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There have been many attempts to derive continuum models for dense granular flow, but a general theory is
still lacking. Here, we start with Mohr-Coulomb plasticity for quasi-two-dimensional granular materials to
calculate (average) stresses and slip planes, but we propose a “stochastic flow rule” (SFR) to replace the
principle of coaxiality in classical plasticity. The SFR takes into account two crucial features of granular
materials—discreteness and randomness—uvia diffusing “spots™ of local fluidization, which act as carriers of
plasticity. We postulate that spots perform random walks biased along slip lines with a drift direction deter-
mined by the stress imbalance upon a local switch from static to dynamic friction. In the continuum limit
(based on a Fokker-Planck equation for the spot concentration), this simple model is able to predict a variety
of granular flow profiles in flat-bottom silos, annular Couette cells, flowing heaps, and plate-dragging
experiments—with essentially no fitting parameters—although it is only expected to function where material is
at incipient failure and slip lines are inadmissible. For special cases of admissible slip lines, such as plate
dragging under a heavy load or flow down an inclined plane, we postulate a transition to rate-dependent
Bagnold rheology, where flow occurs by sliding shear planes. With different yield criteria, the SFR provides a
general framework for multiscale modeling of plasticity in amorphous materials, cycling between continuum

limit-state stress calculations, mesoscale spot random walks, and microscopic particle relaxation.
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I. INTRODUCTION

For centuries, engineers have described granular materials
using continuum solid mechanics [1-3]. Dense granular ma-
terials behave like rigid solids at rest, and yet are easily set
into liquidlike, quasisteady motion by gravity or moving
boundaries, so the classical theory is Mohr-Coulomb plastic-
ity (MCP), which assumes a frictional yield criterion. The
simplest model is the two-dimensional “Ideal Coulomb Ma-
terial” at limit state, where the maximum ratio of shear to
normal stress is everywhere equal to a constant (the internal
friction coefficient), whether or not flow is occurring. This
model is believed to describe stresses well in static or flow-
ing granular materials, but, as we explain below, it fails to
predict flow profiles, when combined with the usual coaxial
flow rule of continuum plasticity. Indeed, it seems continuum
mechanics has not yet produced a simple and robust model
for granular flow.

In recent years, the sense that there is new physics to be
discovered has attracted a growing community of physicists
to the study of granular materials [4-9]. Unlike the engi-
neers, their interest is mostly at the discrete particle level,
motivated by the breakdown of classical statistical mechan-
ics and hydrodynamics due to strong dissipation and long-
lasting, frictional contact networks. Dense granular materials
exhibit many interesting collective phenomena, such as force
chains, slow structural relaxation, and jamming. Similar non-
equilibrium phenomena occur in glasses, foams, and emul-
sions, as in granular materials, so it is hoped that a general
new statistical theory may emerge. Presumably from such a
microscopic basis, continuum models of glassy relaxation
and dense granular flow could be systematically derived, just
as dissipative hydrodynamics for granular gases can be de-
rived from kinetic theory with inelastic collisions [10].

This dream has not yet been achieved, but many empirical
continuum models have been proposed [4,9,11]. The diffi-
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culty in describing dense granular flow is evidenced by the
remarkable diversity of physical postulates, which include:
coupled static and rolling phases [12—15], Bagnold rheology
[16] based on “granular eddies” [17], granular temperature-
dependent viscosity [18], density-dependent viscosity
[19,20], nonlocal stress propagation along arches [21], self-
activated shear events due to nonlocal stress fluctuations
[22,23], free-volume diffusion opposing gravity [24-28],
“shear transformation zones” coupled to free-volume kinet-
ics [29,30], and partial fluidization governed by a Landau-
like order parameter [31,32]. Each of these theories can fit a
subset of the experimental data [33], usually only for a spe-
cific geometry for which it was designed, such as a flowing
surface layer [12—-15,31], inclined plane [16,17], Couette cell
[19,20], inclined chute [22,23], or wide silo [24-28], and
none seems to have very broad applicability. For example,
we are not aware of a single model, from physics or engi-
neering, which can predict velocity profiles in both draining
silos and annular Couette cells, even qualitatively.

The theory of partial fluidization of Aranson and Tsimring
has arguably had the most success in describing multiple
flows within a single theoretical framework [31,32]. Al-
though setting boundary conditions for the order parameter
usually requires additional ad hoc assertions, the model is
nonetheless able to reproduce known flow behavior in in-
clined chutes, avalanches, rotating drums, and simple shear
cells without many fitting parameters. It also describes some
unsteady flows. However, the theory lacks any clear micro-
scopic foundation and is not directly coupled to a constitu-
tive stress model for static materials. As such, it has only
been applied to problems with very simple solid stress fields,
limiting its current applicability to flows that depend on only
one spatial variable.

In an attempt to describe arbitrary geometries, such as
silos and Couette cells, we take the view that the engineers
may already have a reasonable continuum description of the
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mean stresses, so we start with Mohr-Coulomb plasticity.
However, discreteness and randomness clearly need to be
taken into account in a granular material. For static stresses,
quenched randomness in material properties is known to lead
to statistical slip-line blurring in “stochastic plasticity” [34],
but this says nothing about how plastic yielding actually oc-
curs.

To describe yielding dynamics, we propose a ‘“‘stochastic
flow rule” (SFR) where local fluidization (stick-slip transi-
tion) propagates randomly along blurred slip lines. We build
on the recently proposed spot model for random-packing dy-
namics [27] by viewing “spots” of free volume as carriers of
plasticity in granular materials, analogous to dislocations in
crystals. Multiscale spot simulations can reproduce quite re-
alistic flowing packings in silo drainage [28]; here, we intro-
duce a mechanical basis for spot motion from MCP, which
leads to a theory of considerable generality for bulk granular
flows.

The paper is organized as follows. Since plasticity is un-
familiar to most physicists, we begin by reviewing key con-
cepts from MCP in Sec. II, both for stresses and for dense
flows. In Sec. III, we highlight various shortcomings of the
classical theory, many of which we attribute to the coaxial
flow rule. We then introduce the general spot-based SFR and
a specific simplification to be used for granular flow in Sec.
IV. Next we apply the theory to four prototypical examples:
Silo, Couette, heap, and plate-dragging flows in Sec. V. Then
in Sec. VI, we explain how the last two examples indicate a
smooth transition from the SFR to Bagnold rheology, when
slip lines become admissible, and we present a simple com-
posite theory, which extends the applicability of the model to
various shear flows. In Sec. VII, we conclude by further
clarifying the range of applicability of the SFR and possible
extensions to other granular flows and different materials.

II. CONCEPTS FROM CONTINUUM MECHANICS

A. Mohr-Coulomb plasticity: Stresses

In the eighteenth century, it was Coulomb, as a military
engineer designing earthen fortresses, who introduced the
classical model of a granular material, which persists to the
present day: A continuous medium with a frictional yield
criterion. His ideas were expressed in general continuum-
mechanical terms by Mohr a century later, and a modern
mathematical formulation of “Mohr-Coulomb plasticity”
(MCP), which we also use below, is due to Sokolovskii [2].
Although other mechanical models exist, such as Drucker-
Prager plasticity [35], MCP is perhaps the simplest and most
widely used for granular materials in engineering [1]. As
such, we choose to build our model of dense granular flow
on the MCP description of stresses, as a reasonable and time-
tested first approximation.

We begin in this section by reviewing relevant concepts
from MCP, e.g. following Nedderman [1]. The fundamental
assumption is that a granular material can be treated as an
“ideal Coulomb material” (ICM), i.e., a rigid-plastic continu-
ous media which yields according to a Coulomb yield crite-
rion
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FIG. 1. Stresses on a material element. All vectors are pointing
in the positive direction as per our sign convention.

|7o] = u = tan ¢, (1)

where 7 is the shear stress, o is normal stress, and ¢ the
internal friction angle, akin to a standard friction law with no
cohesion. Throughout, we accept the common tensorial con-
ventions for stresses with the key exception that normal
stresses are deemed positive in compression. This is a stan-
dard modification in the study of noncohesive granular ma-
terials since granular assemblies cannot support tension. We
will also focus entirely on quasi-two-dimensional (2D) ge-
ometries.

Consider a small material element in static equilibrium
and with no body forces present (see Fig. 1). The normal
stresses o, and o, can differ and the shear stresses 7,, and
7,, must be equal in order to balance moments. Likewise the
variable 7, is redundant and will not be used again in this
paper. To determine the stresses along any angle within this
element, we place a new boundary within the material at
some desired angle @ and observe force balance on the
wedge that remains (see Fig. 2). After algebraic simplifica-
tion, this gives

1 1
Tg= E(O-x)c + 0-)’.") + E(O-XX - O-.V}’)COS 20~ Txy sin 26,

v

70 Oxz COSO

Tzy COS 6

g0

FIG. 2. Force diagram for a wedge. Hypotenuse length assigned
to unity.
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1
To= E(O-xx - O-yy)Sin 20+ 7,y c0s 20.
Now define

1
p = E(O-X)C + O-yy)’

=27
Xy
tan 2¢p= ———,
Oy = Oy

2
O — Oy
N = ey

which allows us to write

og=p+Rcos(20-24), (2)

Tp=R sin(20—-24). (3)

This implies that for all angles 6, the locus of traction
stresses (07, 7p) is a circle centered at (p,0) with radius R.
This circle is referred to as “Mohr’s circle.”

We have just derived Mohr’s circle without accounting for
the possible effects of body forces acting on the material
element and gradients in the stress field. Adjusting for these
effects, however, would change the results only negligibly as
the element gets small in size. If we were to apply the same
force-balancing analysis to a differentially small material el-
ement with a body force and stress gradients, we would find
that the stress differences on the walls and the inclusion of
the differentially small body force within only add differen-
tially small terms to the equations for oy and 7, Thus we can
always use Mohr’s Circle to obtain traction stresses along a
desired angle.

To ultimately define a full stress state for the material
element, we need one more equation—we have three stress
variables and only two force balance equations:

Jdo &7’2
(9;"_ (9; =Fﬁ°dy’ ()
do,, 0T,
T ©)

We say a material element is at incipient failure if the yield
criterion is fulfilled along some direction and |7/ o] < u along
all others. A material in which incipient failure occurs ever-
where is said to be at a limit state. In a limit state, the Mohr’s
circle at every point in the material must be tangent to the
locus |7/0|=pu. As can be seen by applying trigonometry in
Fig. 3, this requirement means that R=p sin ¢, enabling us to
parametrize the stresses in terms of p and ¢ only, thereby
closing the equations. For this reason, we restrain our anlysis
to limit-state materials and refer to p and ¢ as the stress
parameters or Sokolovskii variables. (The limit-state stress
treatment described here is also known as “slip-line theory;”
to avoid possible confusion, we specify this is not equivalent
to limit analysis plasticity concerned with upper and lower
collapse limits.)
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FIG. 3. Using Mohr’s circle jointly with the Coulomb internal
yield locus (7=%u0) to determine the traction stresses along any
plane within a material element.

Solving for the original stress variables in terms of the
stress parameters gives

o =p(1 +sin ¢ cos 2¢), (6)
gy, =p(1 —sin ¢ cos 2¢), (7)
Ty == p sin ¢ sin 2¢. (8)

Using these expressions, we rewrite Egs. (4) and (5):

(1 +sin ¢ cos 2¢)p, — 2p sin ¢ sin 2¢nfs, + sin ¢ sin 24p,

+2p sin ¢ cos 2¢npy, = Fiog,,

sin ¢ sin 2¢p, + 2p sin b cos 24, + (1 —sin ¢ cos 2¢)p,
+2p sin ¢ sin 2y, = Fy 4

These will be referred to as the “stress balance equations.”
They form a hyperbolic system and thus can be solved using
the method of characteristics. The system reduces to the fol-
lowing two characteristic equations:

dp = 2pudip= Fiog,(dy + pdx) + Fuog,(dx  pdy)

along curves fulfilling
d
2 tan(¢/ F €). 9)
dx

To solve the stress balance equations, mesh the two families
of characteristic curves in the bulk, then march from the
boundaries in, progressively applying the two differential re-
lationships above to approximate the stress parameters at
each intersection point in the mesh. More on this can be
found in [36]. Other ways to solve the stress balance equa-
tions include the two-step Lax-Wendroff method [37] and the
Galerkin method [38].

We return now to Mohr’s circle for a discussion of the
stress properties within a differential material element. Equa-
tions (2) and (3) show that Mohr’s circle can be used as a
slide rule to determine the stresses along any angle 6: One
arrives at the point (o7, 7g) by starting at (o, 7,,) and trav-
eling counterclockwise around Mohr’s circle for 26 radians
(see Fig. 3). Also note on the diagram that the stresses along
the x and y directions lie along a diameter of Mohr’s circle;
any two material directions differing by an angle of 7/2 lie
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FIG. 4. Important lines intersecting each material point: (a) Ma-
jor principal plane/minor principal stress direction; (b) minor prin-
cipal plane/major principal stress direction; (c), (d) slip lines.

along a diameter of the corresponding Mohr’s circle dia-
gram. Utilizing this property in reverse is perhaps the easiest
way to draw Mohr’s circle in the first place; draw the unique
circle for which (o, 7,,) and (oyy,-7,,) are end points of a
diameter.

