the PB equation is hard enough to
solve that the Debye-Hückel linearization for small poten-
tials, �� � ��T, is required for analytical progress, where
�T=kT /zie is the thermal voltage ��25 mV for monovalent
ions at room temperature�.
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The well-known exception, which admits a simple solu-
tion, is the case of a symmetric binary z :z electrolyte in a
one-dimensional �1D� geometry, where the PB equation in
the form

�
�2�

�x2 = 2zec0 sinh� ze�

kT
	 �4�

was solved analytically by Gouy �8� and Chapman �9� �GC�
for a semi-infinite electrolyte of bulk concentration c0=c+

0

=c−
0 near a flat charged surface �2,3,5�. �It is less well-known

that Gouy �8� also solved the case of an asymmetric 2z :z
electrolyte.� Although this solution may seem quite special, it
describes the most common situation where diffuse charge is
confined to a thin capacitorlike “double layer” near a solid
surface. The width of the diffuse layer is the Debye �10� �or,
more properly, Gouy �8�� screening length,

�D =
 �kT

2z2e2c0
�5�

as can be seen by scaling Eq. �4� with x̃=x /�D and �̃

=� /�T to obtain the dimensionless form, �̃�=sinh �̃. The
screening length ��D�1–100 nm in aqueous electrolytes� is
typically much smaller than any geometrical length, so bulk
solution remains quasineutral with diffuse charge confined to
thin, locally flat, quasiequilibrium double layers.

Due to its analytical simplicity and wide applicability, the
Gouy-Chapman solution has become the standard model for
highly charged double layers. It is the basis for the classical
theory of tangential “surface conduction” through the diffuse
layer �11–14�, as well as the recently noted phenomenon of
salt “adsorption” �or “uptake”� from the neutral bulk by the
diffuse layer in response to a large applied voltage �15,16�.
Such predictions of the GC model have major implications
for electrokinetic phenomena of the first kind, such as
electro-osmosis, electrophoresis, streaming potential, and
diffusiophoresis, at large surface potentials �5,6�.

Dilute solution theory has also been used in nearly every
model of diffuse charge during the passage of current. Near
equilibrium, the flux density of ion i is proportional to the
gradient of its chemical potential �1�,

Fi = − bici � �i = − Di��ci +
zie

kT
ci � �	 , �6�

where Einstein’s relation, Di=bi /kT, relates the ion’s mobil-
ity bi to its diffusivity Di. For a system in quasisteady state,
� ·Fi=0, the nonzero current, J=�izieFi, only slightly per-
turbs the Boltzmann distribution of the ions. As a result, the
GC solution is also widely used to describe diffuse-layer
effects on electrode reaction kinetics �3,17� �the Frumkin
correction �18��, up to Nernst’s limiting current, where the
bulk concentration of an electroactive species vanishes. At
larger “superlimiting” currents, the PB equation loses valid-
ity, but dilute-solution theory is still used to describe diffuse
charge, which loses its Boltzmann distribution �19� and ex-
tends into the bulk as “space charge” �20�, while retaining an
inner boundary layer at the screening length �21�. The dilute-
solution space-charge model is the basis for theories of elec-

trokinetic phenomena of the second kind, such as superfast
electrophoresis �22� and hydrodynamic instability at a limit-
ing current �23�.

Dilute solution theory has also been used to describe the
dynamics of electrolytes, subject to time-dependent applied
voltages. The classical description comes from the Poisson-
Nernst-Planck equations �PNP�, which consist of Eq. �2� and
mass conservation laws for the ions,

�ci

�t
= − � · Fi = Di��2ci +

zie

kT
� · �ci � ��� , �7�

where Di�constant is normally assumed. Again, general so-
lutions are only possible upon linearization, where the poten-
tial satisfies the Debye-Falkenhagen equation �10�. In the
nonlinear regime, for thin double layers, the GC solution
again holds since the diffuse-charge remains in quasiequilib-
rium, and the diffuse-layer acts like a voltage-dependent dif-
ferential capacitance in series with a bulk resistor �24�. Such
equivalent circuit models can be derived systematically from
the PNP equations by asymptotic analysis, which also reveals
corrections at large voltages, due to bulk diffusion in re-
sponse to salt adsorption �15� and surface conduction �16� at
large applied voltages. Such nonlinear diffuse-layer effects
could be important in interpretting impedance spectra in
electrochemical sensing �25,26�, or in understanding high-
rate thin-film rechargeable batteries �27–30�.

Another current motivation to study nonlinear diffuse-
charge dynamics comes from “induced-charge” electroki-
netic phenomena �31�. The preceding models of double-layer
relaxation have been used extensively in theories of ac
pumping of liquids over electrode arrays �32–37�, induced-
charge electro-osmotic flows around metallic colloids
�38,39� and microstructures �33,40,41�, and dielectrophoresis
�42–44� and induced-charge electrophoresis �31,44–46� of
polarizable particles in electrolytes, although a nonlinear
analysis based on the PNP equations has not yet been at-
tempted for any of these situations. This may be a good
thing, however, since we will show that dilute solution
theory generally breaks down in the regime of experimental
interest, where the applied voltage is much larger than the
thermal voltage, V��T.

B. Validity of the nonlinear model for dilute solutions

Dilute solution theory provides a natural starting point to
understand nonlinear effects in electrolytes, and the GC
model is used in all of the examples above to model the
diffuse layer at large applied potentials. In spite of its math-
ematical appeal, however, nonlinear dilute solution theory
has limited applicability, due to the exponential sensitivity of
the counterion concentration to voltage. For example, in the
typical case of quasiequilibrium, the Boltzmann factor �3�
brings nonlinearity to the PB equation �4� when ���T, but
this dependence is so strong that the surface potential cannot
get much larger without invalidating the assumption of a
dilute solution.

To see this, note that there must be a maximum concen-
tration, cmax=a−3, of counterions packed with typical spacing
a near a highly charged surface. This effective ion size is
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clearly no smaller than the ionic radius �typically �1 Å�,
although it could be considerably larger �several nm�, taking
into account hydration effects and ion-ion correlations, espe-
cially in a large electric field. For the sake of argument,
consider a very dilute bulk solution, c0=10−5 M, with a
=3 Å and z=1. The nonlinear regime begins at a diffuse-
layer potential �D�kT /ze=25 mV, but the steric limit is
reached in dilute solution theory at �c�13kT /ze=330 mV,
where

�c = −
kT

ze
ln�a3c0� =

kT

ze
ln� cmax

c0
	 . �8�

Since the solution ceases to be “dilute” well below the steric
limit, there is only a narrow window of surface potentials
��25–200 mV�, sometimes called “weakly nonlinear re-
gime” �15�, where nonlinearity arises and the fundamental
assumption �1� remains valid.

