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Introduction

Ionic liquids (ILs) are superconcentrated electro-
lytes of great interest in energy storage devices.
The lack of electrolysable solvents, since ILs are
solely composed of cations and anions, means the
voltages that ILs can withstand (�3 V) are
roughly twice that of conventional aqueous elec-
trolytes [1]. As the energy stored increases with
the voltage, ILs are promising candidates as elec-
trolytes for electrical double layer
supercapacitors.

In such a capacitor, electrodes are in contact
with an electrolyte. The ions in the electrolyte
redistribute such that they reside in energetically

favorable electrostatic environments, forming a
layer rich in countercharges that screens the elec-
trostatic fields arising from the charged electrodes.
This structure is commonly referred to as the
electrical double layer (EDL). The work done
separating charges in the EDL is stored as energy
in EDL capacitors.

The intensive study of EDL capacitors with ILs
has burgeoned theories for the EDL. The theory
one develops for the EDL sensitively depends on
the geometry of the interface: In highly porous
electrodes with nanoconfined, overlapping EDLs,
the structure differs from isolated planar elec-
trodes. Here we focus on the equilibrium EDL
structure in ILs at planar interfaces (note we do
not review specific surface interactions with the
ions but only focus on the space-charge of the IL).
Importantly, the equilibrium theory serves as a
starting point for describing ionic transport out-
of-equilibrium [2, 3]. The case of nano-
confinement exhibits very different physics,
which depends both on the charge screening of
the electrode material as well as the electrolyte.
For a review of possible and observed effects in
nanoconfinement, see Ref. [1].

In pure ILs, the concentration of the electrolyte
is approximately determined by the size of the
composing ions. As the cations are typically
large organic molecules and the anions are often
bulky inorganic molecules, the concentration of
ions is in the range of 1–10M [1, 4]. Since there is
no solvent present in pure ILs, there are strong
electrostatic and steric interactions between the
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ions. Furthermore, the structures and chemistries
of the ions can be vastly different, which means
that despite two ILs having a similar concentra-
tion, their properties can be quite distinct. There-
fore, one requires a general theory of the EDL in
ILs which not only includes strong electrostatic
and steric interactions, but also retains at least
some elements of chemical specificity.

These three requirements clearly manifest
themselves in the EDL of ILs, where there are
mainly two regimes of behavior. At small voltages,
there is the overscreening regime [1, 5, 6]. This is
where the charge density exhibits decaying oscil-
lations from the interface, with a period of the order
of an ion diameter, that propagates many ion diam-
eters into the liquid [1, 5, 6]. The overscreening
structure is a direct consequence of electrostatic
interactions between densely packed ions [7]. At
larger voltages, the overscreening structure gives
way to a crowding regime, where layers of coun-
terions line up before the overscreening structure
appears at distances further from the electrode,
where the majority of the electrode charge is
already screened [1, 5–7]. The crowding regime
is dominated by the steric interactions [7–9].
Depending on the chemistry of the ions, the elec-
trochemical signatures of overscreening and over-
crowding are quite sensitive [1]. For example,
when the cation has a long alkyl chain, the over-
screening regime is further complicated by the
orientation of the cations: The charged part of the
cation prefers to be closer to the interface, causing
a peak in the capacitance at moderate voltages
from the compression (“electrostriction”) of the
EDL [10].

These features (electrostatic, steric, and spe-
cific interactions) can be captured by simple
mean-field theories of the EDL with varying
levels of complexity. We first outline the general
formalism used for such theories of the EDL. We
shall summarize theories of the EDL of neat ILs
within the local density approximation, and then
move onto more accurate theories. We also briefly
review some advancements of solvent impurities
and mixtures of ILs. Finally, we summarize the
underscreening paradox, and other directions of
research.

General Formalism

Here theories based on classical density functional
theory (cDFT) for the EDL in ILs near planar
interfaces are reviwed. The free energy, F , of
ILs in proximity to electrified interfaces can be
separated into two components

F ¼ F el þ F chem, ð1Þ

(i) the electrostatic contribution, F el, which
describes the energetics of the electrostatic fields
and the electrostatic interactions between the ions,
and also (ii) the chemical contribution, F chem,
which accounts for energy and entropic contribu-
tions from excluded volume effects and specific
interactions. These contributions can be further
subdivided into ideal contributions – those
which apply for dilute solutions – and excess
contributions – which are required for concen-
trated solutions.