Let (0q,0) and (03,0) be the points of intersection be-
tween Mohr’s circle and the o axis, where ;> 03. These
points correspond to the two lines within a material element
along which the shear stress vanishes and the normal stress is
maximal or minimal. o; (o3) is called the major (minor)
principal stress and the line on which it acts is called the
major (minor) principal plane.

Mohr’s circle shows that the major principal plane occurs
at an angle ¢ counterclockwise from the vertical (see Fig. 3).
Thus the major principal stress points along an angle ¢ coun-
terclockwise from the horizontal. This is the standard physi-
cal interpretation of . One might think of ¢ as the angle
from the horizontal along which a force chain would be pre-
dicted to lie.

By right-triangle geometry, a line segment connecting the
center of Mohr’s circle to a point of tangency with the inter-
nal yield locus would make an angle of 7/2— ¢ with the o
axis. Each point of tangency represents a direction along
which the yield criterion is met, i.e., a slip line. Mohr’s circle
indicates that the slip lines are angled (7/2—¢)/2 up and
down from the minor principal plane. But since the major
and minor principal planes are orthogonal, the major princi-
pal stress points along the minor principal plane. Defining
e=m/4—¢/2, we deduce that slip lines occur along the
angles ¢+ € measured counterclockwise from the horizontal.
Looking back at the characteristic equations, we see that the
slip lines and the characteristic curves coincide. This means
that information from the boundary conditions propagates
along the slip lines to form a full solution to the stress bal-
ance equations. (See Fig. 4).

It is worth noting that the stress balance equations are
written for static materials and do not appear to account for

y?
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FIG. 5. (Color online) Sketch of the coaxial flow rule.

dynamic behavior like dilatancy and convection stresses. The
theory of critical state soil mechanics [39] was the first to
rigorously approach the issue of dilatancy (see the Appen-
dix). It concludes that when material attains a flow state in
which the density field stops changing in time, all points in
the flow lie along a critical state line of the form |7/ o|= & for
o0 constant. Since this exactly mirrors the Coulomb yield cri-
terion, we can keep the stress balance equations and utilize
8= (as in [40]). As for convection, adding the pu-Vu term
into the stress equations couples the stresses to the velocity
and makes the problem very difficult to solve. The practice
of ignoring convection is justified by our slow-flow require-
ment and is commonly used and validated in basic solid
mechanics literature [1-3]. So we conclude that dynamic ef-
fects in flowing materials do not preclude the use of the
stress balance equations in slow, steady flows.

B. Mohr-Coulomb plasticity: Flow rules

To calculate flow, we assert incompressibility and a flow
rule—the flow rule is a constitutive law chosen to reflect the
general behavior of the material at hand. The continuous
nature of the ICM assumption suggests that symmetry should
be kept with respect to the principal stress planes. Based on
this, Jenike proposed adopting the coaxial flow rule. The
principle of coaxiality claims that material should flow by
extending along the minor principal stress direction and con-
tracting along the major principal stress direction; the prin-
cipal planes of stress are aligned with the principal planes of
strain rate. The intuition for this constitutive rule is shown in
Fig. 5. Mathematically, this means that in a reference frame
where the minor and major principal stress directions are the
basis, the strain-rate tensor should have no off-diagonal com-
ponents, i.e.,

R,ER,’ (10)

is diagonal, where R, rotates counterclockwise by ¢ and E is
the strain-rate tensor

_ %[Vu + (Vo). (11)

where u=(u,v) is the velocity. Calculating the (1,2) compo-
nent of the matrix in Eq. (10) and setting it to zero gives the
equation of coaxiality,
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u dv (o"u &v)
—+—=|—-—|tan 2¢. (12)
dy ox ox dy
This flow rule has played a dominant role in the development
of continuum plasticity theory and will be closely analyzed
in this work.

Coaxiality with incompressibility comprises another hy-
perbolic system of equations enabling the velocity field to be
solved via characteristics:

du + tan(y ¥ 7/4)dv =0

along curves fulfilling

d—y=tan(¢1 Tl4). (13)
dx

So, given ¢(x,y) from the stress balance equations, informa-
tion about the flow travels from the boundaries into the bulk
along curves rotated 7/4 off from the principal stress
planes—using Mohr’s circle, we observe that these are the
lines for which the shear stress is maximal (and the normal
stresses are equal).

Other flow rules have been suggested instead of coaxial-
ity. Of specific note, Spencer [41] has proposed the double-
shearing flow rule. Unlike coaxiality which can be under-
stood as a simultaneous equal shearing along both slip-line
families, double-shearing allows the shearing motion to be
unequally distributed between the two families in such a way
that the flow remains isochoric. For steady flows, the double-
shearing flow rule is

. du v v Jdu
sm2¢<£——>—00521p<—+—>

dy ox dy
=sin¢<§—i—%—2u~V¢/). (14)

It can be seen that when the material neighboring a particle
rotates in sync with the rotation of the principal planes (i.e.,
as tracked by the rate of change of ), the right side goes to
zero and the rule matches coaxiality. Under double shearing,
the characteristics of stress and velocity align, easing many
aspects of the numerics. Some recent implementations of
granular plasticity have utilized principles of double shearing
[42]. Though in this paper we deal primarily with the com-
parison of coaxiality to our new theory, this equation will be
mentioned again in a later section.

C. Rate-independence concept

We now more fully address the conceptual basis for the
flow theory just introduced. The theory is fundamentally dif-
ferent from traditional fluids where force balance (including
convection and viscous stresses in the case of Newtonian
fluids) can be used alongside incompressibility to fully de-
termine the fluid velocity and pressure fields. Unlike a fluid,
granular materials can support a static shear stress and thus
force balance plus incompressibility alone is an undercon-
strained system. Rather, the stress constitutive law for granu-
lar material is presumed to be rate independent in the slow,
quasistatic regime we study.

PHYSICAL REVIEW E 75, 041301 (2007)

This concept is best understood tensorially. We can re-
write the equations of coaxiality and incompressibility
equivalently as

E=\T,, (15)

where

— Oy Txy ) (16)

7, -0

T = stress tensor = (
xy yy

1
Ty=T - E(trT)I = deviatoric stress tensor, (17)

and \ is a multiplier which can vary in space. Equation (12)
is merely the ratio of the (1,2) component and the difference
of the (2,2) and (1,1) components of Eq. (15), thus cancelling
A, and incompressibility is automatic since we relate to the
deviatoric stress tensor. Equation (15) gives a simple and
highly general form for plastic material deformation appli-
cable to a broad range of deformable materials and so it is
ideal for illustrating the role of rate dependency. In MCP, we
solve for T a priori from the stress balance equations. A
adds the extra degree of freedom necessary to make sure the
strain-rate field is actually compatible with a real velocity
field—N\ is not any specific function of the stress or strain-
rate variables and it adjusts to fit different velocity boundary
conditions. Thus the stress alone does not imply the strain
rate and vice versa.

Supposing, on the other hand, that we were dealing with a
rate-dependent (i.e., viscoplastic) material like Newtonian
fluid, the above tensorial equation would still apply but we
cannot claim to know T in advance since material motion
changes the stresses. Instead we prescribe a functional form
for A, like )\=Viscosity‘1 =const, and write the force balance

equations in terms of E. Thus E is computed very differently
for the two cases: in the rate-independent case, Eq. (15) is
solved using a known form for T and in the rate-dependent
case, Eq. (15) is solved using a known form for A.

The physical intuition for rate-independent flow can be
easily understood with an example. Suppose we slide two
frictional blocks against each other at two different nonzero
sliding rates. In most rudimentry dry friction laws, the shear
stress required to slide one block against another is propor-
tional to the normal stress—there is no mention whatsoever
of the rate of sliding. Thus the two sliding rates are modeled
to be attainable with the same shear stress and likewise the
stress-strain relationship is deemed rate independent. For
slow granular flows with long-lasting interparticle contacts,
comparisons with this example are especially instructive.

III. SHORTCOMINGS OF MOHR-COULOMB
PLASTICITY

The use of the stress balance equations with incompress-
ibility and the coaxial flow rule will be referred hitherto as
Mohr-Coulomb plasticity (MCP). The theory has the benefit
of being founded on mechanical principles, but does have
some marked drawbacks. We point out a few as follows.
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Stress Discontinuity
Line

FIG. 6. Stresses on a control volume intersected by a disconti-
nuity. Note how a jump in o, places no net force on the control
volume.

(a) The theory frequently predicts highly discontinuous
velocity fields.

(b) The coaxial flow rule is conceptually troubling in
some simple geometries.

(c) The assumption of limit-state stresses is overreaching.

(d) MCP is a continuum theory and thus cannot model
discreteness and randomness.

We will now discuss these four points in detail.

A. Discontinuous “shocks” in stress and velocity

MCP’s two stress PDE’s and two flow PDEs are each
fully hyperbolic systems meaning that continuous solutions
do not necessarily exist for arbitrary choices of the boundary
conditions. Instead, discontinuous solutions are constructed
utilizing intuitive jump conditions. For stresses, a jump in the
stress parameters across a discontinuity line is only allow-
able if such a jump places no net forces on a small control
volume surrounding the line thereby ensuring particle stabil-
ity. This means the normal and shear stresses along the di-
rection of the discontinuity must be the same on both sides of
the discontinuity. However, the normal stress along the per-
pendicular direction can have a jump upon crossing the dis-
continuity as this places no net force on the control volume
(see Fig. 6).

In terms of the stress parameters, this means that p and ¢
can jump as long as

[1 +sin ¢ cos(20 - 2¢%)] sin(20 - 2¢7)
[1+sin ¢cos(20 —2¢")]  sin(20 — 24/)

A
p
P

where 0 is the angle from the vertical along which the stress
discontinuity lies.

As for velocity, incompressibility forces us to impose a
simpler jump rule in that the component tangent to the ve-
locity discontinuity is the only one allowed to jump. We note
that whenever a stress shock exists, the jump in the stress
parameters will usually place a jump in the flow rule and
may cause a velocity discontinuity to form coincident with
the stress shock. A velocity discontinuity can form even
when the stress field is smooth since the velocity PDEs are
themselves hyperbolic. (It is worth noting that when shocks
are allowed in the solution, multiple solutions sometimes
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FIG. 7. Numerical solution to MCP in a wedge hopper with
nonradial stresses on the top boundary. Normal stress in the radial
direction displayed [92].

arise to the same problem; introduction of the so-called “en-
tropy condition” can be used to choose the best of the pos-
sible solutions [1,43].) Overall, the MCP equations are math-
ematically very poorly behaved, and have also been shown
to give violent instabilities and finite-time singularities
[44,45].

Aside from its mathematical difficulties, MCP theory also
does not match experiments or our everyday experience of
granular flows. In particular, MCP commonly predicts com-
plicated patterns of velocity discontinuities in situations
where experiments indicate smooth flow in steady state. In
Fig. 7, the numerically determined stress field for a wedge
hopper with only slightly nonradial boundary conditions on
the top surface exhibits a fanlike array of shocks [92]. The
associated velocity field (not shown) will at best exhibit a
similar pattern of discontinuities and at worse add even more
discontinuities. Such a broken velocity field is clearly un-
physical. As the grain size becomes very small (sands), dis-
continuous velocity fields with no relationship to the stress
field have been observed, but these are only temporary; the
shocks commonly blur away immediately after the onset of
flow, which has been attributed to some instability mecha-
nism [46]. Literature on the topic [1] is quick to concede that
infinitessimally sharp velocity jumps are physically nonsen-
sical and should be understood as being spread over at least
a few particle widths. Below, we will see that our model
naturally provides a mechanism for the blurring of velocity
shocks even in the presence of a stress shock, with large
velocity variations occurring only at the scale of several par-
ticle diameters.

Typically, to avoid the task of having to track or capture
shocks in the various fields, approximations to MCP are in-
voked which give continuous solutions either by altering the
boundary conditions or simplifying the PDE’s. Smooth stress
approximations are especially useful when attempting to
solve for the velocity field—tracking flow shocks coming
from both a discontinuous stress field and hyperbolicity in
the velocity equations is an enormous job. To our knowledge,
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a full solution to MCP has never been obtained either nu-
merically or analytically in cases where the underlying stress
field has shocks. Instead, shock-free approximate solutions
have mostly been pursued.

Arguably, the two most successful and commonly used
results of MCP are actually approximations, not full solu-
tions. The Jenike Radial Solution [40,47] for wedge hopper
flow solves the MCP equations exactly, and with no discon-
tinuities, but does not allow for a traction free top surface. It
is a similarity solution of the form

p=rf(0), (19)

y=g(0), (20)

J=—Mf, (21)
r

which reduces the four MCP PDE’s to a system of three
ODE’s with (r, §) the position (r=distance from the hopper
apex and @ is measured anticlockwise from the vertical).
Though this solution enables the material to obey a wall
yield criterion along the hopper walls, the stress parameters
at the top surface have very little freedom. This is why most
claim the radial solution to only hold near the orifice, con-
siderably away from the actual top surface.

Another commonly used simplification is called the
method of differential slices, although it only applies to
stresses and not flow (our focus here). Originally proposed
by Janssen in 1895 and significantly enhanced since then, it
is used to determine wall stresses in bins and containers. The
method makes some very far-reaching assumptions about the
internal stresses: p is presumed to only depend on height and
the ¢ field is assumed to be identically 7/2 or 0. These
assumptions reduce the stress balance equations to one ODE
and ultimately give the famous result that wall stresses in-
crease up to a certain depth and then saturate to a constant
value. (This saturation behavior is not a byproduct of the
approximation; the discontinuous, full solution to the stress
balance equations in a bin also gives similar stress saturation
behavior.) While this effect has been verified extensively in
experiment, the underlying assumptions clearly cannot hold
since, for example, the walls exert an upward shear stress on
the material which contradicts the assumption about ¢ [1].