Unfortunately, the most interesting predictions of the non-
linear PB theory tend to be in the “strongly nonlinear re-
gime,” where the dilute approximation fails dramatically. For
example, the Dukhin number, which controls the relative im-
portance of tangential conductivity in a thin diffuse layer, 	s,
compared to bulk conductivity, 	, at a geometrical scale L,
has the following form �11–13�,

Du =
	s

	L
= 4

�D

L
sinh2� ze�D

4kT
	 , �9�

assuming the Gouy-Chapman model. This is also the dimen-
sionless ratio, 
s /c0L, of the excess surface concentration of
ions, 
s, relative to the bulk concentration, so it also governs
the �positive� adsorption of neutral salt from the bulk in re-
sponse to an applied voltage �15,47�. The general derivation
of Eq. �9� assumes a thin double layer �16�, but in that case
��D�L� a large Dukhin number corresponds to situations
where the steric constraint is significantly violated, �D
��c, rendering Eq. �9� inappropriate. Similar concerns ap-
ply to other nonlinear effects in Gouy-Chapman theory, such
as the rapid increase of the differential capacitance �defined
below� with surface potential,

CD =
�

�D
cosh� ze�D

2kT
	 , �10�

which would have important implications for electrochemi-
cal relaxation around conductors �15,16,48� and for ac
electro-osmosis �49,50�.

C. Beyond the Poisson-Boltzmann picture

We are certainly not the first to recognize the limitations
of dilute solution theory. Historically, concerns about the un-
bounded capacitance of a thin diffuse layer in the GC solu-
tion �10� first motivated Stern �51� to hypothesize that there
must also be a compact layer of adsorbed ions on the surface,
as originally envisioned by Helmholtz �52�. The Stern layer
is where electrochemical reactions, such as ion dissociation
�setting the equilibrium charge on a dielectric� and/or redox
couples �setting the Faradaic current at an electrode�, are
believed to occur, within a molecular distance of the solid

surface �2,6�. The Stern layer capacitance �see below� helps
to relieve the overcharging of the diffuse layer in Gouy-
Chapman theory, but, due to steric constraints, it too cannot
conceivably withstand a voltage much larger than �c. In-
stead, at larger voltages, the region of ion accumulation must
inevitably extend away from the surface into the solution,
where ions undergo hindered transport in a concentrated so-
lution without having specific interactions with the solid.

The most basic aspect of a concentrated solution is the
finite molecular length scale, a0. Over half a century ago,
Wicke and Eigen �53–55� made perhaps the first attempts to
extend dilute solution theory to account excluded volume
effects in a simple statistical mechanical treatment. The
theory was developed further in the past decade by Iglic and
Kral-Iglic �56–59� and Borukhov, Andelman, and Orland
�60–62�. These authors proposed free energy functionals,
based on continuum �mean-field� approximations of the en-
tropy of equal-sized ions and solvent molecules, which they
minimized to derive modified Poisson-Boltzmann equations
�MPB�. The motivation for this work was mainly to address
the effect of large ions, whose sizes may be comparable to
the screening length, in an equilibrium diffuse layer with
�D��T. Our main point here is that crowding effects can
also be very important for small ions near a polarizable sur-
face, when subjected to a “large” voltage exceeding the
threshold �c. No matter how dilute is the bulk solution, a
sufficiently large electric field can always draw enough ions
to the surface to create a concentrated solution in the diffuse
layer.

There have also been attempts to go beyond the mean-
field approximation of steric effects, by treating specific �and
in some cases also Coulombic� ion-ion and ion-wall interac-
tions. Simple MPB equations have been proposed, which
modify the charge density to account for the spatial correla-
tion function between an ion in solution and a flat wall �via
an effective external potential� based on molecular dynamics
simulations �63–65�, but such models are not easily extended
to any other geometry, such as a rough wall �66�. Corrections
of this type can also be obtained from a general probabilistic
model of interacting ions, whose dynamics are given by non-
linearly coupled Langevin equations. Using this approach,
Schuss, Nadler, and Eisenberg rigorously derived “condi-
tional PNP” �and PB� equations where each ion concentra-
tion ci�r� in the mean-field Poisson’s equation �2� is replaced
by the conditional probability density of finding an ion at a
certain position, given the positions of the other ions
�67–69�, although a simple closure of the model requires
further assumptions about statistical correlations.

There are a variety of general statistical mechanical ap-
proaches from liquid state theory �70�, which have been ap-
plied to electrolytes, taking into account not only steric ef-
fects, but also many-body electrostatic correlations �71�.
Since the 1970s, the modest, but challenging, goal has been
to accurately predict the equilibrium distribution of ions in
Monte Carlo simulations of the “primitive model” of charged
hard spheres in a homogeneous dielectric continuum
bounded by a hard, charged wall. Typically, the model is
studied in the limit of “small” surface potentials ��D

�kT /e� relevant for equilibrium surfaces. For example, a
plethora of MPB equations �such as “MPB4,” “MPB5,” …�
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perturbing Gouy-Chapman theory have been derived by
variations on the mean spherical approximation �72–78�.
More complicated, but often more accurate, theories have
also been derived using statistical density functional theory
�DFT� �79–85�. By writing the ion flux as the gradient of an
electrochemical potential obtained from the DFT free energy
functional �7� �as we do in Part II �1�, using the much sim-
pler functional of Borukhov et al. �61��, it has been shown
that the selectivity of ion channels can be understood to a
large extent in terms of entropic effects of charged hard
spheres �86�.

In spite of many successes and the appealing first-
principles nature of liquid-state theories, however, they are
not ideally suited for our purpose here of capturing time-
dependent, large-voltage effects in a simple model. Liquid-
state theories are not analytically tractable and thus not easily
coupled to macroscopic continuum models, although perhaps
empirical fits could be developed for quantities of interest.
For example, the DFT approach requires nontrivial numeri-
cal methods, just to evaluate the steady flux in a one-
dimensional ion channel �7,86�. Another concern is that
liquid-state theories have been designed and tested only for
“small” voltages ��D�kT /e� at equilibrium surfaces, so it is
not clear how well they would perform at large, time-
dependent voltages, since there are no rigorous error bounds.
For example, the double-layer differential capacitance in
modified PB theories often increases with voltage �75�,
sometimes even faster than in PB theory �78�, but we will
argue below that it must decrease at large voltages, espe-
cially in concentrated solutions. In light of the scaling
e�D /kT from PB theory �3�, a related problem is that, until
recently �72,81�, most theories have been unable to predict
the decay of capacitance at low temperature in concentrated
solutions. Although liquid-state theories for large voltages
should certainly be developed, we will focus on much sim-
pler mean-field, continuum descriptions of steric effects, in
the hope of at least capturing some qualitative features of
nonlinear dynamics analytically, across a large range of ap-
plied voltages.