In a mean-field theory, assuming that the effec-
tive dielectric response (in the way that it counts
for degrees of freedom not explicitly accounted
for in the theory) of the IL is a constant, the ideal
electrostatic contribution, F id

el , to the free energy
is given by

F id
el f,r½ � ¼

ð
dr � e

2
∇f rð Þ½ �2 þ r rð Þf rð Þ

n o
,

ð2Þ

where ∇ is the differential operator and r and f
are the mean-field charge density and electrostatic
potential of the IL, respectively. Within this mean-
field approximation, the electrostatic potential is

f rð Þ ¼ Ð
dr0 r r0ð Þ

4pejr�r0j. Here the dielectric constant ε
of the IL includes the contributions to system
polarizability not explicitly accounted for in the
rest of the theory. There can be internal contribu-
tions from the electronic polarizability of ions and
dipolar contributions, if present. In addition, there
can be contributions from the effective dipolar
moments of ionic pairs and clusters. These all
contribute to the, so-called, high frequency dielec-
tric constant that is measured to be 10–20 [4]. In
the EDL, this value can actually change due to
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effects that we will discuss later. For now, let us
consider ε to be constant.

Taking the functional derivative of the free
energy with respect to the electrostatic potential,
δF /δf ¼ 0 yields

e∇2f rð Þ ¼ �r rð Þ: ð3Þ

This is the Poisson equation, with further
knowledge of the charge density being required.
The charge density is r(r) ¼ q[c+(r) � c�(r)],
where q is the charge of an ion (note that when
one is considering systems more complex than
neat ILs, the expression for the charge density
must be generalized), and c+(r) and c�(r) are the
concentrations of cations and anions, respectively.
There can be additional electrostatic contributions
to the free energy, F ex

el , which either include
electrostatic correlations or dielectric responses,
that modify the Poisson equation. These excess
electrostatic contributions shall be discussed later.

The ideal contribution to the chemical free
energy, accounts for the entropy of ions that can
move without any restrictions. Here kB is
Boltzmann’s constant, T is temperature, and Λ is
the thermal de Broglie wavelength. This ideal
term is the basis of the classical Gouy-Chapman
theory of the EDL of dilute electrolytes [1, 2].

F id
chem½cþ, c�� ¼
kBT

X
i¼�

ð
drfciðrÞ½lnfL3ciðrÞg � 1�g, ð4Þ

The (electro)chemical potential of cations
(anions), m+ (m�), is determined from minimizing
the free energywith respect to the concentration of
cations (anions). At equilibrium, the chemical
potential of the cations (anions) in the bulk must
equal the electrochemical potential of the cations
(anions) in the EDL. Therefore, the equations for
the concentration of ions are given by

c� ¼ c exp b �qfþ Dmex�
� �� �

, ð5Þ

where β ¼ 1/kBT, c is the bulk concentration of
salt, and Dmex� is the change in excess chemical
potential (between the excess chemical potential

in the bulk and the excess electrochemical poten-
tial in the EDL), which can be both chemical and
electrostatic in origin. Inserting these equations
for concentration into the charge density yields a
general Poisson-Boltzmann (PB) equation

e∇2f ¼ �qc exp b �qfþ Dmexþ
� �� ��

� exp b þqfþ Dmex�
� �� �Þ: ð6Þ

It is by specifying Dmex� and solving such mod-
ified PB equations that we can describe the EDL
of ILs. By linearizing this PB equation in the
electrostatic potential for the case Dmexþ ¼ Dmex� ,
we obtain the Helmholtz equation

∇2f ¼ k2f, ð7Þ

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q2c=kBTe

p
is the inverse Debye

length, which is a key length scale that describes
the ability of a dilute electrolyte to screen charge.

There are two physical observables of the EDL
that we shall discuss: ionic density profiles and
differential capacitance. The signatures of ionic
density profiles are accessible through surface
force measurements, but also molecular simula-
tions can provide a great wealth of information on
the interfacial arrangement of ions [1]. The differ-
ential capacitance is readily obtained from imped-
ance experiments or from molecular simulations
[1]. The differential capacitance describes the dif-
ferential charge accumulated at the interface per
change in electrode potential, as defined by

C ¼ ds
df0

, ð8Þ

where s ¼ �n � ε ∇ f|0 is the surface charge
density, with n denoting the vector normal to
the planar interface, j0 signifying evaluation at
the interface, and f0 is the voltage drop across
the entire EDL.
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Neat Ionic Liquids

The “local density approximation” shall be
reviewed first, where excluded volume effects,
specific interactions, and electrostatics are only
described with local, mean-field variables, after
which the developments beyond the simplest the-
ories of the EDL in ILs shall be discussed.