In summary, the equations of MCP theory have very lim-
ited applicability to granular flows. There are very few, if
any, solutions available (either numerical or analytical) for
many important geometries such as planar or annular Cou-
ette cells, vertical chutes, inclined places, etc. In the case of
silos, MCP has been used extensively to describe stresses,
although the equations are difficult to solve and poorly be-
haved from a mathematical point of view, as noted above.
There have also been some attempts to use MCP to describe
granular drainage from silos, in conjunction with the coaxial
flow rule, but this approach has met with little success, as we
now elaborate.
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FIG. 8. (Color online) Major principal stress chains in a
quasi-2D silo for the (a) active case and (b) passive case.

B. Physical difficulties with coaxiality

It is instructive to review the existing picture of silo drain-
age in MCP theory, to highlight what we will view as a major
concern with the use of coaxiality within a limit-state stress
field. Suppose we have a flat-bottomed quasi-2D silo with
smooth sidewalls. Under standard filling procedures, the
walls provide only enough pressure to keep particles from
sliding farther out. These wall conditions, known as the “ac-
tive case,” give the following solution to the stress balance
equations as found by marching down characteristics starting
from the flat, pressure free, top surface:

Px,y)=7/2, (22)
_
p(x,y) = +sing’ (23)

where f,= pg is the weight density of the material and y is
positive downward. Since the ¢ field is identically 7/2 ev-
erywhere, the slip lines are thus perfectly straight lines
angled at +e from the vertical. (See. Fig. 8.)

Refer again to Fig. 5. The material deforms based solely
on principal plane alignment. For a slow, dense flow in the
silo geometry, coaxiality is troubling. Since the major prin-
cipal stress is everywhere vertical, coaxiality requires mate-
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rial to stretch horizontally, thus making it geometrically im-
possible for it to converge and exit through the silo orifice.
This apparent paradox has traditionally been handled by as-
serting a sudden change in wall stresses that occurs once the
orifice opens, such that the walls drive the flow, not gravity
[1]. The silo is claimed to enter a “passive state” where the
walls are squeezing (see Fig. 8 the material through the ori-
fice. Even with this questionable assumption, the solution
predicted by Eq. (12) is unrealistic; it predicts the only non-
stagnant regions in the silo are two narrow, straight channels
which converge on the silo opening and are angled at +45°
from the vertical.

Coacxiality can also violate principles of thermodynamics.
The equation itself only ensures there is no shear strain rate
in the principal stress reference frame and actually does not
directly enforce that of the two principal strain-rate axes, the
axis of maximal compression (i.e., the major principal strain-
rate direction) must align with the major principal stress di-
rection, as was the physical intuition shown in Fig. 5. Coaxi-
ality just as easily admits solutions for which the minor
principal stresses align with the major principal strain rate.
When this happens, the plastic power dissipated per unit vol-
ume can be written

P 0):<|7| 0

0 - oy 0 _|‘y|>_|’)/|(0-3 0-1)<0’
where A:B=3A,B;; and =|7| are the principal strain-rate
values. This type of behavior violates the second law of ther-
modynamics as it implies that material deformation does
work on the system and likewise is nondissipative. In more
advanced plasticity theories, the thermodynamic inequality is
upheld by requiring \ in Eq. (15) to be non-negative, but in
the basic limit-state framework we discuss, this constraint
cannot be directly enforced.

We should briefly mention that in constructing the limit-
state stress field for the discharging silo, we have used as a
boundary condition that flow ensues when the pressure p
above the hole drops differentially from the value it takes
when the hole is closed. This claim allows us to preserve the
continuous stress field described in Egs. (22) and (23) for
slow, quasistatic flow.

C. Incipient yield everywhere

The fundamental assumption of a limit-state stress field at
incipient yield everywhere is also questionable. Granular
flows can contain regions below the yield criterion within
which the plastic strain rate must drop to zero. For example
in drainage from a wide silo with a small orifice, the lower
regions far from the orifice are completely stagnant [48,49],
and thus can hardly be considered to be at incipient yield. In
fact, discrete-element simulations show that grains in this
region essentially do not move from their initial, static pack-
ing [28]. Simulations also reveal that high above the orifice,
where the shear rate is reduced, the packing again becomes
nearly rigid [50], suggesting that the yield criterion is not
met there either. As the silo example illustrates, a more gen-
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eral description of stresses coming from an elastoplasticity
theory may be necessary to properly account for subyield
material [3,51].

Elastoplasticity also alleviates another major concern with
MCP which is that it is only well-defined in two dimensions.
Three-dimensional stress tensors have six free variables, too
many to be uniquely described by just force balance and
incipient failure (altogether only four equations). We men-
tion in passing that extensions of MCP to axisymmetric
three-dimensional situations have been developed. For ex-
ample, the Har Von Karman hypothesis, which assumes that
the intermediate principal stress o,, where o) <o0,<03, is
identical to either o or o3, is frequently utilized in solving
for conical hopper flow. However, elastoplasticity can handle
three dimensions without this hypothesis, while also allow-
ing for stress states below the yield criterion in different
regions.

D. Neglect of discreteness and randomness

Beyond its practical limitations and mathematical difficul-
ties, the most basic shortcomings of MCP are in its assump-
tions. Above all, a granular material is not continuous. The
microscopic grains composing it are usually visible to the
naked eye, and significant variations in the velocity often
occur across a distance of only several particle lengths, e.g.,
in shear bands and boundary layers. Of course, the general
theory of deterministic continuum mechanics is only ex-
pected to apply accurately when the system can be broken
into “representative volume elements” (RVE’s) of size L ful-
filling d <L <L, for d the microscale (particle size) and
Liacro the size of the system [52], which is clearly violated in
many granular flows. Therefore, the discrete, random nature
of the particle packing must play an important role in the
deformation process. To incorporate this notion coherently, it
may be useful to seek out a dominant mesoscale object as a
substitute for the RVE, upon which mechanical flow ideas
apply, but in a nondeterministic, stochastic fashion (see Fig.
9). This concept is somewhat comparable to the “stochastic
volume element” in the theory of plasticity of heterogeneous
materials [34]. In that setting, it is known that (what physi-
cists would call “quenched”) randomness in material proper-
ties leads to blurring of the slip lines, but, to our knowledge,
this effect has not been considered in MCP for granular ma-
terials.

More importantly, however, since the mesoscale should
only be a few grains in width, there must also be randomness
in the dynamics of yielding to an applied stress or body
force, since the theoretical concept of a continuous slip line
is incompatible with the reality of a discrete, random pack-
ing. A stochastic response also seems fundamentally more
consistent with the assumption of inicipient yield: If the ma-
terial is just barely in equilibrium, it must be very sensitive
to small, random fluctuations, causing localized yielding.

We conclude that the shortcomings of MCP may be re-
lated to the deterministic coaxial flow rule, so we now pro-
ceed to replace it with a more physically appropriate stochas-
tic flow rule. The Mohr-Coulomb description of stresses is
more clearly grounded in principles of solid mechanics and
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FIG. 9. (Color online) A mesoscale object containing a small
number of randomly packed, discrete grains, which controls the
dynamics of dense granular flow, analogous to the “representative
volume element” in classical continuum mechanics.

is widely used in silo engineering, so we will assume that it
still holds, on average, in the presence of slow flows, as a
first approximation.

IV. STOCHASTIC FLOW RULE
A. Diffusing “spots” of plastic deformation

It has been noted in a variety of experiments that dense
granular flows can have velocity profiles which ressemble
solutions to a diffusion equation. By far the best example is
drainage from a wide silo, which has a well-known Gaussian
profile near the orifice, spreading vertically as the square root
of the height (with parabolic streamlines) in a range of ex-
periments [26,48,49,53,54]. Recently, experiments in the
split-bottom Couette geometry have demonstrated precise
error-function profiles of the velocity spreading upward from
the shearing circle, albeit with more complicated scaling
[55]. Shear bands, when they exist, tend to be exponentially
localized near moving rough walls, but we note that these too
can be viewed as solutions to a steady drift-diffusion equa-
tion with drift directed toward the wall.

It seems, therefore, that a successful flow rule for dense
granular materials could be based on a stochastic process of
deformation, consistent with our general arguments above
based on discreteness and randomness. This begs the ques-
tion: What is the diffusing carrier of plastic deformation? In
crystals, plasticity is carried by dislocations, but it is not
clear that any such defects might exist in an amorphous ma-
terial. The Gaussian velocity profile of granular drainage was
first explained independently by Litwiniszyn [24,56] and
Mullins [25] as being due to the diffusion of voids upward
from the orifice, exchanging with particles to cause down-
ward motion. However, this model cannot be taken literally,
since granular flows have nearly uniform density with essen-
tially no voids and with far less cage breaking than the model
would predict.

Instead, the starting point for our theory lies in the work
of Bazant [27], who proposed a general model for the flow of
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amorphous materials (dense random packings) based on dif-
fusing “spots” of cooperative relaxation, as illustrated in Fig.
10. The basic idea is that each random spot displacement
causes a small blocklike displacement of particles in the op-
posite direction. This flow mechanism takes into account the
tendency of each particle to move together with its cage of
first neighbors, so we would expect the size of a spot to lie in
the range three to five particle diameters, L;~3-5d, for
simple cohesionless materials. This expectation has been
confirmed in dense silo drainage as the length scale for spa-
tial velocity correlations in the experiments of Choi et al.
[49,57] using glass beads (data shown in Fig. 11) as well as
the discrete-element simulations of Rycroft er al. [28] using a
variety of force laws with monodisperse spheres. Although
other material properties, such as grain shape and contact
friction, could increase velocity correlations as suggested in
Ref. [58], for purposes of illustration and comparison to a
variety of experiments below, we will view L;=3-5d as the
typical range of spot sizes in this paper. In continuum me-
chanics terminology, we are proposing the spot as an appro-
priate mesoscale replacement for the RVE, which reflects
velocity correlations resulting from cooperative displace-
ments of the particles.

A major motivation for our work comes from the recent
demonstration by Rycroft et al. that the spot model can be
used as a basis for realistic multiscale simulations of dense
granular drainage in a wide silo, assuming that spots perform
upward random walks, biased uniformly by gravity [28]. Us-
ing only five fitting parameters (the size, volume, diffusivity,
drift speed, and creation rate of spots), the spot simulations
were able to accurately reproduce the statistical dynamics of
several hundred thousand frictional, viscoelastic spheres in
discrete-element simulations of drainage from a wide silo.
This suggests that a general understanding of dense granular
flows may come from a mechanical theory of spot dynamics.

B. General form of the flow rule

In this work, we propose such a mechanical theory, based
on the assumption that MCP provides a reasonable descrip-
tion of the mean quasi-static stresses in slow dense granular
flows. The key idea is to replace the coaxial flow rule with a
“stochastic flow rule” based on mechanically biased spot dif-
fusion. In the continuum approximation, the general form of
the flow rule thus consists of two steps [27]: (i) A Fokker-
Planck (drift-diffusion) equation is solved for the probability
density (or concentration) of spots, p,(r,?):

o, d g d
Ly 2 (DYpy) = = (D5Pp,), 24
o ¥ o 1P = 558 DR @4

where {D{} is the drift vector and {D5*} the diffusivity tensor
of spots, determined by the stress field (below); and (ii) the
mean drift velocity of particles u={u®} is constructed to op-
pose the local flux of spots:

ua = — f dl‘,W(I',I',)[D?(r,’t)ps(r,’t)

- é[DSB(r’J)ps(r’,t)]], (25)

where w(r,r’) is the (dimensionless) spot “influence func-
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FIG. 10. Spots as carriers of plastic deformation in amorphous
materials. (a) Cartoon of basic spot motion. A spot of local fluidi-
zation, carrying some free volume, moves to the upper right causing
a cooperative displacement of particles, on average to the lower left,
opposing the spot displacement. (b) In silo drainage, spots are in-
jected at the orifice and perform random walks biased upward by
gravity, causing downward motion of particles. (c) In other situa-
tions, we conjecture that spots are created during initial shear dila-
tion and perform random walks biased by local stress imbalances
and body forces during steady flow.
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FIG. 11. (Color online) Spatial velocity correlations in silo
drainage experiments as in Refs. [49,57] with glass beads (d
=3 mm) obtained high-speed digital-video particle tracking. The
correlation coefficient of instantaneous displacements of a pair of
different particles is plotted as a function of their separation, aver-
aged over all pairs and all times in the video. (Reproduced from
Ref. [57], courtesy of the authors.)

tion” specifying how much a particle at r moves in response
to a spot displacement at r’. Without making the continuum
approximation, the same physical picture can also be the
basis for a multiscale model, alternating between macro-
scopic continuum stress computation and discrete spot-
driven random-packing dynamics [28].