Consistent with this approach, we will also work with the
mean-field continuum description of electrostatic interactions
�2�, which neglects discrete many-body correlations. In pass-
ing, we point the reader to some of the extensive literature on
corrections to PB electrostatics, e.g., reviewed by Attard
�71�. The majority of work going beyond the mean-field ap-
proximation has focused on the simplest possible model of
an equilibrium liquid of pointlike charges in a uniform di-
electric medium. In the absence of specific interactions �such
as steric repulsion�, the fundamental length scale for ion-ion
correlations is the Bjerrum length ��7 Å in water at room
temperature�,

lB =
e2

4��kT

at which the bare Coulomb energy balances the thermal en-
ergy. Interesting consequences of many-body electrostatics,
not present in the mean-field PB description, include
Oosawa-Manning condensation of counterions around

charged rods in polyelectrolytes �87–89�, renormalized
charge of colloidal spheres �90–92�, enhanced counterion lo-
calization around discrete surface charges �93�, negative ca-
pacitance of electric double layers due to “overcharging”
with multivalent ions �94–97�, and counterion-mediated at-
traction of like-charged objects �98–100�. The latter phenom-
enon is believed to be responsible for the condensation of
DNA in multivalent electrolytes �101�, as well as the adhe-
sion of cement plaste �98,102�. A key part of the physics is
the attraction between an ion and its “correlation hole” re-
sulting from a fluctuation, which has recently been incorpo-
rated into a modified PB equation for a flat wall �103�. In all
of these problems, however, the equilibrium surface charge is
typically small �up to a monolayer of ions�; it would be
interesting to study electrostatic correlations at a much more
highly charged surface, such as an electrode applying a large
voltage, V��T �our focus here�.

Finally, we mention solvent effects, which are much less
studied, and surely also very important at large voltages.
Electrochemists widely believe that water dipoles in the
Stern layer are so highly aligned by large electric fields that
the effective permittivity drops by an order of magnitude
�e.g., from 80�0 to 5�0� �104�. At large applied voltages,
where typical fields are of order V/nm, it is reasonable to
expect that the reduced permittivity would extend into the
diffuse layer. This could have a major effect on ion-ion cor-
relations, since the Bjerrum length lb��−1 could get as large
as 10 nm. The dipolar nature of water molecules has also
been incorporated into some DFT theories to replace the con-
tinuous dielectric medium in the primitive model �82–85�.
Other aspects of water structure, such as hydrogen bonded
networks, could also be altered by large electric fields and
large ion concentrations. Such effects are taken into account
in molecular dynamics simulations with empirical potentials
�at low voltage� �63–66�, but it could be crucial to perform
ab initio quantum-mechanical simulations to validate and
guide theories of highly charged double layers.

D. Scope of the present work

In spite of the considerable literature on MPB descriptions
of electrolytes in equilibrium or in steady state conduction,
we are not aware of any attempt to go beyond dilute solution
theory �PNP equations� in analyzing the dynamics of electro-
lytes in response to time-dependent perturbations, such as ac
voltages. Accordingly, here we develop only some very
simple models with the goal of identifying generic new fea-
tures of diffuse-charge dynamics in a concentrated solution.
As such, it is preferable to start with equations that capture
the essential physics, while remaining analytically tractable,
at least in some representative cases. For this reason, we
focus on mean-field theories of steric effects and specifically
build on the MPB equation of Iglic and Kralj-Iglic �58,59�
and Borukhov et al. �60–62�, which can be integrated ana-
lytically in a few simple geometries. Such models also make
reasonable predictions across the entire range of voltages.

The contribution is broken into two parts. Here, in Part I,
we consider the canonical problem of charging a thin double
layer, viewed as an effective circuit element �15�. We begin
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in Sec. II by describing two simple models for steric effects
in a quasiequilibrium diffuse layer: �i� A “composite layer”
model, consisting of a dilute PB outer region and, at high
voltage, an inner “condensed layer” of ions packed at the
steric limit, and �ii� the MPB model which describes the
same transition in a continuous fashion. In Sec. III, we then
analyze the diffuse-layer capacitance and its role in equiva-
lent circuit approximations. In Sec. IV, we calculate steric
effects on salt adsorption and tangential surface conduction
by the diffuse layer and discuss how these high-voltage ef-
fects affect and modify the applicability of circuit models. In
Sec. V, we also briefly discuss the effects of a compact di-
electric layer �which could model a Stern layer of adsorbed
ions, or, more accurately, a thin film coating the solid�, be-
fore concluding in Sec. VI.

In Part II �1�, we consider explicitly time-dependent
problems with a general formalism, not only applicable to
thin double layers. We start with the free energy functional
of Borukhov et al. and derive modified Poisson-Nernst-
Planck �MPNP� equations, based on a simple generalization
of chemical potential �1� for concentrated solutions. As an
illustration, we then repeat the nonlinear asymptotic analysis
of Ref. �15� for the response of a blocking electrochemical
cell �no reactions at the electrodes� to a suddenly applied
voltage, to expose some general consequences of steric ef-
fects at large voltage. We also clarify the range of validity of
the thin-double-layer circuit approximations derived here in
Part I.

II. TWO MODELS OF STERIC EFFECTS
IN A THIN DIFFUSE LAYER

We focus on the response of a thin diffuse layer to an
applied voltage, where it suffices to consider only quasiequi-
librium properties �15�, as we justify carefully in Part II �1�.
Following Gouy and Chapman, we consider the case of a
symmetric z :z electrolyte here, although our reasoning is
readily extendible to the general case. We also assume that
the permittivity � is constant in space, which is certainly not
correct when dense layers of ions form close to the surface.
However, this can be taken into account in a following step
and does not change the qualitative picture emerging from
the following analysis. We will return to this point below in
Sec. V.

There are at least three important lengths in our models.
The first is the Debye length �D given by Eq. �5�, which sets
the width of the diffuse layer at low voltage and low bulk
concentration, c0. The second is the mean spacing of ions in
the bulk electrolyte, l0= �2c0�−1/3, and the third is the mean
spacing of ions �essentially of the same sign� at the maxi-
mum concentration, a=cmax

−1/3. A fourth scale L would charac-
terize the geometry, as in Part II �1�, but here we consider the
regime of thin double layers, where �D�L. A fifth scale
would be the Bjerrum length lB, which we neglect by making
the usual mean-field approximation.

From the first three lengths, there are two dimensionless
groups. The first is a /�D, which we assume to be small for
simple electrolytes in somewhat dilute solutions, so that
steric effects are important only very close to the surface, at

the inner portion of the diffuse layer �and even then, only at
large voltages�. The second dimensionless group can be writ-
ten as the mean volume fraction of ions in the bulk,


 = 2a3c0 = �a/l0�3, �11�

a natural measure of nondiluteness, which controls the im-
portance of steric effects, along with the dimensionless volt-
age, ze�D /kT. In the figures below, we display results for

=0.00005,0.005, and 0.5 to span the range from dilute to
highly concentrated solutions.

We stress that the phenomenological parameter a is not
necessarily the diameter of an ion, a0�1 Å. We prefer to
think of it as a cutoff for the unphysical divergences of PB
theory, which we know must exist, and our goal is to under-
stand its consequences. This cutoff length could include at
least a solvation shell, e.g., a�3 Å, but ion-ion correlations
could effectively increase it further, since the Bjerrum length
is at least 7 Å. As noted above, taking into account the de-
crease of permittivity �by as much as a factor of 10� or other
solvent effects at large fields could make lb, and thus perhaps
also a, as large as 10 nm. As a guide to using our results, we
refer to Fig. 1 for the value of the dimensionless parameter 

for different values of a and c0.