Local Density Approximation
To have qualitative agreement between theory and
experiments/simulations for the differential
capacitance, one must include excluded volume
effects [1]. Before ILs, there were pioneering the-
ories for excluded volume effects of ions in the
EDL [2]. These approaches came ahead of their
time, having not attracted the attention they
deserved by those who worked with diluted elec-
trolytic solutions. These approaches were inde-
pendently “rediscovered” [1, 11], triggered by
the study of the importance of these effects in ILs.

One of the first and simplest theories for
excluded volume effects in ILs was an ideal
lattice-gas model [8]. The multiplicity of ions
distributed on the lattice, in the thermodynamic
limit, gives an excess term which logarithmically
diverges as the concentration of ions approaches
the maximum concentration

mex� ¼ �kBT ln 1� vcþ � vc�f g, ð9Þ

where v is the volume of the ions/lattice sites,
which is equal to the inverse of the maximum
concentration of ions (assumed to be the same
for cations and anions). For ILs, this was first
proposed by Kornyshev [8], leading to a paradigm
shift in the field, although an equivalent formula-
tion had been introduced by Bikerman [12] and
since rediscovered by several others [2, 11, 13] in
the context of moderately concentrated electro-
lytes. As such, this term is often referred to as
the Bikerman excess chemical potential, which
takes the form mex ¼ �kBT ln 1� 2vcf g in the
bulk. The g ¼ 2vc term is referred to as the
compacity of the IL [8], as it is a measure of
how much the electrolyte can be compressed. In
dilute electrolytes, 2vc � 0, such that this excess
term is negligible (unless one is at large voltages

[11, 13]). For ILs however, 2vc � 1, as the size of
ions/lattice sites determines the bulk concentra-
tion, meaning that excluded volume effects are
extremely important.

Including this excess term results in the follow-
ing modified PB equation

∇2f ¼ 2qc
e

sinh bqfð Þ
1� 2vcþ 2vc cosh bqfð Þ : ð10Þ

The excluded volume effects of the lattice
model are naturally present in the Fermi-like func-
tions for the concentration of ions. At very large
positive (negative) voltages, the concentration of
anions (cations) reaches the maximum concentra-
tion, 1/v, and the concentration of cations (anions)
tends toward 0. When the concentration reaches
the maximum value, the system is said to be in the
crowding regime. An advantage of the approach
of Kornyshev [8] is that a closed-form analytical
solution of the differential capacitance can be
obtained

C ¼ C0
cosh u0=2ð Þ

1þ 4vc sinh 2 u0=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4vc sinh 2 u0=2ð Þ
ln 1þ 4vc sinh 2 u0=2ð Þ� �

s
, ð11Þ

where C0 ¼ εk is the Debye capacitance and
u0 ¼ βqf0 is the voltage drop across the EDL in
units of thermal volts. It is interesting to note that
this formula was also obtained by Kilic, Bazant,
and Ajdari at the same time [11], but in the context
of moderately concentrated electrolytes. In fact, as
reviewed in Refs. [1, 2], this equation was first
derived by Freise [14] based on Bikerman’s
model [12].

The capacitance-voltage response predicted by
Eq. (11) is qualitatively different depending on the
compacity [8]. When the compacity tends to zero,
the U-shape Gouy-Chapman differential capaci-
tance curve [C ¼ C0 cosh (u0/2)] of dilute electro-
lytes is recovered [8]. For values of compacity that
are not vanishingly small and satisfy 2vc < 1=3,
the differential capacitance curve has a character-
istic “camel”-shape [8]. That being, the differential
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capacitance initially increases with applied volt-
age, as the electrolyte can compress, but then the
electrolyte reaches the crowding regime and the
differential capacitance decreases with further
applied voltage. This can be seen in Fig. 1 for
γ ¼ 0.1. While, for values of 2vcP1=3, the differ-
ential capacitance monotonically decreases in a
“bell”-shape [8]. At very large voltages, the differ-
ential capacitance follows C � C0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4vcu0

p
, which

is a law that describes how the effective length of the
EDL grows with voltage in the crowding regime
[8], which is model independent up to a numerical
factor (for a discussion, see Ref. [1]).