The mean flow profile (25) is derived from a nonlocal
stochastic partial differential equation for spot-driven particle
dynamics, in the approximation that spots do not interact
with each other [27]. Here, we have assumed the centered
Stratonovich definition of stochastic differentials [59], which
means physically that the spot influence is centered on its
displacement. In contrast, Bazant used the one-sided reverse-
ito definition, where the spot influence is centered on the end
of its displacement, which leads to an extra factor of two in
the last term [27]. This choice is mathematically unrestricted
(the ““stochastic dilemna” [59]), but we find the centered defi-
nition to be a somewhat more reasonable physical hypoth-
esis. Rycroft et al. have also found that the centered defini-
tion produces more realistic flowing random packings in
multiscale spot simulations of granular drainage, when com-
pared to full discrete-element simulations [28]. If we use the
simple approximation w= &(|r—r’|) in the integral for par-
ticle velocity, the Stratonovich interpretation has the benefit
of automatically upholding volume conservation.

Without even specifying how local stresses determine
spot dynamics, the general form of the flow rule (25) predicts
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continuous velocity fields, even when the mean stresses are
discontinuous. For example, shocks in the MCP stress field
may lead to discontinuities in the spot drift vector, D, and
thus the spot flux. However, due to the nonlocal nature of the
spot model, the particle flux is a convolution of the spot flux
with the spot influence function, thus preserving a continu-
ous velocity field, which varies at scales larger than the spot
size, L,. This is a direct consequence of the geometry of
dense random packings: The strong tendency for particles to
move with their nearest neighbors smears velocity changes
over at least one correlation length.

In the simplest approximation, the spot influence is trans-
lationally invariant, w=w(r—r’), so that spots everywhere in
the system have the same size and shape. The spot influence
decays off for r> L, as a Gaussian among other possibilities.

In Eq. (25) we allow for the likelihood that the spot in-
fluence may not be translationally and rotationally invariant,
e.g., since the local stress state always breaks symmetry. This
is actually clear in the experimental measurements of Fig. 11,
where velocity correlations are more short-ranged, without
roughly half the decay length, in the vertical direction (par-
allel to gravity) compared to the horizontal (transverse) di-
rection. This suggests that spots are generally nonspherical
and may be more elongated in the directions transverse to
their drift (or the body force). If anisotropy in the spot influ-
ence were taken into account, it would also be natural to
allow for an anisotropic spot diffusivity tensor, which de-
pends on the local stress state. However, such effects seem to
be small in the granular flows we consider below, which are
well described by a much simpler model.

Another likely possibility is that spots come in a range of
shapes and sizes. There could be a statistical distribution of
regions of local fluidization or plastic yield related to the
local packing and stress state. It is thus more reasonable to
think of the spot influence function w(r,r’) as averaging
over this distribution, just as a spatial velocity correlation
measurement averages over a large number of collective re-
laxations. One advantage of taking the continuum limit of a
Fokker-Planck equation (24) in applying the SFR is that such
details are buried in the coefficients, which could in principle
be derived systematically from any microscopic statistical
model, or simply viewed as a starting point for further physi-
cal hypotheses (as we do below).

Finally, we mention that there are also surely some non-
trivial interactions between spots, which would make the
SFR nonlinear and could lead to interesting new phenomena,
such as spontaneous pattern formation. For example, spots
may have a medium range attraction, since it is more difficult
to propagate particle rearrangements and plastic deformation
into less dense, less mobile regions; there could also be a
short range repulsion if the spot density gets too high, since
grains will collapse into overly dilated regions. Such effects
may be responsible for intermittent density waves in draining
hoppers with narrow orifices [60,61], and perhaps even shear
banding in other amorphous materials, such as metallic
glasses, with a different plastic yield criterion. However, we
will see that the hypothesis of noninteracting spots already
works rather well in cases of steady, dense granular flows.
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C. Simple model for steady flows

Due to efficient dissipation by friction, granular materials
subjected to steady forcing typically relax very quickly to a
steady flowing state. For example, when a silo’s orifice is
opened, a wave of reduced density (spots) progates upward,
leaving in its wake a nearly steady particle flow, which we
associate with a steady flow of spots. This initial density
wave can be seen very clearly in discrete-element simula-
tions of various hopper-silo geometries [50]. For a narrow
orifice, we have noted that intermittent flows with density
waves can be observed [60,61], but typical drainage flows
are rather steady in time [49,57]. Similarly, when a rough
inner cylinder is set into uniform rotation in a Couette cell,
shear dilation propagates outward, raising the level of the
packing, until a steady flow profile is reached. We interpret
this initial dilation as signaling the creation of spots on the
cylinder, which quickly reach a steady distribution in the
bulk.

Hereafter, we focus on describing steady flow profiles,
with equilibrium spot densities. For simplicity, let us assume
isotropic spot diffusion, D“ﬁzDzﬁaﬂ, since fluctuations are
dominated by the (largely isotropic) geometry of dense ran-
dom packings. Using the spot size L, as the natural length
scale, we can express the spot drift speed, |D,|=L,/At,, and
diffusivity, D,=L?/2At,, in terms of the times, Az, and Ar,,
for drift and diffusion to reach this length.

The flow profile of a draining silo, normalized by the
outflow speed, is approximately constant over a wide range
of flow speeds, as has recently been verified to great preci-
sion in the experiments of Choi et al. [57]. Not only is the
mean velocity profile independent of flow rate (over an order
of magnitude in mean velocity), but fluctuations about the
mean, such as vertical and horizontal diffusion and measures
of ‘“cage breaking,” also depend only on the distance
dropped, and not explicitly on time (or some measure of
“granular temperature”). In statistical terms, changing the
flow rate is like watching the same movie at a different
speed, so that the random packing goes through a similar
sequence of geometrical configurations regardless of the ve-
locity. Similar features have also been observed in shearing
experiments in Couette cells [62] and numerical simulations
of planar shear [63].

The experimental and simulational evidence, therefore,
prompts the crucial approximation that A¢,/Azf,=const so as
to uphold statistical invariance of the particle trajectories un-
der changing the overall flow rate. This can be justified if
spots perform random walks with displacements selected
from a fixed distribution, set by the geometry of the random
packing [27]. Here, we make the stronger assumption that
the characteristic length of these random walks is the spot
size L, so that Ar;=At,=At. Our physical picture is that a
spot represents a “cell” of localized fluidization (or plastic
yield) of typical size L,, which triggers further fluidization
ahead of it and randomly propagates to a neighboring cell of
similar extent. This picture is also consistent with the inter-
pretation of L, as a velocity correlation length above.

With these hypotheses, the Fokker-Planck equation (24)
takes the simple time-independent form,
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A L
\E (dsps) = zsvzps’ (26)

where d(r)=D,/|D,| is the spot drift direction, determined
by the mechanics of plastic yielding (below). The flow field
is then

w--t f dr’w(r,l")<ax(l")l?s(l") = Vpx<r'>).

(27)

Equations (26) and (27) define a simplified stochastic flow
rule, with only one parameter, L,, which need not be fitted to
any flow profile. Instead, it can be measured independently
as the velocity correlation length, which may be viewed as a
dynamical material property.

D. Mechanical theory of spot drift

The main contribution of this paper is a simple theory
connecting the spot drift direction to the stresses in MCP.
The basic idea is to view the displacement of a spot as being
due to a local event of material failure or fluidization. To
make a quantitative prediction, we first define a cell of the
material as the roughly diamond shaped region encompassed
by two intersecting pairs of slip lines, separated by L,. When
a spot passes through this cell, it fluidizes the material and
thus locally changes the friction coefficient from the static
value u to the kinetic value ;. This upsets the force balance
on the cell and may cause a perturbative net force to occur.

The force diagram for a material cell occupied by a spot
can be broken into the sum of two diagrams (Fig. 12), one
which is the static diagram multiplied by u;/u and one
which contains only normal contact force contributions and a
body force term. MCP requires the static diagram to be bal-
anced, thus the latter is the only cause for a net force. A
well-known corollary of the divergence theorem enables us
to express the surface integral of normal contact stresses in
terms of a gradient of p giving

N M N N
Fret= (1 - ;k)(Fbody - cos’ éVp) (28)

as an effective force per unit area which pulls on a cell as it
is fluidized by a passing spot, causing the spot to preferen-
tially drift in the opposite direction.

A spot cannot move in an arbitrary direction, however,
since the material is at incipient yield only along the two slip
lines. Therefore, the net force is constrained to pull the ma-
terial cell along one of the slip lines. The spot drift direction
is then obtained by projecting (minus) the force, —F,,, onto
the slip lines and averaging these two projection vectors with
equal weight:

-

éi) == (Fnet : ﬁ(ﬁ:e)ﬁw:ev (29)
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FIG. 12. (Color online) (a) Material cell in static equilibrium.
(b) A spot enters the cell fluidizing the material. In the force dia-
gram, this means u decreases to uy. (¢) The force diagram for the
fluidized material cell is best analyzed by breaking it into the sum
of two diagrams.
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where 7iy=(cos 6,sin 6). With a formula for d, now deter-
mined, the SFR as stated in Egs. (26) and (27) is now fully
defined and ready for use.

This continuum mechanical theory of spot drift also helps
us understand the sources of spot diffusion. As noted above
and sketched in Fig. 9, a material cell is a small fragment of
a random packing, which is unlikely to be able to accomo-
date shear strain precisely along the slip lines of the mean
continuum stress field. Instead, the instantaneous slip lines
are effectively blurred by the discrete random packing. Still,
we preserve the picture of spots moving along slip lines in

(30)

constructing (Alj, but represent the additonal bluriness in the
slip-line field by enforcing isotropic spot diffusivity.

E. Frame indifference

Finally, we must check that our flow rule satisfies frame
indifference; solving for flow in different rigidly moving ref-
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erence frames cannot give different answers in a fixed refer-
ence frame. Since the SFR is a 2D steady-state flow rule, the
only flows we need to check for indifference are those with
rotational-translational symmetry. In these cases, the particle
velocity is a function of only one spatial variable and Eq.
(26) for p, becomes a second-order ODE. In solving the
boundary value problem, we must ensure that grains along
the walls have a velocity vector tangent to the walls. This
constrains one of the two degrees of freedom in the set of
possible solutions for p,. Since Eq. (26) is homogeneous, the
other degree of freedom must come out as a multiplicative
undetermined constant. Thus the velocity profile is unique up
to a multiplicative constant.

With only one constant, we cannot match boundary con-
ditions for particle speed along more than one wall in gen-
eral. So to solve for a flow between two walls, we must add
rigid-body motions to the reference frame of the observer
until we have the unique frame for which a solution exists
matching both boundary conditions. This is an unexpected
and welcome bonus of the SFR. Most flow rules in con-
tinuum mechanics enforce material frame indifference di-
rectly, i.e., the flow rule itself is derived to be automatically
satisfied by any rigid-body motion, ensuring the same results
independent of reference frame. Coaxiality achieves this by
relating stress information only to strain-rate variables for
instance. The SFR, however, upholds frame indifference in-
directly in that the solution does not exist unless the problem
is solved in exactly one “correct” frame of reference.

We have thus integrated the spot concept with the theory
of plastic stresses treating spots as the “carriers of plasticity.”
We note that up to our granular-specific determination of the
drift direction, the SFR principle can be applied to any amor-
phous isotropic material with a small characteristic length
scale (dominant randomness) and a yield criterion.

V. APPLICATIONS TO GRANULAR FLOW

The stochastic flow rule is quite general and in principle
can be applied to any limit-state plasticity model of stresses,
with different choices of the yield function to describe dif-
ferent materials. In this section, we apply the simplest SFR
(26) and (27) to granular materials with MCP stresses and
compare its predictions to a wide range of existing experi-
mental data for steady dense flows. In calculating stresses,
we assume a typical friction angle of ¢=30°. It is known that
for spherical grains, the friction angle usually lies in a some-
what narrow range of about 20°-30° and can be as large as
50° for some anisotropic, highly angular materials [1]. In the
examples we consider, however, varying the ¢ value in this
range has very little macroscopic effect in our model.

The spot size L, has a much larger effect, so we focus on
its role in a variety of dense flows. We emphasize that we do
not fit L, to any flow profile below. Instead, we simply use
the range L,=3-5d for dense flowing sphere packings in-
ferred independently from spatial velocity correlations in silo
drainage experiments [57] and simulations [28] (see Fig. 11).
This is consistent with our view of the correlation length, L,
as a fundamental geometrical property of a flowing granular
material.
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Without any fitting parameters, we will apply the simple
SFR to several prototypical flows. Each has different forcing
and symmetries and, to our knowledge, they cannot be si-
multaneously described by any existing model. Our first ex-
ample is granular drainage to a small orifice in a wide flat-
bottomed silo, driven entirely by gravity. Our second
example is shear flow in an annular Couette cell driven by a
moving rough inner cylinder, where gravity plays no role.
Our third example is the dragging of a loaded plate over a
semi-infinite material at rest, which combines gravitational
forces and boundary forcing. Lastly we apply the SFR to a
canonical free-surface flow, the continuous avalanching of a
granular heap. The transition to a rapidly flowing surface
shear layer on a heap will also lead us into a discussion of
how rate-dependent effects, such as Bagnold rheology, may
naturally extend into our model.

Throughout our treatment of the various examples, the
first step will be to solve Eq. (26) to obtain the “uncon-
volved” velocity field

. . L’
u =-Ldp,+ EA V ps, (31)

which corresponds to the SFR velocity (27) for a pointlike
influence function w=&(lr—r’|). For the most part, u” is the
“skeleton” for the full solution u because convolving u” with
a general spot influence merely blurs out the sharper features
of u”. In some situations with wide shear zones, such as silo
flow, the convolution has only a minor effect, but in others
with narrow shear bands, at the scale of the spot size, the
convolution step is essential for self-consistency and accu-
racy.