A. A composite diffuse-layer model

In this model, we assume that the concentration fields are
governed by Boltzmann distributions

c± = c0e�ze�/kT �12�

wherever they are meaningful, that is, whenever these con-
centrations are weaker than a physical limit 1 /a3, which is
set by the ion size. For both ion species, if the formula �12�
yields a quantity bigger than 1/a3, we set the concentration
field of the counterion to be 1/a3, and assume that the coions
are excluded from the corresponding condensed layer. The
basic physics is shown in Fig. 2.

For most geometries, such as rough surface, this model is
ill-posed and would require additional constraints to deter-

FIG. 1. �Color online� The dependence of the dimensionless
parameter 
 as a function of the bulk concentration c0 and effective
ion size a.
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mine the location of the sharp free boundary separating the
“dilute” Boltzmann region and the “condensed” region at the
maximum density. For a flat, semi-infinite diffuse layer with
a given total charge qD or total voltage �D, however, the
transition occurs at a single well-defined position, x= lc,
away from the solid surface �at x=0�. In that case, we sepa-
rate the diffuse layer into two parts if the potential is strong
enough

c± = c0e�ze�/kT if a3c± � 1, x � lc,

c± = a−3,c� = 0 if a3c0e�ze�/kT � 1, 0 � x � lc.

�13�

Note that in this simplistic dichotomy the concentration field
for coions is slightly discontinuous at the critical potential
mentioned earlier,

�c =
kT

ze
ln

2



, �14�

where again 
=2a3c0 is volume fraction occupied by �all�
ions at zero potential in the bulk. Although very simple, this
model already captures steric effects at large voltages to a
great extent.

Let us compute the thickness lc of the corresponding layer
of “condensed” counterions. We consider an electrode to
which a strong negative potential �D is applied to the diffuse
layer with respect to the bulk, such that ��D � =−�D��c
which leads to a condensed layer of positive ions in its vi-
cinity.

Poisson’s equation for the thin diffuse layer reads

�
d2�

dx2 = − � ,

��x = 0� = �D,
d�

dx
�x = 0� =

qcl

�
, �15�

since �for now� the permittivity � is assumed constant.
Within the condensed layer, we have �=zec+=ze /a3, so by
integrating, we obtain

d�

dx
= −

ze

�a3x +
qcl

�
, � = −

1

2

ze

�a3x2 +
qcl

�
x + �D, �16�

where −qcl is the surface charge density on the electrode, so
that qcl is the total charge per unit area in the diffuse layer.

Within the outer diffuse layer, the standard PB equation
holds,

�
d2�

dx2 = 2zec0 sinh� ze�

kT
	 ,

��x → � � = 0,
d�

dx
�x → � � = 0, �17�

which gives

d�

dx
= − 2
2kTc0

�
sinh� ze�

2kT
	 . �18�

At the interface between the condensed layer and the diffuse
layer, we require the continuity of the electric field,

qcl = 2zec0�D�
2



−



2
	 +

ze

a3 lc, �19�

and of the electrostatic potential, so that

− �c = −
kT

ze
ln�2/
� = − ��D� −

1

2

ze

�a3 lc
2 +

qcl

�
lc. �20�

Combining these equations and solving for lc yields

lc = �D

2

− 1 +




2
+
�1 −




2
	2

+ � ze��D�
kT

− ln�2/
��� ,

�21�

which is plotted in Fig. 3 for several values of 
. Generally,
the condensed layer forms when the diffuse layer voltage �D
becomes only a few times the thermal voltage kT /ze, and
then it grows sublinearly, proportionally to the square root of
the potential drop as anticipated from Poisson’s equation
with a constant charge density.

From this equation and Eq. �19�, we finally obtain the
charge/potential relation for the composite diffuse layer:

qcl = 2zec0�D
2




�1 −




2
	2

+ � ze��D�
kT

− ln�2/
�� ,

�22�

which holds for ��D � ��c, as assumed here. For weaker
potentials, there is no condensed layer and the standard PB
model holds:

FIG. 2. �a� Most prior work in electrokinetics has dealt with
surfaces of preexisting equilibrium charge at the scale of one elec-
tron per surface atom or less. This charge can be screened by
roughly a monolayer of ions �partly in the diffuse layer� which
corresponds to a “small” double layer voltage, of order �T=kT /e.
�b� In contrast, nonlinear electrokinetics deals with polarizable
�mainly metal� surfaces, where much higher surface charge densi-
ties can be produced by an applied voltage or electric field nearby,
and thus the double layer can “overcharge” to the point where
dilute-solution theory no longer applies. The existence of a mini-
mum ion spacing implies the formation of a condensed layer of
counterions near the surface.
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qpb = − 4zec0�D sinh� ze�D

2kT
	 . �23�

We note that, when compared to the PB charge density qpb,
the composite-layer charge density qcl is significantly re-
duced by the steric effects at higher �D. In particular, it
increases only sublinearly, as opposed to exponentially in the
PB model.

B. The modified PB model

The second model we consider is the classical mean-field
description of steric effects in equilibrium mentioned in the
Introduction. For a symmetric z :z electrolyte, the free energy
is assumed to take the form

F = U − TS ,

U =� dr�−
�

2
����2 + zec+� − zec−�	

− TS =
kT

a3 � dr�c+a3 ln�c+a3� + c−a3 ln�c−a3�

+ �1 − c+a3 − c−a3�ln�1 − c+a3 − c−a3�� . �24�

This formula can be derived either by a lattice-gas formalism
�62�, or by a continuum approach along with the assumption
that the total number of ions, counterions, and solvent mol-
ecules is constant in �infinitely small� volume elements of the
same size �59�. In either case, the microscopic details of the
solvent and the ions are ignored, and the electrostatic poten-
tial and charge density are assumed to be meaningful smooth
functions of space, and the correlation effects are not consid-
ered. We refer the reader to the literature �53–62� for more
details on the derivation and statistical mechanical assump-
tions of the free energy �24�.

The concentrations in the diffuse layer as a function of the
electrostatic potential with respect to the bulk � are given by
the modified Boltzmann distribution

c± =
c0e�ze�/kT

1 + 2
 sinh2� ze�

2kT
	 , �25�

where the packing parameter 
=2a3c0 is again the bulk ion
density scaled to its maximum value and a is the effective
size of the ions and the solvent molecules. Note that the
concentration of each ion saturates and cannot exceed the
steric limit. The distributions �25� can be derived by mini-
mizing the free energy �24�.

In a mean-field approximation with these ion concentra-
tions, the potential satisfies the modified Poisson-Boltzmann
�MPB� equation,

�2� =
zec0

�

2 sinh� ze�

kT
	

1 + 2
 sinh2� ze�

2kT
	 ,

��x = 0� = �D, ��x → � � = 0,
d�

dx
�x → � � = 0.

�26�

Unlike the composite layer model, the MPB model can be
applied to any geometry �just like the PB model�. In the case
of a flat diffuse layer, it gives a similar description, except
that steric effects enter smoothly with increasing voltage, and
there is no sharply defined condensed layer.