In ILs, “bell”- or “camel”-shaped differential
capacitance curves are often found [1], which was
a major success of the theory [8]. However, the
volume used for an ion had to typically be larger
than the intrinsic volume of an ion, as the
Bikerman term underestimates steric repulsion
[2]. As such, the compacity has been used as an
effective fitting parameter. Moreover, the value of
the Debye capacitance was predicted to be of the
order of 100 mFcm�2 (at room temperature with
the effective dielectric constant of ILs in the range
of 10–20ε0 [4]) and to sharply vary over a voltage
range of 0.1 V. Experiments and simulations mea-
sured values of the Debye capacitance which were

of the order of 10 mFcm�2 and varying on the
scale of 1 V [1].

To correct the differential capacitance, a Stern
layer was typically added to suppress the capaci-
tance at zero charge [1]. A Stern layer arises
because the ions can only approach within an
ion radius of the interface, meaning that there is
a linear potential drop until the charges are
reached. The capacitance of the Stern layer,
given by Cs ¼ ε/R where R is the radius of an
ion, and EDL occur in series, which results in the
smallest contribution dominating. At small volt-
ages, the Stern layer capacitance is of the order of
10 mFcm�2, but at large voltages the capacitance
of the crowding regime can be much lower.

Later, Goodwin, Feng, and Kornyshev [15]
introduced regular-solution terms to the free
energy (also investigated earlier by di Caprio
et al. [16]). These virial-coefficient terms
represented additional short-range interactions
beyond the Bikerman excess chemical potential,
such as additional steric interactions or favorable
interactions between cations and anions [2]. Gen-
erally, introducing regular-solution terms results
in a transcendental equation which can only be
numerically solved. Using a perturbative
approach, Goodwin et al. [15] showed that a con-
tribution to the excess chemical potential could be
approximated as

Dmex� ¼ Av c� � cð Þ þ Bv c� � cð Þ
� � a� 1ð Þqf0, ð12Þ

where a ¼ 1þ vcb A� Bð Þ½ ��1 with A and
B representing the short-range interactions
between ions of the same sign and between cat-
ions and anions, respectively [15]. When A is
positive and B is negative, the value of α is less
than 1, which makes it harder to form the EDL
[15]. It was assumed that Eq. (12) worked for all
applied voltages, and the resulting equation for
differential capacitance recovered the same form
of Eq. (11), but where the Debye capacitance was
multiplied by a factor of

ffiffiffi
a

p
, and the voltage

dependence was multiplied by a factor of α
[15]. This causes a suppression of the Debye
capacitance and its variation with applied voltage
to be significantly smoothed [17]. Moreover, at

Mean-Field Theory of the Electrical Double Layer
in Ionic Liquids, Fig. 1 Differential capacitance [calcu-
lated from Eq. (11) following Ref. [8] in units of Debye
capacitance as a function of applied voltage in units of
thermal volts. Differential capacitance curves are plotted
for three values of the compacity, demonstrating the qual-
itatively different capacitance-voltage responses. The
shape of the differential capacitance curve goes from a
“camel” to a “bell” shape for γ > 1/3
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large voltages, the universal law (C � C0=
ffiffiffiffiffiffiffiffiffiffiffiffi
4vcu0

p
)

is recovered. These features can all be seen in Fig. 2,
where the capacitance-voltage response is shown
for several values of α. This approach allowed dif-
ferential capacitance curves to be fitted at the
expense of an additional parameter in the theory, α.

The regular solution type modification of the
mean-field theory proposed in Ref. [15] intro-
duces a new cumulative parameter to the theory.
Although it has a clear physical origin, its value is
not known, so that, strictly speaking, it comes out
as a fitting parameter of the theory. Note that,
earlier, in order to improve the correspondence
with Monte Carlo simulations, Fawcett and Ryan
[18] introduced a number of fitting parameters
intended to correct for finite size and correlation
effects beyond the Bikerman excess term. In their
approach, the values of those parameters were
determined by comparison of the theory with
restricted primitive model Monte Carlo simula-
tions of electrolytes at charged interfaces up to
2 M in concentration.