A. Silos

The flow profile in a flat-bottom silo geometry is well
known for its striking similarity to the fundamental solution
of the diffusion equation. As noted above, early models of
silo flow explained this based on the upward diffusion of
voids from the orifice [24,25,56]. Without reference to a spe-
cific microscopic mechanism, Nedderman and Tiizun later
derived the same equations based on a continuum constitu-
tive law [1,26]. They asserted that the horizontal velocity
component u is proportional to the horizontal gradient of the
downward velocity component v,

v
u=>b pat (32)
since particles should drift from regions of slow, dense flow
toward regions of faster, less dense (more dilated) flow. As-
suming small density fluctuations, mass conservation applied
to the 2D velocity field, u=(u,-v) then yields the diffusion
equation for the downward velocity,

—=b— (33)
where the vertical direction z acts like “time.” The diffusivity

b is thus really a “diffusion length,” to be determined em-
pirically. An advantage of the continuum formulation is that
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FIG. 13. (Color online) The mean velocity

profile in a wide quasi-2D silo of 3 mm glass
beads from Ref. [49]. Horizontal slices of the
downward velocity component near the orifice,
indicated in the complete flow profile on the left,
are shown on the right, and compared to the pre-
dictions of the kinematic model with two choices
of the parameter b. The stochastic flow rule for
MCP for a wide silo (without sidewalls) gives a
similar velocity field with b=1.5-2.5d [93].

it avoids the paradox (resolved by the spot model [27]) that
the classical picture of void random walks requires b <<d,
while experiments invariably show b>d.

Solving the kinematic model in the wide flat-bottomed
silo geometry with a point orifice gives the familiar Green
function for the diffusion equation,

v(x,z) = ‘, . (34)

This gives an excellent match to experimental data close to
the orifice (e.g., see Fig. 13 [93]), although the fit gradually
gets worse with increasing height, as the flow becomes
somewhat more pluglike. Nevertheless, Gaussian fits of ex-
perimental data have provided similar estimates of b=1.3d
[57], 1.3-2.3d [49], 2.3d [26], 3.5d [48], and 2d—4d [54] for
a variety of granular materials composed of monodisperse
spheres.

We now apply our theory to this flow geometry and see
how it connects to the kinematic model. Applying Eq. (30)
using the stress field described by Egs. (22) and (23) gives

uniform upward spot drift; F,., comes out as pointing uni-
formly downward and the slip lines are symmetric about the
vertical (see Fig. 14). The SFR (26) then reduces to

%5(@ @)

35
0z 2\ an? 972 (3)

although we emphasize that this form applies only when the
walls are smooth or equivalently when the silo width is large.
The last term, which represents vertical diffusion of spots
(relative to the mean upward drift), makes this equation for
the spot density differ somewhat from the simple diffusion
equation for the downward velocity of the kinematic model.
Consistent with our model, vertical diffusion, with a similar
(but not identical) diffusion length as horizontal diffusion,
has been observed in recent silo-drainage experiments
[49,57].

The general solution of Eq. (35) can be expressed as a
Fourier integral,

= ZLJ gikxA(k)e(z/Ls)(1—\51+L3k2)dk, (36)
W —00

where A(k) is the Fourier transform of the spot density at the
bottom (z=0). The narrowest possible orifice allowing for
flow is the case of a point source of spots, p,(x,0) 8(x),
A(k)oc1 (which is also the Green function). Convolution with
a spot influence function of width L, produces a downward
velocity profile on the orifice of width L,. Unlike the kine-
matic model (or any other continuum model which does not
account for the finite grain size), our theory thus predicts that
flow cannot occur unless the orifice is at least as wide as one
spot, L,=3-5d.

The details of flow very close to the orifice, z=0(L,), are
controlled by the choice of boundary condition, reflecting the
dynamics of dilation, contact breaking, and acceleration at
the orifice, which are not described by our bulk dense-flow
model. Rather than speculate on the form of this boundary
condition, we focus on the bulk region slightly farther from
the orifice. For z>L, (and Lk<1), the vertical diffusion
term becomes unimportant, and the Green function tends to a
Gaussian

l Outflow

FIG. 14. (Color online) The flat-bottomed silo geometry. The
intersecting black lines represent the slip-line field as determined
from solving the stress balance equations of MCP, and the red vec-
tor field is the spot drift direction, as determined from the SFR. In
this highly symmetric geometry, the spot drift precisely opposes the

gravitational body force, d=-3.
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e—x2/2012)(z)
v(x,2) ~ ==, (37)
\ 2770'12,(Z)
where the variance is
0%(z) ~ Lz + O(LY). (38)

(The second term is an offset from convolution with the spot
influence function, which also depends on the choice of
boundary conditions.)

There has been no prior theoretical prediction of the ki-
nematic parameter b, which we interpret as the spot diffusion
length [27]. Comparing Egs. (34) and (37), we obtain b
=L,/2=1.5-2.5d without any fitting, beyond the indepen-
dent determination of L, from velocity correlations. This pre-
diction is in excellent agreement with the experimental mea-
surements listed above. However, the model does not predict
the apparent increase of b with height, as the flow becomes
more plug like. This may be due to the breakdown of the
assumption of incipient yield higher in the silo, where the
shear is greatly reduced, and it may require modeling stresses
more generally with elastoplasticity.

In any case, we are not aware of any other model of silo
flow with a plausible basis in mechanics. It is noteworthy
that we assume active silo stresses (driven by gravity), as
typically assumed in a quasistatic silo. As a result, we do not
require a sudden switch to passive stresses (driven by the
side walls) upon flow initiation, as in existing plasticity theo-
ries based on the coaxial flow rule [1]. Our use of the stan-
dard MCP model for stresses in quasistatic silos also sug-
gests that the SFR may predict reasonable dependences on
the geometry of the silo or hopper, wall roughness, and other
mechanical parameters. In contrast, the kinematic model fails
to incorporate any mechanics, and, not surprisingly, fails to
describe flows in different silo-hopper geometries in experi-
ments [49]. Testing our model in the same way would be an
interesting direction for future work, since it has essentially
no adjustable parameters.

B. Couette cells

The key benefit of our model is versatility; we will now
take exactly the same model, which is able to describe wide
silo flows driven by gravity, and apply it to Taylor-Couette
shear flows in annular cells driven by a moving boundary.
The granular material is confined between vertical rough-
walled concentric cylinders and set into motion by rotating
the inner cylinder. The flow field has been characterized ex-
tensively in experiments and simulations, and several theo-
ries have been proposed for this particular geometry
[19,20,33,64]. For example, a good fit of experimental data
for Couette cells can be obtained by postulating a density-
and temperature-dependent viscosity in a fluid mechanical
theory [20], but it is not clear that the same model can de-
scribe any other geometries, such as silos, hoppers, or other
shear flows.

To solve for the MCP stresses in the annular Couette ge-
ometry, we first convert the stress balance equations to polar
coordinates (r, §) and require that p and ¢ obey radial sym-
metry. This gives the following pair of ODEs:
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FIG. 15. (Color online) (a) A plane view of the annular Couette
cell geometry, where the granular material is confined between con-
centric vertical cylinders. The rough wall is rotated counterclock-
wise while the outer wall is held fixed. The crossing black lines
within the material are the slip lines as found from MCP, and the
red vector field is the spot drift as determined by the SFR. (b)
Normalized SFR velocity as a function of distance from the inner
wall with inner cylinder radius 15d, 25d, 50d, and 100d (from bot-
tom to top curves, respectively). The friction angle is ¢=30°, and
the spot size is L;=3d.

W sin 24"
o r(cos 24" +sin ¢)’ (39)
an _ 2 sin ¢ (40)

ar  r(cos 2y’ +sin ¢)’

where 7=Inp and ¢"=y+m/2— 6. Although " has an im-
plicit analytical solution, 7 does not, so we solve these equa-
tions numerically using fully rough inner wall boundary con-
ditions ¢'(r,)=m/2—€ and any arbitrary value for 7(r,).
The resulting slip lines are shown in Fig. 15(a).

In the Couette geometry, the average normal stress, p,
decreases with radial distance, which implies that the fluidi-

zation force on material, F,, is everywhere directed out-
ward. We then apply Eq. (30) to calculate the drift direction
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as(r) by projecting the vector F et onto slip lines, and imple-
ment the SFR, exploiting symmetry which allows only a

nonzero velocity in the 6 direction. This implies

L Fe0— L@, s 2 (41)
u-7=0=- . + -,
r A s r pS 2 (9"'
which yields a solution for p,; up to a scalar factor. We then
use p, to calculate the 6 component of the (unconvolved)
velocity once again using the SFR equation,

ll* ' é: - Ls(as : é)ps (42)

It turns out, as we may have expected, that u” has a shear
band at the inner wall with nearly exact exponential decay.
The length scale of this decay is the spot size, L, since this
is the velocity correlation length, beyond which the inadmis-
sible shear at the inner cylinder can be effectively dissipated
by the material.

The thinness of the shear band requires that, for consis-
tency, we must take into account the finite spot size in recon-
structing the velocity field through the convolution integral
(27). For simplicity we will use a uniform spot influence
function, i.e.,

4 L
W(I‘)=EH<?—|I'>, (43)

s

where H(x) is the Heaviside step function. To evaluate the
integral (27), we also must make a hypothesis about how
spots operate when they overlap one of the walls. Random
packing dynamics near walls is different than in the bulk and
sensitive to surface roughness, and further detailed analysis
of experiments and simulations will be required to elucidate
the collective mechanism(s). Here, the precise shape of spots
near the wall has little effect, except to flatten out the spike
in velocity that occurs near the wall in the unconvolved ve-
locity u”. As a simple first approximation, used hereafter in
this paper, we will view the space beyond each boundary as
containing a bath of nondiffusive spots at uniform concen-
tration whose flux is such that the particle velocity invoked
“inside” the boundaries directly mimics the rigid motion of
the walls. This effectively “folds” part of the spot influence
back into the granular material when it overlaps with the
wall. The resulting velocity field is shown in Fig. 15(b),
where normalized velocity is shown versus distance from the
inner cylinder wall for L;=3d for a wide range of inner cyl-
inder radii.

The predicted flow field—without any fitting—is in strik-
ing agreement with a large set of data from experimental and
discrete-element simulations for different cylinder radii and
grain sizes [19,33,64,66]. As shown in Figure 16, the experi-
mental data compiled by GDR Midi [33] falls almost entirely
within the predicted SFR velocity profiles, by setting the spot
size to the same typical range of correlation lengths, L;=3
—5d, measured independently in a quasi-2D silo (Fig. 11).
Viewing the data on a semilog plot shows that the agreement
extends all the way into the tail of the velocity distribution.
We emphasize that the same simple theory, with the same
range of L, values, also accurately predicts silo flows above,
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FIG. 16. (Color online) Theory versus experiment for the nor-
malized velocity in annular Couette cells on (a) linear and (b) semi-
log plots. The dashed curve is the predicted SFR velocity field with
L,=3d, while the solid line is for L;=5d; both curves are for an
inner cylinder radius of r,=80d and ¢=30°. Experimental mea-
surements (points) for a wide range of inner and outer cylinder radii
are shown from the compilation of data shown in Fig. 3¢ of [33].
(The experimental data is courtesy of Midi and originates from the
work of [65-68].)

as well as other situations below. Unifying all of this data in
a single simple theory without any empirical fitting consti-
tutes a stringent quantitative test.

It is interesting to note the behavior close to the wall,
especially in thin Couette cells. In experiments [33], annular
flow profiles are known to have a Gaussian correction term
when the thickness of the cell becomes non-negligible in
terms of particle size. This slight flattening near the wall is
apparent in our model as well and is a by-product of con-
volving with the spot influence. We thus interpret this feature
as another sign of the strongly correlated motion of particles,
primarily with the “cage” of nearest neighbors, as approxi-
mately described by the spot mechanism. In this calculation,
we used a uniform spot influence, but have noticed relatively
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FIG. 17. (Color online) Predicted variation in the width of the
shear band with SFR over the standard range of granular friction
angles for the annular Couette geometry. (L,=3d;r,,=80d.)

little sensitivity of the predicted flow profile, for different
strongly localized influence functions, such as a Gaussian,
woce 2 A detailed comparison of the model to experi-
mental data may provide fundamental insights into the spot
influence, and thus the collective dynamics of random pack-
ings, near a rough wall at the discrete particle level.

The experimental results shown in Fig. 16 come from
apparati with inner wall radii ranging from 14d—100d. The
relatively small variations in the data sets over such a large
range of inner radii clearly indicates that the inner wall ra-
dius is not a crucial length scale in the flow. The plotted
theoretical prediction uses an inner radius of =80d, but, as
can be seen in Fig. 15(b), our results depend only minimally
on the inner cylinder radius. Indeed, the mesoscale correla-
tion length of L;=3-5d is the dominant length scale in our
theory for this geometry.

To substantiate an earlier claim, we now consider how the
friction angle ¢ affects the flow properties (holding L, fixed)
according to our model. We can see this most clearly by
observing how the shear band half-width (i.e., the distance
from the wall to the location where velocity is half-
maximum) varies over the ¢ range for usual granular mate-
rials (=20°-50°). As shown in Fig. 17 the half-width
changes by <0.4d over the entire range and by <0.1d for the
range of laboratory-style spherical grains. This very weak
influence of internal friction agrees with simulations Taylor-
Couette flow by Schéllmann [69].