As for the first model, we can integrate the MPB equation
across a thin double layer to obtain the normal electric field
at the inner part of the diffuse layer,

d�

dx
= − sgn���

2zec0�D

�

2



ln�1 + 2
 sinh2� ze�

2kT
	� .

�27�

Integrating Eq. �15� using Eq. �27�, we obtain for this model
the relation between the charge per unit area in the diffuse
layer qmpb and the potential drop across it, �D:

qmpb = − sgn��D�2zec0�D
2



ln�1 + 2
 sinh2� ze�D

2kT
	� .

�28�

This formula is illustrated in Fig. 4, and compared to the
analogous formula for the composite diffuse-layer model
�22�. Although the MPB concentrations �13� have been ana-
lyzed carefully by previous authors �56–62�, it seems the
charge-voltage relation �28� has been overlooked, or at least
is not stated explicitly in these papers. �Similarly, Chapman
was the first to explicitly write down the formula �23� for the
total charge �9�, even though Gouy had thoroughly analyzed
the concentration and potential profiles in the “Gouy-
Chapman model” a few years earlier �8�.�

We note in passing that the asymptotic behavior at large
voltages is similar for the two models presented and corre-
sponds to a layer of essentially constant charge density,
which results using Poisson’s equation in a total charge pro-
portional to the square root of the potential drop.

FIG. 3. �Color online� The thickness of the condensed layer
thickness lc as a function of the total voltage drop �D across the
diffuse and the condensed layers.
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III. EQUIVALENT CIRCUIT ELEMENTS

A. A word on circuit models

As widely recognized in electrochemistry �25,26,105�, it
is often appropriate to describe the effect of the double layers
on the dynamic properties of a system through effective re-
sistances and capacitances. The underlying assumption is
that the equilibration time of the double layer is fast com-
pared to the dynamics of the global “circuit” considered,
essentially because it is so thin that transport processes
within the double layer are rapid. A mathematical justifica-
tion, starting from the simple PNP equations, can be given in
terms of an asymptotic analysis of the thin double layer limit
�15�.

Therefore we anticipate that for the many situations where
the double layer is thin compared to the system size, the
dynamics can be understood to a significant extent using the
equilibrium characteristics of the double layer. These then
provide appropriate boundary conditions for the dynamic
transport processes in the bulk.

In particular, the analysis presented in Ref. �15� shows
that the capacitance, or more precisely the differential ca-
pacitance “C,” of the double layer is a central quantity al-
lowing the modeling of the system in terms of an “RC”
circuit. The second quantity of relevance, as it characterizes
the entrance into the strongly nonlinear regime, is the neutral
salt uptake by the double layer which can result in an appre-
ciable depletion of the bulk, leading to modifications of its
conductivity �affecting the resistance “R” in the circuit� and
thus of the dynamics. This paper and a subsequent one �16�
also pointed out �in the context of dilute solution theory� that
the tangential conduction through the diffuse layer is inti-
mately tied to neutral salt adsorption, and indeed is governed
by the same dimensionless “Dukhin number.”

Therefore we will proceed to compute all of these dy-
namical quantities for a thin quasi-equilibrium double layer,
focusing on the general consequences of steric effects, which
are common to the two models. After that, we will return to

the question of surface capacitance and consider the effect of
a thin dielectric layer �such as an oxide coating on a metal
electrode, or perhaps a frozen Stern layer of adsorbed ions�
on the overall dynamical response of the double layer.

B. Total and differential capacitances

The total capacitance of the diffuse layer can be obtained
directly from the previous equations relating q �the charge
per unit area in the diffuse layer� to �D �the voltage drop
across the double layer�, as simply −q��D� /�D. We have
already computed these quantities above, and they are com-
pared to the PB result �
=0� in Fig. 5. It is immediately
obvious that the capacitance is greatly reduced at high volt-
age, compared to the predictions of dilute solution theory.
The effect is so dramatic that the capacitance in both models
reaches a maximum not much larger than the zero-voltage
value, and even decreases for all values of voltage at suffi-
ciently high concentration—the opposite trend from PB
theory.

As noted above, the differential capacitance, defined for
the diffuse layer as

CD��D� = −
dq

d�D
�29�

is the relevant quantity for the dynamical response to an
applied voltage. Throughout this paper, to be clear, we will
use the notation C only for the differential capacitance. In the
PB model �
=0�, the differential capacitance from Eq. �23�
has already been noted above:

CD

 =

�

�D
cosh� ze�D

2kT
	 . �30�

For the composite diffuse layer �CDL� model introduced
above, Eq. �19� yields

FIG. 4. �Color online� The diffuse layer charge given by PB,
MPB, and CDL models as a function of the across potential drop.

FIG. 5. �Color online� The total capacitance −q��D� /�D of the
diffuse layer as a function of �D.
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CD

 =

�

�D

1


2

�1 −



2
	2

+ � ze��D�
kT

− ln�2/
�� �31�

when �D��c. Otherwise, the PB formula Eq. �30� still
holds. For the MPB diffuse layer model, using Eq. �28�, we
find

CD



=

�

�D
�sinh� ze�D

kT
	�

�1 + 2
 sinh2� ze�D

2kT
	�
2



ln�1 + 2
 sinh2� ze�D

2kT
	� .

�32�

The different models are compared in Figs. 6 and 7.
The qualitative trends in C are again similar in both mod-

els of steric effects and dramatically different from PB
theory. For both models, the differential capacitance in-
creases at very low potentials �comparable to the thermal
voltage, kT /ze� as it does in the PB model because steric
effects are still negligible. These enter the picture at larger
potentials and limit the storing capacity of the layer, with a
differential capacitance that actually decreases to zero at
large potentials. As a consequence both models predict a
nonmonotonic differential capacitance, and show a maxi-
mum at intermediate values.

Of course, there are some clear differences in the detailed
predictions of the two models, shown in Figs. 6 and 7. Al-
though the limiting behaviors at large and small voltage are
similar, the transition is unphysically sudden in the CDL
model, compared to the more reasonable, smooth transition
in the MPB model. This is especially true at low concentra-
tions, where the sudden, delayed appearance of steric effects
in the CDL model gives rise to a sharp cusp in the differen-
tial capacitance versus voltage. At high concentrations,

where the “low voltage” regime of dilute solution theory
effectively vanishes, the CDL model also fails to predict
the immediate onset of steric effects, even at small voltages,
which causes a monotonic decrease in differential
capacitance—the opposite trend of the PB model. Neverthe-
less, the CDL model manages to approximate the trends of
the MPB model well, with an appealingly simple physical
picture.

In summary, three basic features show up in both models,
which we take as an indication that they qualitatively hold
irrespective of the specific approximations embedded in each
model: �i� the differential capacitance CD��D� is weaker at
moderate and high potentials than if steric effects are ne-
glected �as in the PB scheme�; �ii� at moderate concentra-
tions, the differential capacitance varies nonmonotonously
with a peak at intermediate voltages and a slow decrease
towards zero at higher voltages, �iii� at the steric limit �

=1�, the differential capacitance is a strictly decreasing func-
tion of voltage �in the MPB model�. These effects are all
explained by the strong tendency of ions to form a con-
densed inner layer at high voltage and/or high concentration,
when steric effects are taken into account. This greatly re-
duces the differential �and total� capacitance compared to
classical PB theory, which neglects the finite size of ions and
thus predicts an absurd exponential pileup of ions extremely
close to the surface �less than one molecular radius� in the
nonlinear regime.