The differential capacitance curves of ILs are
typically quite asymmetric, however, while
Eq. (11) is an even function of the applied voltage.
One reason why there are asymmetric differential
capacitance curves is because the sizes of ions in

ILs can often be quite different. For example, a
prototypical IL is [Emim]Cl. The Emim+ cation is
a large, organic molecule, while the anion is an
inorganic Cl� ion that is much smaller. To intro-
duce this, Kornyshev phenomenologically param-
eterized the value of compacity to depend on
voltage, such that the lattice volume tends to that
of cations (anions) in the limit of large negative
(positive) voltages [8].

Similar results have been obtained by Han,
Huang, and Yan [19] in a more rigorous asymmet-
ric version of the lattice-gas model, while only
introducing a single additional parameter which
is the ratio of the volume of (the lattice sites of)
anions to cations x ¼ v�/v+. An advantage of the
approach of Han et al. [19] is that analytical solu-
tions for the differential capacitance can be
obtained, curves of which can be seen in Fig. 3.
At large negative voltages, the capacitance is
approximately C � C0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4vþcu0

p
, but at large

positive voltages it reduces to C � C0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v�cu0

p
,

which is a reflection of the EDL being larger for
bulkier ions. The asymmetric ion approaches with
different lattice-gas types have been investigated
by Gongadze and Iglič [20], Maggs and
Podgornik [21], and M. Popović and A. Šiber
[22], and also Yin et al. [23] incorporated short-
range interactions with asymmetric steric interac-
tions into one theory.

The Bikerman style excess chemical potential
is quite a crude approximation, however. The
Carnahan-Starling equation of state is signifi-
cantly more accurate than the Bikerman one, and
generalizations to multicomponent, asymmetric
fluids are possible [2]. With this equation of state
in the local density approximation, however, one
requires a numerical solution for the differential
capacitance, and the interfacial layering and over-
screening structure are not described. Therefore,
one needs to go beyond local variables to achieve
more accurate descriptions of the EDL.

Beyond the Local Density Approximation
In the previous section, advancements in the
understanding of the capacitance-voltage
response of ILs was reviewed. In those works,
the charge density profiles always monotonically
decayed. The strong charge-charge correlations in

Mean-Field Theory of the Electrical Double Layer
in Ionic Liquids, Fig. 2 Differential capacitance [calcu-
lated using a modified version of Eq. (11) in Ref. [15] in
units of Debye capacitance as a function of potential drop
in units of thermal volts. Several values of the short-range
interaction parameter α are displayed for a fixed compacity
of γ ¼ 1. As α decreases, a suppression and smoothing of
the capacitance-voltage response is observed
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ILs cannot be accurately described by those mean-
field theories, however, as they excessively smear
out the detailed structure of the IL. Furthermore,
the treatment of steric interactions with local den-
sities cannot describe the layered structure of
crowded ions at interfaces. Both electrostatic and
steric interactions are inherently nonlocal interac-
tions. Therefore, to obtain more accurate descrip-
tions of the system, covering, in particular,
overscreening, one needs to develop a theory
that includes effects beyond a local description,
either in terms of higher-order derivatives or inte-
grals of the electrostatic potential and/or ionic
densities.

To go beyond the limitations of mean-field
electrostatics, Bazant, Storey, and Kornyshev
(BSK) [7] introduced an additional term in the
electrostatic energy

F ex
el f½ � ¼ �

ð
dr

el2c
2

∇2f rð Þ� �2
, ð13Þ

where lc is the phenomenological correlation
length, of the order of an ion diameter in ILs
[7]. The term lowers the free energy when there
is curvature in the electrostatic potential, and
therefore, it favors oscillations in the electrostatic
potential. Taking the functional derivative of the

free energy with respect to the electrostatic poten-
tial yields the modified PB equation

e 1� l2c∇
2

� �
∇2f rð Þ ¼ �r rð Þ, ð14Þ

which has fourth-order derivatives too. This
means additional boundary conditions are
required to obtain a solution. In the bulk, the
potential and its derivative should go to zero,
and at the interface one boundary condition is
fixed by the voltage of the electrode. While
numerous other boundary conditions have been
applied to close the system [7], a final boundary
condition arises naturally from the mechanical
equilibrium constraint at a charged interface
[24]. The boundary condition implicitly accounts
for the short-ranged part of the electrostatic inter-
actions within a correlation length.