C. Plate dragging

We now examine perhaps the simplest situation where
gravity affects the shear band caused by a moving rough
wall. Consider slowly dragging a rough plate horizontally
across the upper surface of a deep (semi-infinite) granular
material. The plate maintains full contact by pressing down
on the surface with pressure p,cos® ¢. The profile of the
shear band which forms below the plate depends on the rela-
tive loading pressure, go=po/f,, where f, is the weight
(gravitational body force) density of the material.

PHYSICAL REVIEW E 75, 041301 (2007)

The plate-dragging flow field can be found using a proce-
dure analagous to the annular Couette cell, but enforcing
horizontal instead of radial symmetry. With y measuring dis-
tance below the plate, the stress balance equations give

B —sin 24
" 2g(cos 2¢—sin @)’

2

cos 2y

&= cos 2¢f—sin ¢’

where g(y)=p(y)/f, is the average normal stress scaled to
the weight density. The fluidization force will push material
downward and spots upward resulting in a flow profile that
decays close to exponentially near the moving wall.

Experiments [71,72] and simulations [73-75] offer differ-
ing assessments of the details of the flow profile away from
the shear band, but the dominant exponential decay behavior
is clearly observed in all. The displayed SFR prediction (Fig.
18) uses loading parameters from Tsai and Gollub [70] in
order to appropriately compare with their results. Although
the general properties of the flow appear to be represented
well by the model, we do notice that the predicted range of
typical flows is too small to fully encompass the experimen-
tal data. There could be a number of reasons for this discrep-
ancy, but it is worth pointing out that the quasi-2D plate-
dragging geometry is rather difficult to realize in
experiments. For example, this experiment was executed by
rotating a loaded washer-type object on top of an annular
channel, and it was observed that the sidewalls pushing in
the third dimension actually did play some role.

In Refs. [74,76], simulations of this environment indicate
that the shear band width increases with increasing loading
of the top plate. As can be seen in Fig. 19, our theory cap-
tures this general trend of increasing loading causing increas-
ing shear bandwidth. However, the swing in band size pre-
dicted by our theory is not large enough to match the range
of band sizes in simulations [74,76] in which the shear band
half-width can be as large as several tens of particle diam-
eters for large enough ¢, and diverges as go— % (i.e., zero
gravity). In cases such as these where the value of ¢, be-
comes very large, as we will discuss in more depth after the
next section, we believe a new phenomenon begins to domi-
nate our mesoscale argument and that this phenomenon may
be attributed to a particular property of the slip-line field.

D. Slow heap flows

We now examine a prototypical free surface flow. Very
close to the respose angle, a granular heap which is slowly
but consistently refed grains undergoes a particular type of
motion characterized by avalanching at the top surface and a
slower “creeping” motion beneath. This type of flow has
been studied in experiments [77] and simulations [78].
Though heap flows with faster top shear layers have also
been studied [33,79] we will focus for now on the slower
regime, which more closely resembles a quasistatic flow
where the SFR might apply.

This kind of flow is stable, but indeed quite “delicate” in
the sense that relatively small changes to the system param-
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FIG. 18. (Color online) (a) The plate-dragging geometry. The
top wall drags along the top of a bed of granular material. The
crossing black lines within the material are the slip lines as found
from MCP, and the vector field is the spot drift as determined by the
SFR. (b) Theory against experiment for the plate dragging geom-
etry. Theory: L=3 (---); L=5 (—). Experiment (*) courtesy of the
authors of [70].

eters (i.e., flow rate, height of the flowing layer) can invoke
large changes to the qualitative flow profile especially in the
top layers [78]. We will describe and attempt to explain this
effect more in the next section.
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FIG. 19. (Color online) Plot of theoretical shear band half-width
vs relative loading pressure gy=p(y=0)/f, of the top plate (where
f, is the weight density). The calculation assumes L;=>5d.

The heap geometry is depicted in Fig. 20 along with the
corresponding spot drift field and slip-line field. Any gravity
driven free surface flow problem for which the stresses and
flow are approximately invariant in the direction parallel to
the surface will have limit-state stresses that obey the follow-
ing relations:

y=—¢, (44)
_JY
p_C_gO;_(Z)’ (45)

where y is the depth measured orthogonally from the free
surface. Note that in limit-state theory, for self-consistency,
the static angle of repose is identical to the internal friction
angle ¢, which is a reasonable assertion but still debated in
the community. (By “static repose angle” we refer to the
angle of inclination below which a flowing system jams; in
simulations of flow down a rough inclined plane, it has been
shown that this angle does vary in a narrow range depending
on the height of the flow [78,80].) Applying Eq. (30) to these
equations gives a simple expression for the spot drift vector:

~ (1+5sin® ¢,—sin ¢ cos ¢)
*7|(1 + sin® ¢b,— sin ¢ cos @)|
We may then apply the SFR, which simplifies upon requiring
that the flow run parallel to the free surface [i.e., u*=(
—-u,0)].

Since the drift field is uniform, we obtain an analytical
solution for the unconvolved velocity:

—ysin?2 2
u=u(0)exp< yslin ¢V5—3cos2¢>' (47)

A

(46)

Thus our model predicts that the velocity decays exponen-
tially off the free surface. In cases like these, where the
boundary of the flow makes no contact with a rigid wall, it is
less clear how the spots (and free volume) might behave near
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FIG. 20. (Color online) (a) The heap flow setup. (b) The dashed
rectangle in (a) is enlarged; the slip-line field from MCP is plotted
along with the drift field from the SFR.

the flowing free surface. To avoid addressing this issue in
detail, we neglect convolution with the spot influence func-
tion and simply assume u=u".

In their experiments on slow heap flow, Lemieux and
Durian [77] have shown that the velocity profile in the flow-
ing top layers is indeed well approximated by an exponential
decay. Furthermore, they found the flow in this regime to be
continuous and stable. The decay law they obtained is

u/u(0) = exp(— ﬁl) ,

which is very close to our predicted solution for L,=3d:

Y
u/u(0) —exp< 4.58d>'
Silbert et al. [78] report finding a similar decay profile at low
flow rates in simulations of flow down a rough inclined
plane, although the avalanching at the surface was intermit-
tent. Komatsu et al. [79] have conducted faster heap flow
experiments (discussed below in more detail) and found an
exponentially decaying region of much smaller decay length,
~1.4d, beneath the rapid flowing top layer (see Fig. 23). We
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note that this flow is qualitatively different than the slower
heap flows we attempt to describe here in which the decay
behavior persists to the surface and is measured in the top
layers. In conclusion, we have demonstrated a fourth, quali-
tatively different situation where the same simple MCP-SFR
theory predicts the flow profile, without adjusting any param-
eters.

VI. TRANSITION FROM THE SFR TO BAGNOLD
RHEOLOGY

A. Breakdown of the SFR

In the last two examples, plate dragging and slow heap
flow, there are limits where the SFR fails to predict the ex-
perimental flow profiles. In this section, we will explain why
the breakdown of the SFR is to be expected in these cases
and others, whenever slip lines approach “admissibility” and
coincide with shear planes. In this singular limit of the SFR,
we postulate a transition to Bagnold rheology. The stochastic
spot-based mechanism for plastic yielding is thus replaced
by a different physical mechanism, the free sliding along
shear planes.

For example, consider the case of plate dragging above.
At large relative loading, the flow field resembles that of a
zero-gravity horizontal shear cell (between shearing flat
plates), and it appears that the SFR breaks down: With body
forces and Vp both going to 0, Eq. (30) gives F,,,=0 imply-
ing that spots have no drift and consequently the only SFR
solution is u=0.

Problems also occur with flow down a rough inclined
plane: Slightly increasing the flow rate (and consequently the
flow height) or inclination angle causes the velocity vs depth
relationship to exit the exponential decay regime detailed
above and undergo significant changes, passing first through
a regime of linear dependence [81,82] to a regime resem-
bling a 3/2 power-law of depth [80,83-85] opposite in con-
cavity to the exponential decay regime.

Why does the velocity profile for inclined plane flow un-
dergo many different qualitative regimes depending deli-
cately on system parameters, while others (e.g., silos, annular
cells) appear to be only weakly affected and almost always
exhibit the same (normalized) velocity profile? Tall inclined
plane flows and zero-gravity planar shear flows have been
successfully described in multiple experiments and simula-
tions [63,80,83,84,86] by the empirical scaling law of Bag-
nold [16]. In this section, we suggest a means to reconcile
and perhaps eventually combine these theories into a coher-
ent whole.

B. Bagnold rheology

Let us briefly review Bagnold’s classical theory of granu-
lar shear flow. In its original form, “Bagnold scaling” ex-
presses a particular rate dependency for granular flow when-
ever the solid fraction is uniform throughout:

T A (48)

where 7y is the rate of simple shear. To account as well for
static stresses arising from the internal friction, a related vari-
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ant of this scaling law is commonly used [87]:

T— po % V. (49)

It is in some sense a law for how the yield criterion can be
exceeded when non-negligible strain rates can absorb the ex-
tra shear stress. This constitutive law alone is an incomplete
flow theory since it provides no way of predicting whether or
not the solid fraction will be uniform during flow or how a
nonuniform solid fraction affects the above rheology. Bag-
nold originally explained the quadratic relationship between
stress and strain rate in terms of binary collisions as the joint
effect of both the particle collision rate and the momentum
loss per collision being directly proportional to the strain rate
[16]. Despite this collision-based argument, however, Bag-
nold scaling has been observed to hold well into the dense
regime, whenever the solid fraction is approximately con-
stant throughout the system. This seemingly contradictory
observation can be justified in the hard-sphere limit (without
body forces) by a Newtonian invariance argument [63], al-
though it calls into question the underlying physical mecha-
nism.

Zero-gravity planar shear flow and thick inclined plane
flow both exhibit nearly uniform density and thus have been
employed as test cases for Bagnold scaling. In the planar-
shear environment, the shear and normal stresses acting on
the shear planes are spatially constant throughout the flow.
Equation (49) therefore implies that the strain rate is uni-
form; as a result, the velocity varies linearly from one wall to
the other. This result is known as uniform shear flow (USF)
and is easily verified in simulations of Lees-Edwards bound-
ary conditions. For example, the rheology (49) has been
demonstrated in the simulations of [86].

Applying Bagnold scaling to the inclined plane geometry,
slightly above static repose, gives a shear stress excess which
grows linearly with depth and thus a shearing rate that grows
as the square root of depth. This implies a velocity profile of
the form

U« h3/2 _ y3/2 (50)

for y the depth variable and / the height of the flowing
material (with no-slip bottom boundary condition). In this
way, Bagnold scaling successfully explains the 3/2 power
law dependence noted above.

C. Slip-line admissibility

The seemingly disparate flow mechanisms of the SFR and
Bagnold rheology can be reconciled very naturally by con-
sidering the geometry of the slip lines. In plasticity theory, all
flows can be classified based on “slip-line admissibility.” For
admissible slip lines, boundary conditions are such that the
flow can, and presumably does, take place by continuous
shearing along only one family of slip lines. In mathematical
terms, the slip lines are admissible for a given flow, when-
ever the double-shearing continuum flow rule (14) allows
multiple solutions to the boundary value problem.

Slip-line admissibility is the exception, not the rule, since
it is highly unlikely that the prescribed velocity boundary
conditions are fulfilled by a continuous shear on either slip-
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FIG. 21. (a) Slip-line field for gravity-free planar shear flow; (b)
slip-line field for inclined plane flow. Note that in both cases the
shear planes will be aligned completely with one slip-line family.

line family. Be that as it may, it so happens that planar shear
flow and inclined plane flow are both slip-line admissible.
This special property is shared by no other flow geometry
studied in this paper, or, to our knowledge, elsewhere in the
granular materials community. (Contrast the slip lines in Fig.
21 with those in Figs. 14 and 15.)

There is also an interesting difference in the density dis-
tributions. For admissible flows, the volume fraction is
nearly uniform, and Bagnold rheology has a reasonable
physical justification. For the more common case of inadmis-
sible flows, as in silos and Couette cells, the volume fraction
is typically highly nonuniform. In such cases, the SFR seems
to provide an excellent description of the flow, and Bagnold
rheology clearly does not apply.

These observations motivate us to think of admissibility
as a criterion for two very different microscopic mechanisms
for granular flow: In admissible flows, material motion is a
viscous dragging of material “slabs” along one slip-line fam-
ily (Bagnold dominated), whereas in inadmissible flows
there is no clear choice as to which slip-line family should
control the motion and thus material randomly chooses be-
tween both slip-line families (SFR dominated). Perhaps ad-
missibility in the slip-line field causes the solid fraction to
remain roughly uniform because the material in no sense has
to collide head-on into neighboring material for it to move.
In flows where nonuniform dilation does occur, experiments
have shown the motion is nearly independent of Bagnold’s
simple stress strain-rate relationship, encouraging our strong
distinction between the dynamics of flow problems of differ-
ing admissibility status [66,88].

These considerations all lead us to the following funda-
mental conjecture:

“Slip-line admissibility is a geometrical and mechanical
indicator as to the relative importance of rate dependency
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(Bagnold rheology) over rate independency (SFR) in a dense
granular flow.”