We expect these qualitative predictions to be quite robust,
even in more sophisticated statistical mechanical theories.
For example, many-body electrostatic correlations also tend
to reduce the differential capacitance compared to PB theory.
For multivalent counterions, this effect can be so strong as to
give the double layer a negative capacitance, which corre-
sponds to overscreening of the surface charge �94–97�.
While such behavior arises in some systems at large volt-
ages, the capacitance in our models remains strictly positive,
since we adopt the classical mean-field approximation em-
bodied by Poisson’s equation.

FIG. 6. �Color online� The diffuse layer differential capacitance
as a function of the potential drop across itself.

FIG. 7. �Color online� Same as Fig. 6, except with a linear scale
on the y-axis. The case 
=0.5 is not shown.
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C. Diffuse-layer charging dynamics

These revelations have important consequences for our
understanding of double-layer charging in many situations.
In the simplest picture of an equivalent RC circuit, with R
the resistance of the bulk, these statements relate to the re-
sponse time of the system to a step or an ac applied voltage.
The typical response time for a driving of amplitude V is
�c�V�=RCD�V�, so the classical picture from PB theory �30�
has been that nonlinearity greatly slows down the charging
dynamics �15,16,24,41,48,50�. Although this may occur in a
dilute solution for a relatively small range of voltages �typi-
cally only several times the thermal voltage�, steric effects in
a concentrated solution bound the relaxation time at a value
much less than expected from the PB model, in both the
CDL and MPB models. This is clear in Fig. 8, where we

solve the RC circuit dynamics

CD��D�
d�D

dt
=

V − �D

R
�33�

for the three models numerically, to obtain the diffuse-layer
voltage �D�t� in response to a suddenly applied voltage V
across the layer in series with a bulk resistance R. In addi-
tion, importantly, the response time of an electrolytic cell is
found to decrease with the amplitude of the applied voltage
above the threshold for strong steric effects, V��c. As
shown in Fig. 8�b�, the relaxation is faster for V=20kT /ze
than for 10kT /ze, since �c=8.3kT /ze for 
=0.005.

IV. BEYOND CIRCUIT MODELS

A. Diffuse layer salt adsorption

As recently pointed out in Ref. �15�, circuit models can
break down at large voltages if a large number of ions
�mostly counterions� are engulfed by the diffuse layers with
a resulting depletion of ions in the bulk. The total salt con-
centration in the diffuse layer �counterions plus coions� in-
creases with voltage, regardless of the sign of the charge.
Therefore a diffusion layer forms and relaxes into the neutral
bulk whenever a voltage is applied across a double layer at a
blocking surface �although reactions and/or rejection of ad-
sorbed ions from the Stern layer could lead to negative ad-
sorption or salt expulsion in other situations �47��. In the
absence of salt injection by the surface, the positive adsorp-
tion of neutral salt by the diffuse layer is present in the PB
description, where the counterion concentrations increase ex-
ponentially with voltage �15�. It is still present but obviously
weaker in models accounting for steric effects, which se-
verely limit the capacity of the diffuse layer to store addi-
tional ions at high voltage. We now quantify this statement
using the two simple models introduced above.

Following notations introduced in Ref. �15�, we define the
excess neutral salt in the double layer as

w = w
 = �
surface

bulk

�c+ + c− − 2c0�dx .

For the PB model one finds �15�

w
=0 = 8c0�D sinh2� ze�D

4kT
	 . �34�

For the CDL model, the same equation holds for �D��c,
while above this value �D��c we obtain

w
 = �2



− 2	c0lc + 2c0�D�
2



+



2
− 2	 �35�

with lc��D� to be extracted from Eq. �21�. For the MPB
model

w
 = �
0

ze�D/kT �cosh u − 1�
1 + 2
 sinh2 u

2c0�D�1 − 
�du


2



ln�1 + 2
 sinh2 u�

,

�36�

which we can compute numerically.

FIG. 8. �Color online� Diffuse-layer relaxation in response to a
sudden voltage step across a blocking cell of width 2L and constant
resistance R. Time is scaled with the charging time �c=�DL /D
=RC��D=0� ��=0�. �a� Relaxation of the diffuse-layer voltage �D

in the PB, MPB, and CDL models for the same applied voltage,
V=10kT /ze. �b� Relaxation of the total diffuse-layer charge for dif-
ferent voltages, zeV /kT=1,10,20, in the MPB model with 

=0.005, showing varying response times due to the nonmonotonic
voltage dependence of the differential capacitance �inset�.
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Unlike the PB formula �34�, which predicts exponentially
diverging salt uptake for increasing �D, the steric modified
formulas �35� and �36� predict sublinear �square-root-like�
dependence on �D, at large voltages, as can be seen by in-
spection of Eqs. �34�–�36� or from the plots in Fig. 9. This
can be understood qualitatively as a consequence of the
roughly square-root voltage dependence of the condensed
layer width �due to its constant charge density�, since most of
the adsorbed ions are condensed counterions at large volt-
ages. �See Fig. 3 and Eq. �21� for the CDL model.� Another
way to see it in both models is that the total salt adsorption is
asymptotic to the total charge, w�q /ze, which is true for
any nonlinear double layer model �PB, MPB, CDL,…� since
the coion density goes to zero across most of the diffuse
layer at large voltages. As explained in Ref. �15�, in response
to an applied voltage the neutral bulk electrolyte becomes
depleted, as the electric field draws counterions into the dif-
fuse layer and conducts coions away through the bulk, result-
ing in a slowly expanding diffusion layer, reducing the bulk
concentration accordingly.

The main feature, again common to both models, is that
the salt uptake at large voltage is greatly reduced in compari-
son to the exponential growth predicted by the PB picture.
This is important for the dynamics as this quantity sets the
limit of applicability of the widely used RC circuit model
�15�. This equivalent circuit approximation should thus hold
up to much larger values of potential when steric effects are
included.

B. Breakdown of circuit models

With analytical expressions for total salt adsorption by the
diffuse layer, we can estimate the upper limits on the applied
voltage where the circuit approximation breaks down in the
various models. For an electrolyte cell of thickness 2L, the
salt uptake by the diffuse layer corresponds to a removal of
2w charge carriers �ions� per unit surface, from a bulk that
contained 2c0L such carriers initially. As long as the ratio of

these two quantities w / �c0L� is small, the total resistance of
the RC circuit is roughly unaffected by the salt adsorption.
So, an estimate for the limit is �15�

�s =
w

c0L
� 1, �37�

which translates an upper bound on the applied voltage,
�V � �Vthreshold for the RC description to remain valid �in the
thin double layer limit �D /L�1�. For the PB model, the
upper bound

Vthreshold �
2kBT

ze
ln� L

4�D
	 �dilute�

is not much larger than the thermal voltage, due to the weak
logarithmic dependence on L /�D.