This means that a flow which has an admissible limit-state
stress field will be dominated by rate-dependent effects when
the yield criterion is only slightly exceeded.

D. Redistribution of excess shear stress

A more rigoruous physical justification of our conjecture
can be made utilizing limit-state stresses and observing the
effect of pushing the system above yield. Bagnold rheology
is a statement connecting the shear stress excess (i.e., amount
by which 7 exceeds wo) along a shear plane to the rate of
simple shear along the plane. We must emphasize that shear
planes and slip lines are not equivalent terms; slip lines are
defined by the quasistatic stresses as lines along which 7
—uno=0, whereas shear planes are defined entirely by the
velocity profile. In an admissible system, the shear planes
coincide with one slip-line family. In inadmissible systems,
the shear planes almost everywhere do not coincide with slip
lines.

With admissible slip lines, excess shear stress tends to be
uniformly distributed throughout the system, resulting in glo-
bal Bagnold rheology. For example, consider a zero-gravity
planar shear cell. If we were to apply additional shear stress
to the body in a manner aligned with the admissible slip-line
family, e.g., by increasing the wall shear stress above yield
by some amount A7, that additional shear stress would dis-
tribute itself within the material precisely along the slip lines.
Every horizontal slip line within the bulk would thus receive
a boost in shear stress of size A7. In limit-state theory the
slip lines have the highest possible 7— uo value a quasistatic
material element can take—zero. Adding A7 additonal shear
stress to the slip lines means that 7 will maximally exceed
o precisely along the slip lines, and, by admissibility, every
shearing plane. As a result, there will be a Bagnold contri-
bution everywhere. Similarly, if we took a limit-state in-
clined plane geometry and increased the tilt angle some
amount, an analagous boost in shear stress along the admis-
sible slip-line family would occur causing 7 to exceed wo
precisely along all the shear planes.

In contrast, with inadmissible slip lines, excess shear
stress tends to remain localized where it is applied, and the
SFR dominates the rest of the flow. For example, consider
annular Couette flow. As can be seen in Fig. 15, the slip lines
only coincide with the shear planes (which in this case are
concentric circles) along the inner wall of the cell. If the
inner wall were given an increase A7 in applied shear stress,
torque balancing requires the shear stress along any concen-
tric circle within the material to receive a boost of A7-r, /7.
Suppose the shear cell has inner wall radius 40d and the
boost in wall shear is significant, say A7=7,,/10. Solving for
7— o along the shear planes in this situation gives a very
different result than in the previous case—here 7 will only
exceed wo along the shear planes that are less than 1.4d off
the inner wall. So, regardless of whether the density is or is
not uniform, Bagnold scaling would at best only apply in an
almost negligibly thin region near the wall. If the wall fric-
tion were less than fully rough, this region would further
decrease.
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E. Simple composite theory

The preceding discussion indicates that, in general, one
can use the admissibility status of the system to choose
whether or not the flow should obey the SFR or Bagnold
rheology, or perhaps some combination of the two. Indeed, it
seems reasonable that when slip lines are approaching ad-
missibility (e.g., plate-dragging with high g,) or when an
admissible system is only slightly pushed above yield (e.g.,
inclined plane flow near static repose) we must account for
contributions from both effects simultaneously. It is beyond
the scope of this paper to postulate the precise microscopic
dynamics (and derive corresponding continuum equations)
for this regime, but we can at least give a sense of how the
more general theory might look.

In general, we envision a smooth transition from rate-
independent SFR dynamics to rate-dependent Bagnold dy-
namics controlled by the distribution of shear stress excess.
This implies the coexistence of (at least) two different mi-
croscopic mechanisms: SFR and admissible shear. The SFR
contribution would derive from the usual spot-based, quasi-
static stochastic dynamics; the Bagnold contribution would
come from a rate-dependent shearing motion along the ap-
propriate slip-line family whenever there is a small excess
shear stress (beyond the limit state) which causes shear stress
excess along the shear planes within.

The two mechanisms should have different statistical sig-
natures. For shear deformation along admissible slip lines,
we would expect anisotropic velocity correlations. In the di-
rection perpendicular to the shear plane, the correlation
length should be somewhat shorter than the typical spot size,
since slip-line admissibility allows flow to occur with less
drastic local rearrangements, farther from jamming. In the
directions parallel to the shear plane, however the correlation
length could be longer, since material slabs sliding along
shear planes may develop more rigid, planar regions. It
would certainly be interesting to study velocity correlations
in heap flows at different inclinations and plate-dragging ex-
periments under different loads to shed more light on the
microscopic mechanisms involved in the SFR to Bagnold
transition.

For the remainder of this section, we make a first attempt
at a composite model, simply a linear superposition of SFR
and Bagnold velocity fields:

u = augpg + Bup,, (51)

which could have its microscopic basis in a random compe-
tition between the two mechanisms, when slip lines are near
admissibility. Here, ugpg is an SFR solution for the flow,
using the limit-state stress field everywhere, and ug,, is ob-
tained from the excess shear stress on a boundary by inte-
grating the Bagnold strain rate y=\7— o over those shear
planes for which 7— uo has been boosted above zero. (Note
that we ignore the condition of uniform density for Bagnold
rheology since we conjecture that uniform density is actually
a geometric consequence of slip-line admissibility and will
arise naturally whenever Bagnold rheology dominates the
flow.)
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A reasonable first approximation is that the SFR and Bag-
nold solutions individually fulfill the necessary boundary
conditions for the velocity profile since, under the right cir-
cumstances, either can be made to dominate the other. The
constant B is the Bagnold proportionality constant which
may depend on the density of the flow among other param-
eters [86]. Since the SFR is a rate-independent flow model,
ugpr can always be multiplied by a positive constant [ob-
serve that Eq. (26) is homogeneous in p,], and thus we allow
the scalar multiple a. Given some determinable form for /3,
a is chosen such that u fits the velocity boundary conditions.
This seems reasonable for moving walls (as in plate drag-
ging), but not for free surfaces, whose boundary velocity
should also be predicted by the theory. In such cases, where
a is not clearly defined in this simple model, one could use
other empirical relations, such as the Pouliquen flow rule for
inclined plane flows [83], to deduce the free boundary veloc-
ity, and thus a.

F. Some applications of the composite theory

Using our very simple composite theory, we will now
revisit a few geometries that were troublesome for the SFR
alone. Extending the theory with a smooth transition to Bag-
nold scaling controlled by slip-line admissibility seems to
resolve the experimental puzzles and capture the basic phys-
ics of granular shear flows. In the cases we consider below,
we do not change the value of « as we increase the shear
stress excess; this way the relative importance of Bagnold
effects are easier to isolate.

1. Planar shear cell

In a zero-gravity planar shear cell, uggr=0, but the Bag-
nold solution for any amount of shear stress excess is of the
form ug,,=ky, and thus the composite solution, regardless of
the values a and (3, is a homogeneous flow between the two
rough plates. The lack of a “background” SFR solution in
this case may explain why Bagnold rheology is almost ex-
actly observed in simulations of this geometry over a wide
range of strain rates [63].

2. Rough inclined plane

For flow down a rough inclined plane, the SFR solution is
an exponential decay (47), and the Bagnold solution is a 3/2
power law (50). When the material is only slightly above
static repose, a shear stress excess along the shear planes will
exist but will be very small; it goes as VA6 for an incline A6
above static repose [87]. As a result, ug,, will be small in
magnitude, and the SFR solution will show through as the
“creeping flow” with exponential decay. As A6 increases, the
increased shear stress excess will cause the Bagnold contri-
bution to increase, and the flow will eventually morph into
the 3/2 power law dependence of pure Bagnold scaling. In
between, where both contributions are of similar magnitude,
the superposition of the two flow fields gives a predicted
profile that appears approximately linear, since the SFR and
Bagnold solutions are of opposite concavity. Thus the com-
posite SFR-Bagnold formulation appears to be able to ex-
plain the various flow regimes in inclined plane flow, which
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FIG. 22. (Color online) Some predicted velocity profiles for
flow down a rough inclined plane as a function of depth. Note that
all three known flow behaviors, exp decay, linear, and 3/2 power
law, appear in proper relationship to the inclination (see Ref. [78]).
(Bottom) Incline near static repose, fully SFR dominated (L;=4d).
(Middle) Increased inclination angle, Bagnold to SFR ratio of 3:1.
(Top) Further increase to inclination; fully Bagnold dominated.

have been observed in experiments and simulations (see Fig.
22).

Recent experimental work of Pouliquen [89] seems to
support this analysis; it is found that inclined plane flow
occurring at lower inclination angles exhibits spatial velocity
correlations near the typical spot size (as the SFR would
imply), but as inclination increases, the correlation length
appears to decrease, an effect we might attribute to an in-
creased dominance of Bagnold scaling (a phenomenon not
goverened by a correlation length) over the SFR.

3. Rapid heap flows

The composite theory also seems consistent with rapid
heap flows. When the flow rate down the heap increases, the
region near the surface resembles inclined plane flow in any
one of its various flow regimes, whereas the region beneath
the surface flow undergoes creep motion which decays close
to exponentially [33,79] (see Fig. 23). We can justify this in
terms of slip-line admissibility: The slip lines throughout the

FIG. 23. (Color online) Standard heap flows enable one to see
both the SFR and Bagnold contributions separately in one flow
geometry. (a) The surface region is dominated by Bagnold scaling.
(b) The creep region beneath adheres to the SFR.
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FIG. 24. Plate-dragging slip lines approaching admissibility as
q increases.

system (see Fig. 21) have the same form in both regions. In
the surface region, the slip lines are admissible because there
is nothing blocking the motion from being a simple shearing
along the slip lines. In the creep region, however, the gate (or
the ground) prevents global shearing along the slip lines and
thus the slip lines are inadmissible and the SFR dominates.

We can equivalently explain heap flow in terms of shear
stress excess. The excess incurred by increasing the heap
angle will distribute itself differently in the two regions. In
the surface region, the excess can only be absorbed along the
shear planes by inducing a strong Bagnold dependence.
However, the gate at the bottom of the heap will support any
shear stress excess on the creep region. (Note that the slip
lines in the creep region all hit the gate, or the ground.) Thus
the full flow will be the sum of an exponentially decaying
SFR solution superposed with a significant Bagnold-type so-
lution which starts at the surface and cuts off at the interface
with the creep zone.

4. Plate dragging under a heavy load

We will now explain the comment made at the end of the
plate-dragging section. The slip lines of a plate-dragging ge-
ometry can be pushed drastically close to full admissibility
by simply increasing the relative loading of the top plate, g,
above a certain nonexcessive amount (see Fig. 24). To see
the effects of approaching admissibility more carefully, say
we take a limit-state plate-dragging setup and pull the plate
slightly harder, inducing a superyield shear stress boost of
A7 under the plate. Bagnold effects should appear wherever,
as a consequence of stress balancing, a shear stress excess
results along a shear plane. The shear planes are horizontal
lines in this case, and at limit state, the stresses along any
horizontal obey

Po
T—MU=—M&y=—M;w- (52)
0

When the extra shear stress is applied, a shear stress excess
of A7—upyy/qy will form for 0<y<(A7/upy)qy. Accord-
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ingly the Bagnold flow contribution will have a shear zone
whose depth extends into the granular bed as an increasing
linear function of g, for a fixed shear stress boost A7 and
fixed downward plate pressure (i.e., we decrease the material
weight density to increase q,). Integrating the Bagnold shear
rate gives that the relative size of the Bagnold contribution
should also increase with increasing ¢g,. With ¢, large
enough, therefore, the SFR contribution will be dwarfed by a
Bagnold term with a larger shear band. As gy— % the slip
lines become completely admissible and the shear band
width diverges as we would expect.

The mismatch in shear band size between the data of Tsai
and Gollub and the SFR could be due, among other possible
reasons, to the fact that g,=~380d was large enough to make
the Bagnold contributution sizeable. This could also explain
the large shear bands found in [74]. A detailed comparison of
experiments and simulations with different versions of a
composite SFR-Bagnold theory would be an interested direc-
tion for future work.

VII. CONCLUSION
A. Highlights of the present work

We have proposed a stochastic flow rule (SFR) for granu-
lar materials, assuming limit-state stresses from Mohr-
Coulomb plasticity (MCP). In the usual case where slip lines
are inadmissible (inconsistent with boundary conditions), we
postulate that flow occurs in response to diffusing “spots™ of
local fluidization, which perform random walks along slip
lines, biased by stress imbalances. The spot-based SFR cor-
rects many shortcomings of classical MCP and allows some
of the first reasonable flow profiles to be derived from limit-
state stresses, which engineers have used for centuries to
described the statics of granular materials.

Our theory notably differs from all prior continuum theo-
ries (cited in the Introduction) in that it is derived systemati-
cally from a microscopic statistical model [27]. The spot
model is already known to produce realistic flowing random
packings [28], and what we have done is to provide a general
mechanical theory of spot dynamics. Evidence for spots has
been consistently found in spatial velocity correlations in
simulations [28] and experiments [57] (Fig. 11) on silo drain-
age.

Beyond its fundamental physical appeal, the SFR seems
to have unprecedented versatility in describing different
granular flows. It has only two parameters, the friction angle
¢ and correlation length (spot size) L,, which are not fitted;
they are considered properties of the material which can be
measured independently from flow profiles. For monodis-
perse frictional spheres, the SFR can predict a variety of
different flows using the same spatial velocity correlation
length, L,~3-5d, measured in experiments and simulations.
This is perhaps the most compelling evidence in favor of the
spot mechanism which underlies the SFR.

We have shown that the SFR can describe a rather diverse
set of experimental data on granular flows. Some flows are
driven by body forces (silo and heap flows); others have
body forces, but are driven by applied shear (plate dragging);
still others are driven by applied shear without body forces
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(annular shear flow). Some geometries have straight bound-
aries (silos, heaps, plate dragging), and yet the theory works
equally well for highly curved boundaries (annular shear
flow). Some of the flows exhibit shear localization (annular
shear flow, plate dragging, heap flow), and yet the theory
correctly predicts wide shear zones in silo flow. It is note-
worthy that the same, simple model, correctly predicts and
places shear bands in geometries where they arise for very
different reasons—gravity causes the shear band in plate
dragging, and yet the geometry (through the Vp term in the
drift) causes the shear band in annular Couette flow. We are
not aware of any other theory (including classical MCP)
which can quantitatively describe more than one of these
flows, let alone without empirically fitting the velocity pro-
files.

B. Comparison with partial fluidization

It is interesting to compare our approach to the continuum
theory of partial fluidization of Aranson and Tsimring
[31,32]. Although it lacks any microscopic basis, their theory
also introduces a diffusing scalar field to control the dynam-
ics, as opposed to a classical stress—strain-rate relation. The
analog of our spot density is the “order parameter” p, which
measures the degree of “fluidization” of the continuum by
mixing two different types of stresses, corresponding to dis-
tinct “liquid” (p=0) and “solid” (p=1) phases. Given the
stress tensor for the material in a static solid state, a'?-, the
stresses in a flowing granular material are modeled by adding
some degree of viscous stresses, as in a Newtonian liquid:

0 )
ag;=[p+(1 —P)@j]o',j‘* nE;, (53)

where 7 is the viscosity. The order parameter controlling the
balance of these two stress tensors is postulated to obey a
reaction-diffusion equation,

(An%ﬂzvzmpu —)p-d) (54)

for collision time A¢, grain length scale /, and a function & of
the stress state, which is greater than 1 where the material is
above the static yield criterion, less than 0 where below the
dynamic yield criterion, and between 0 and 1 otherwise. One
benefit of this model is that it can be used for unsteady flows.
In principle, the SFR may also describe time dependence
through the spot Fokker-Planck equation (24), but we have
only developed and tested the theory so far for steady flows,
starting from Eq. (26).

For the sake of comparison, consider a steady flow mod-
eled by partial fluidization and the SFR. The difference is
that the spot equation (26) couples diffusion to a drift de-
pending on frictional yielding, whereas the order parameter
equation (54) balances diffusion with a nonlinear source
term, ressembling a chemical reaction rate, which indirectly
mimicks the effect of a Coulomb yield criterion. Interest-
ingly, if the SFR could be extended to an elastoplastic model
without making the incipient failure assumption (see below),
a similar nonlinear source term may have to be added to the
spot equation to account for the need to destroy (and create)
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spots when they enter zones below (or closer to) yield. More
generally, a reaction term could describe the creation and
destruction of spots, e.g., in response to plastic work as in the
theory of shear transformation zones [90].

As a higher-order yield effect, this term could also be
chosen to reflect bistability in granular materials, where sol-
idlike and fluidlike local phases can both be dynamically
stable and coexist depending on the stress state. Equation
(54) describes this through the dependence of & on both u
and u,; and implies that stable flow can occur beneath the
static yield criterion as long as the nearby kinetic yield cri-
terion is still exceeded, as should be expected. Our current
model describes the case where static incipient failure and
the transition u— g, are both valid assertions, so it is effec-
tively a flow theory more than a complete dynamic theory of
both flow and solidification. To increase the prominence of
M would not just modify our flow rule, but also necessitate a
more complicated stress model, given our physical hypoth-
eses. Unsteady flows, such as a traveling avalanche front,
may require accounting for bistability, but for fully devel-
oped steady flows as described above there is often some
degree of motion, even in nearly stagnant regions. In any
case, solidlike regions do not seem to greatly affect the flows
we consider above. We should also point out that the SFR
does allow a global no-flow solution since p,=0 always
solves the spot equation.

It is also notable that our argument for why a spot drifts,
i.e., a localized stick-slip type of shear stress decrease along
the spot boundary, is reminiscent of Eq. (53) wherein the
static shear stress goes down in the presence of fluidization.
In this sense, a higher spot concentration in our model is
similar to a higher degree of partial fluidization.

One difficulty with the partial fluidization approach is that
it cannot easily describe rate-independent effects since the
motion stems from a viscous form in the stress tensor. Also
in sharp contrast to our approach based on plasticity, partial
fluidization does not provide a clear theory of the static solid
stresses in the limit of no flow, opting instead to deal with
environments for which the open components of this tensor
are not needed (simple shear flows). This could perhaps be
modified. These considerations as well as selecting boundary
conditions on the order parameter, seem to be the primary
limitations in testing partial fluidization in more general situ-
ations.

C. Future directions

In spite of some successes, we still do not have a com-
plete theory of dense granular flow. There are at least three
basic limitations of the SFR, about which we can only offer
some preliminary ideas to guide future work.

1. Slip-line inadmissibility

Although most slip-line fields are inadmissible, the SFR
breaks down as slip lines approach admissibility. We have
already begun to extend the model into this regime by con-
jecturing that slip-line admissibility is associated with Bag-
nold rheology, as excess shear stress (above the limit state)
drives a local shear rate along the most admissible slip lines.
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FIG. 25. (Color online) The difference between 2D and 3D con-
tinuum cells which could be used to construct the SFR.

We have shown that a simple linear superposition of Bagnold
and SFR flow fields with appropriate boundary conditions
can describe a variety of composite flows, exhibiting both
Bagnold and SFR behavior in different limits or segregated
into different regions. These include planar zero-gravity
shear, various inclined-plane and heap flows, and plate drag-
ging at large loading. However, more work is needed to de-
velop and test a composite SFR-Bagnold theory, both at the
continuum level and in terms of the two microscopic mecha-
nisms.

2. 2D symmetry

Through MCP, the SFR is currently used only in quasi-2D
geometries. In efforts to extend the theory to 3D, a good test
case would be the split-bottom Couette cell, which displays a
wide, diffusive shear band [55], reminscent of a draining
silo. The 2D limitation may not be so difficult to overcome,
although any plasticity theory is more complicated in three
dimensions, than in two. As usual, constructing a 3D limit-
state stress field requires an additional hypothesis to close the
stress equations. In 3D, a general material point at incipient
failure with distinct principal stresses o;>0,> 03 is inter-
sected by a pair of slip planes angled 2e apart. We cannot
therefore encase a 3D cell of material within slip planes as
we are able to do to a 2D cell with slip lines. However, the
principal plane on which o, acts, the intermediate principal
plane, can be used along with the slip planes to encase a 3D
material cell. (See Fig. 25.) This is legitimate because, if
such a cell underwent slip-plane fluidization, the net material
force would be guaranteed to point parallel to the intermedi-
ate principal plane; since the intermediate principal plane
offers no shear resistance, the material can slide along this
plane, while simultaneously sliding along a slip plane.

To apply the SFR then, the drift vector should still be
calculated from Egs. (28) and (30), but all vectors must be
projected first into the o0z plane since the o, direction is
not involved in slip-plane fluidization. The shape of a spot
and its diffusivity would likely be anisotropic, with different
values in the intermediate direction, since the main source of
diffusion is slip-plane fluidization. (See Fig. 25.)

If ever the intermediate principal stress equals either the
major or minor principal stress, as in the Har Von Karman
hypothesis, incipient failure is upheld on a cone instead of
intersecting slip planes. When this degenerate case occurs,
the material cell can be encased serveral different ways de-
pending on the surrounding stress states. This must be deter-
mined before we can rigorously define how to apply fluidi-
zation and the SFR.
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3. Incipient yield everywhere

The SFR assumes stresses near a limit state. While incipi-
ent yield is believed to be a good hypothesis in many situa-
tions, even during dense flow (which should be checked fur-
ther in DEM simulations), it clearly breaks down in some
cases, at least in certain regions. This is perhaps the most
difficult limitation to overcome, since the limit-state assump-
tion is needed to fully determine the stress tensor. Without it,
the material effectively enters a different state most likely
governed by some nonlinear elastic stress strain law which is
far more difficult to apply.

We have already argued that such a transition away from
incipient yield must exist in some granular flows, due to the
strong tendency of granular materials to compactify into a
rigid solid state when shaken (e.g., by nearby flowing re-
gions) but not sufficiently sheared. A good example is a tall
narrow silo with smooth side walls, where the SFR holds
near the orifice, but breaks down in the upper region, ressem-
bling a vertical chute. The broad shear band localizes on the
side walls, as a rigid central plug develops, which likely falls
below incipient yield.

A more robust elastoplastic theory for the stress state
would relax our limit-state constraints and allow for material
to fall below the yield criterion where it is described by
elasticity. The SFR could then be applied only where the
material is at yield and everywhere else the material does not
deform plastically. Elastoplasticity theory operates just as
well in 3D as in 2D which is a key benefit over limit-state
plasticity. However, our model as we have already presented
it is far simpler than elastoplasticity and yet still manages
accurate results when applied to limit-state stress fields.

As the SFR matures as a theory of granular flow, it would
also be interesting to apply it to other amorphous materials,
such as metallic glasses, and to develop new simulation
methods. The basic idea is very general and applies to any
material with a yield criterion. It has already been suggested
that the spot model could have relevance for glassy relax-
ation [27], and the SFR provides a general means to drive
spot dynamics, based on solid mechanical principles. The
spot model also provides a multiscale algorithm for random-
packing dynamics, which works well for silo drainage [28],
so the SFR could enable a general framework for multiscale
modeling of amorphous materials. The idea would be to
cycle between continuum stress calculations, mesoscale spot
random walks, and microscopic particle dynamics.
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APPENDIX: CRITICAL STATE SOIL MECHANICS

A common precept in plasticity is the notion of normality
or associatedness. Flows that obey normality have a flow
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FIG. 26. (Color online) (Left) Critical state
theory’s spade-shaped yield function for material
at some density p. (Right) Deformations with
nonzero volumetric strain will cause the material

rule defined in terms of the yield function Y as follows:

. aY
E=\—,

oT (A1)

where \ is a positive multiplier. For a 3D flow, this means
that if the yield function were plotted in six-space as a func-
tion of all 6 independent entries in the 3D stress tensor, the
strain-rate matrix would be a “vector” pointing normal to the
yield surface oriented toward greater values of Y.

One of the first gripes about the use of friction-based yield
criteria in describing granular materials is that the principle
of normality gives a flow rule that predicts unstoppable dila-
tancy. Consider a rough extension of the Coulomb yield cri-
terion into 3D, Y= pu(trT)/3+|T,|/\2, which displays the ba-
sic property that yield occurs when a certain multiple of the
pressure equals the shear stress. Its associated flow rule is

. T
E= x(,_—o + E1).
V2[T| 3

The trace of this strain-rate tensor is Au, implying that ma-
terial undergoing plastic flow will never stop dilating.

Roscoe and co-workers [91] present a different viewpoint
on the issue. In what became known as critical state soil
mechanics, explained in detail in [39], they argue that nor-
mality does hold, but that in fact the Coulomb yield criterion
is not technically the correct yield function.

Backed by results from triaxial stress experiments on soil
samples, critical state theory claims that soils have a yield
function that depends on the soil consolidation as measured
by the local density p. The yield curve for material at a
particular density is defined in terms of two stress tensor
invariants: the pressure p=—%trT and the equivalent shear
stress ¢=|Ty|/+2. Plotted in these variables, the principle of

> to settle down on a new yield function.

normality is equivalent to the statement that the strain-rate
vector (€,7) is normal to the yield curve and pointing out-
ward, where é=—trE is a volumetric strain-rate which deter-
mines changes in density, and 'j/:(\s‘E/ 3)|E0| is a shear strain
rate proportional to the total shear deformation (volume-
conserving part of the deformation). Figure 26 displays the
theory’s picture of the yield function and how it changes
after material deformation. Any stress state underneath the
yield curve corrresponds to rigid material. Under normality,
material at point 1 in the initial state will undergo a defor-
mation according to the vector (&, 7;). Since €, is negative,
the material will dilate and settle down at point 1 on the right
on a new yield curve corresponding to pgp<<p. The material
at stress state 2 will likewise undergo compaction and arrive
at point 2 on the yield curve corresponding to p, > p.

The critical state line is defined as the locus of points for
which normality predicts no volumetric changes during
deformation—note that wherever a yield curve intersects the
critical state line, the curve becomes parallel to the p axis,
and thus the corresponding strain-rate vector has no volumet-
ric component. The theory reasons that the critical state line
is indeed a straight line of the form

qg=Mp.

As flow develops, the stress states throughout the material
will continually move toward the critical state line and once
local volume changes finally stop, all flowing material stress
states should lie on the critical state line. Thus in a steady
flow, the critical state line might falsely appear to be the
yield function when in fact it is only a locus of states from a
family of yield functions. So, it is argued then that the reason
normality previously failed to describe granular materials
was because it was applied mistakenly to the critical state
line and not to the true family of yield functions.
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