For the models accounting for steric effects, however, the
upper bound is greatly increased in concentrated solutions,

Vthreshold �
kBT

ze
� L

�D
	2

a3c0 �nondilute� .

This shows that the widely used circuit approximation for
a thin double layer �D�L does not break down until enor-
mous voltages, V� �L /�D�2, in a concentrated solution. In a
very dilute solution, where 
=2a3c0�1, the circuit approxi-
mation may break down at moderate voltages, but only in a
microsystem, where the double layers are not so thin. For
example, even in an �aqueous� electrolyte with �D=10 nm,
c0=10−3 M, a=5 Å and in a microdevice with L=100 �m
features, the threshold voltage �with steric effects� is roughly
0.2 V.

This estimate, however, neglects the possibility of a tran-
sient breakdown of the RC circuit approximation, prior to
diffusive relaxation across the entire cell. In the case of re-
sponse to a suddenly applied dc voltage, the salt adsorption
by each diffuse layer occurs over a time scale, �c=�DL /D,
during which diffusion spreads the nearby region of depleted
neutral bulk solution over a distance 
D�c=
�DL. Therefore
the requirement that the local bulk conductivity does not
change significantly during charging dynamics yields the re-
fined estimate �15�

�d =
w

c0

�DL

� 1,

which replaces L /�D by 
L /� in the estimates above. This
sets a lower bound for the limiting voltage for the validity of
circuit models.

In the case of ac forcing at frequency �, the bound �d�1
is appropriate for low frequencies, 2���c�1, but circuit
models remain valid up to higher voltages at higher frequen-
cies. At moderate frequencies, 2���c�1, the double layer
does not have enough time for complete charging, and the
Warburg-like diffusion layer due to salt adsorption �which
oscillates at twice the frequency� only propagates to a dis-
tance, 
D /4��. Therefore we may crudely estimate
�w /c0�
4�� /D�1 to avoid significant changes in bulk con-
ductivity in the diffusion layer. �A more careful estimate
would take into account that only partial charging and salt

FIG. 9. �Color online� The diffuse layer neutral salt uptake w as
a function of the potential difference �D.
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adsorption occur with increasing frequency.� At higher fre-
quencies, ��D

2 /D�1, the diffuse layer does not have enough
time to equilibrate, and little charging occurs.

These arguments can be made more precise using
matched asymptotic expansions to describe the thin double
layer limit, starting from an explicitly time-dependent model.
For the case of one-dimensional response to a suddenly ap-
plied voltage, this was done in Ref. �15� starting from the
Poisson-Nernst-Planck equations of �time-dependent� dilute
solution theory. In Part II �1�, we will derive modified PNP
equations for dynamics with steric effects and repeat the
same kind of asymptotic analysis to reach a similar conclu-
sion as our simple arguments here: Steric effects greatly ex-
tend the range of applicability of RC circuit models, com-
pared to what would be expected on the basis of dilute
solution theory.

C. Diffuse-layer surface conduction

Another feature not present in circuit models is the possi-
bility of current passed along the surface through the diffuse
layer, demonstrated by Bikerman �11� and considered exten-
sively in theories of electrokinetics by Dukhin and collabo-
rators �14�. As first shown in Ref. �15� and elaborated in Ref.
�16� in the setting of dilute solution theory, the relative
strengths of tangential “surface fluxes” through the diffuse
layer, compared to bulk fluxes, are controlled by the same
dimensionless groups that govern ion adsorption �discussed
above�. This is actually quite a general result, as we now
briefly explain. We will thus conclude that steric effects also
greatly reduce the importance of surface conduction in the
diffuse layer compared to the classical predictions of dilute
solution theory.

Assuming small local perturbations from thermal equilib-
rium, the flux density �number/area.time� of ionic species i is
given by

Fi = − bici � �i �38�

where the chemical potential �i generally has a different
form than Eq. �1� in a concentrated solution �e.g., see Part II
�1��. Consider a thin diffuse layer near a charged surface,
where the ion concentration ci departs from its nearby neutral
bulk value ci

b. Due to fast relaxation at the small scale of the
screening length, the diffuse-layer concentration remains in
quasi-equilibrium at nearly constant chemical potential in the
normal direction, �i��i

b, in the thin double layer limit
�D /L→0. There can, however, be small tangential gradients,
���i

b�0 at the macroscopic length scale leading to an excess
diffuse-layer “surface” flux density �number/length·time�.

Thin double layers can suck in significant amounts of ex-
cess ions, which is characterized by the excess surface con-
centration


i = �
surface

bulk

�ci − ci
b�dx �39�

fed by the excess flux defined by

Fi
s = �

surface

bulk

�Fi − Fi
b�dx = �

surface

bulk

�− bici���i + bici
b���i

b�dx ,

where Fi
b=−bici��i

b is the adjacent bulk value of the flux. In
the thin double layer limit �D /L→0, we have ��i���i

b

and therefore

Fi
s � − ���i

b�
surface

bulk

bi�ci − ci
b�dx . �40�

For a constant mobility bi, this takes the same form as the
bulk flux density �38�,

Fi
s = − bi
i���i

b, �41�

where the bulk concentration �number/volume� has been re-
placed by the diffuse-layer surface concentration �number/
area� given by Eq. �39�. In a concentrated solution, we gen-
erally expect that the mobility bi might decrease in the
diffuse layer, due to steric effects and large normal electric
fields, so this formula may overestimate the surface flux den-
sity.

Following Bikerman �11,12,16�, we may estimate the
relative importance of surface to bulk flux densities at a
length scale L by the dimensionless group

Fi
s

Fi
bL

=

i

ci
bL

, �42�

which we see also measures the relative importance of “sur-
face adsorption” of ion i in the diffuse layer relative to the
bulk concentration. For a highly charged diffuse layer
��D � ��c, the ions are mostly of one type �counterions�, so

i�q�w. The surface current is also carried mostly by
those ions, Js�zeFi

s, while the bulk current is carried by
both ions, Jb�2�ze�Fi

b �neglecting diffusion compared to
electromigration�. Therefore we see that the “Dukhin num-
ber” comparing surface conduction at a highly charged dif-
fuse layer to bulk conduction at nearly uniform concentra-
tion,

Du =
Js

JbL
�

w

2c0L
=

�s

2
�43�

is roughly half of the dimensionless group �s governing salt
adsorption by the diffuse layer.

We have seen that steric effects greatly reduce w com-
pared to the predictions of dilute solution theory, so that �s
=O��D /L� remains small up to rather high voltages. Since
the calculation above overestimates the importance of sur-
face conduction, it is clear that steric effects also greatly
reduce the Dukhin number compared to the predictions of
dilute solution theory. We conclude that surface conduction
in a thin diffuse layer does not become important until volt-
ages large enough to violate the equivalent circuit approxi-
mation are applied across it. Compact layer surface conduc-
tion may still be important in some cases, but it too is limited
by the same steric effects.
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V. COMPACT LAYER EFFECTS

We now check the robustness of these conclusions to the
additional presence of an insulating surface layer between
the metal electrode and the electrolyte where the EDL mod-
els are applied. We suppose that this layer is not involved in
the dynamics so that its properties do not change, and as-
sume for the sake of simplicity that these properties are lin-
ear so that it can be described as a fixed surface capacitance
Cs.

Such models have been used in many circumstances,
sometimes to describe the Stern layer corresponding to con-
densed ions. Our approach here is different in the sense that
a layer of condensed ions would be involved in the charging/
discharging process. What we have in mind is closer to a thin
film, e.g., of oxide on the metal, of thickness hs, and dielec-
tric constant �s so that Cs=�s /hs. This form has been pro-
posed to model coating layers on electrodes in the context of
ac electrokinetics �32�.

The overall differential capacitance of the interface is now

1

C
=

1

CD
+

1

CS

with CS=−dq /d�S, where q is the total charge per area in
the double layer, and �S is the voltage drop across the afore-
mentioned compact layer. The total voltage drop across the
interface is �=�S+�D, and −q /� is the total capacitance
of the interface.

A useful dimensionless parameter to quantify the effect of
this surface layer is the ratio of linearized diffuse layer ca-
pacitance to the Stern layer capacitance

� =
��/�D�

CS
,

which has been employed recently in general studies of
diffuse-charge dynamics �15,106�, as well as in theoretical
models �31,32,35,36,41,50� and in the fitting of experimental
data �40,107� for induced-charge �ac or dc� electrokinetics.
No surface layer corresponds to �=0. In the above men-
tioned picture of the layer of oxide, �= �� /�s��hs /�D� so that
even very thin oxide layers can yield not too small values of
� if � /�s is large.

Let us now compare the differential capacitance C �with
surface layer� to the bare double layer differential capaci-
tance previously plotted in Fig. 7, for the PB equation and
the two models with steric effects. The corresponding plots
are provided in Fig. 10 for �=0.25.

Many qualitative points are obvious. First, the PB differ-
ential capacitance does not blow up exponentially anymore,
as the surface layer takes over when the double layer voltage
gets large, so that C converges to the finite value Cs within
the PB model. Most of the potential drop is then across the
surface layer. Second, the two main consequences of steric
effects pointed out above remain valid: C is weaker when
steric effects are taken into account, and C��� is nonmo-
notonous with a maximum at intermediate values and a fur-
ther decrease to zero.

When the parameter � is zero or small �i.e., the Stern layer
capacitance is large�, a closely packed “diffuse” layer has to

form in response to a high potential drop. This is the case
when the steric effects become important and the PB theory
fails. However, for the higher values of �, most of the poten-
tial drop is realized over the Stern layer, and the ions in the
diffuse layer are not as densely packed. Thus the system
stays below the steric limit, and the PB theory agrees with
the MPB theory, as demonstrated by the total capacitance
plots of Fig. 11. Similar comments can be made on Fig. 10,
which shows that for �=0.25, steric effects may or may not
be important depending on the value of the dimensionless
parameter 
=2a3c0. For the distribution of the voltage drop
over the Stern layer and the diffuse layers, see Fig. 12.

This analysis, although correct, is somewhat misleading,
however, since the assumption of a constant compact-layer
capacitance may not always be reasonable. In many situa-
tions of interest, where several volts ��100kT /e� are applied
across the double layer, it is unlikely that the compact layer
could withstand a significant fraction of the total voltage.

FIG. 10. �Color online� The total double layer differential ca-
pacitance in presence of a Stern layer with �=0.25 versus the total
potential drop across the double layer.

FIG. 11. �Color online� The differential capacitance C of the
double layer as a function of potential difference � for various
values of Stern layer capacitance values.
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Note that dielectric breakdown in water can occur in average
fields as low as 20 MV/m=0.02 V/nm in experiments ap-
plying submicrosecond voltage pulses �well below the charg-
ing time of the double layers� �108�. The critical field may be
higher in the Stern layer, where water is confined by ions at
the outer Helmholtz plane �104�, but it seems implausible for
an atomic layer to sustain several volts without somehow
“short circuiting” via electron cascades, electrolysis, Fara-
daic reactions, etc. In some cases, the compact layer models
a dielectric thin film, which may be considerably thicker.
Again, however, most coating materials, such as Teflon or
various metal oxides, undergo dielectric breakdown in fields
of order 10 MV/m, so a dielectric coating cannot easily
withstand several volts unless it is at least 10 nm wide.

In general, we see that the capacitance of the compact
layer must effectively decrease at large voltages, which cor-
responds to the limit �→0. As a result, a significant fraction
of a large voltage must be sustained by the diffuse layer,
making steric effects important in many situations of interest.
Regardless of the accuracy of our simple models, therefore,
we believe that the predicted qualitative effects of ion crowd-
ing are likely to have broad relevance for experimental sys-
tems applying large voltages.

VI. CONCLUSION

We have used two simple models for the double layer to
account for crowding effects which necessarily take place at
intermediate and large applied voltages. These models are
both based on modifications of the Poisson Boltzmann de-
scription of dilute solutions. This strategy has lead us to
identify important operational consequences of these crowd-
ing effects of the thin double layers, namely a largely re-
duced double layer capacitance and a decreased ion uptake
from the bulk.

We have provided in these sections explicit formulas for
the total and differential capacitance and for the salt uptake
of interfaces at equilibrium, as a function of the potential
drop across the interface. More precisely we have recalled
the PB results �no steric effects 
=0�, and given results for
the two simple models with steric effects �
�0�, considering
for all cases the possibility of a finite insulating layer on the
electrode ���0�.

The two models lead to remarkably similar results sug-
gesting that these semi-quantitatively hold beyond the spe-
cifics of these models. Both showed marked differences with
the PB approach: the differential capacitance and salt uptake
are much weaker, and the former varies nonmonotonously
with the applied potential.

These observations for the equilibrium properties have led
us to make predictions for the dynamics of electrolyte cells
of size quite larger than the Debye length: �i� an effective
equivalent RC circuit description holds for a wider range of
potentials than expected on the simple basis of the PB equa-
tion, �ii� the response time is much smaller than expected
from PB at large voltages, and �iii� this time decreases at
large voltages after an initial increase for lower values.

The dramatic effect of steric constraints in this problem
also shows that other predictions of nonlinear PB theory,
such as the change of scaling from V2 to �V � log �V� for ac
electro-osmosis �50�, are limited in applicability and should
be revisited with models taking crowding effects into ac-
count. More generally, this work suggests that, beyond the
present problem of ionic transport in electrolytic systems, the
description of electrokinetic effects at large applied voltages
should be revisited to correct shortcomings of dilute-solution
theory.
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FIG. 12. �Color online� The Stern layer voltage drop as a func-
tion of the total double layer voltage difference. For reference, the
line �S=� is also drawn. In the PB theory, almost all of the voltage
drop is realized over the Stern layer when the voltage drop is on the
order of a few voltages.
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