In the charge density of Eq. (14), the chemical
part of the free energy from the previous sections
can be utilized. At small voltages, one can linear-
ize the charge density, which practically becomes
independent of the equation of state which is used
to account for excluded volume effects. Solving
the resulting modified Helmholtz equation for a
planar surface yields for the electrostatic potential,
in the linear response approximation

Mean-Field Theory of the Electrical Double Layer
in Ionic Liquids, Fig. 3 Differential capacitance [calcu-
lated from a generalized form of Eq. (11) in Ref. [19]] in
units of Debye capacitance as a function of voltage drop
across the EDL in units of thermal voltage. We display the

curve for a value of compacity as γ ¼ 0.1 (a) and γ ¼ 0.5
(b) for a range of values of the ion asymmetry ratio, x. The
capacitance profile becomes asymmetric when x 6¼ 1, since
the smaller ions experience less crowding and more easily
populate the EDL

Mean-Field Theory of the Electrical Double Layer in Ionic Liquids 7



f ¼ f0 exp �k1xð Þ cos k2xð Þ þ A sin k2xð Þ½ �,
ð15Þ

where k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dc þ 1

p
=2dc , k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dc � 1

p
=2dc ,

and A ¼ (1 � δck1)/(δck2) with δc ¼ lc/lD > 0.5.
Clearly, the electrostatic interactions accounted
for by the square of the Laplacian of the potential
results in overscreening at small voltages, which
gives way to crowding at higher voltages [7], as
seen in Fig. 4. This extension of the mean-field
theory was a major advancement toward under-
standing the EDL of ILs, as it included all of the
qualitative features observed in molecular simu-
lations and experiments, while retaining the sim-
plicity of the PB equation with one
phenomenological parameter, lc.

However, as seen in Fig. 4, the overscreening
structure from the BSK theory is actually quite
weak. There is perhaps only one oscillation in the
electrostatic potential (equivalently the charge
density) before it is exponentially suppressed

[7]. In surface force measurements and molecular
simulations, it is typical to observe many oscilla-
tions in the ionic density near an interface. More-
over, one needs to introduce either short-range
interactions or a Stern layer to obtain reasonable
values of the differential capacitance [7].

To achieve more pronounced charge density
oscillations, Gavish and Yochelis [25] developed
a phase-field type model of ILs. This model relies
on the Cahn-Hilliard regular solution terms in the
free energy functional, which are postulated to
describe nonelectrostatic like-charge attraction
that leads to cation-anion phase separation. Simi-
larly, Limmer developed a Landau-Ginzburg the-
ory of the EDL which relies on the assumption
that cations and anions phase separate [26]. These
sorts of models predict snake-like patterns of ionic
phase separation in the bulk, reminiscent of
spinodal decomposition, but a microscopic theory
of the underlying like-charge attraction has yet to
be developed.

In the outlined approaches above, the
crowding regime is described by a continuously
extending region where the concentration is that
of the macroscopic maximal concentration, as
seen in Fig. 4 for the BSK theory. In atomic-
force measurements and atomic simulations, how-
ever, discrete layers of countercharge clearly form
in the crowding regime. In these layers, there is a
coherence in where the center of the ions resides,
which causes a much larger concentration of ions
(than the macroscopic maximum allowed) in a
small region separated by regions where ions do
not reside. Upon integrating the ion profiles, the
maximal macroscopic concentration is recovered.

To describe the layered structure of the
crowding regime, a very accurate description of
the steric interactions is required. Commonly, the
reference system of hard sphere ions with an
implicit solvent, known as the primitive model,
is used to describe these structures mathematically
within the framework of classical Density Func-
tional Theory (cDFT). In cDFT, the excess free
energy, and thus the excess chemical potential, is
represented in a nonlocal manner by various
approximations. While no exact equation of state
is known for inhomogeneous hard-sphere fluids,
the most accurate functional is based on

Mean-Field Theory of the Electrical Double Layer
in Ionic Liquids, Fig. 4 BSK theory [7] predictions [cal-
culated from combining Eqs. (10) and (14) as shown in
Ref. [7]] for the concentration profiles of ions as a function
of distance from the electrode in units of ion diameter, d.
Here, the compacity is γ¼ 0.5 and the correlation length is
klc¼ 10. This corresponds to an ion diameter of d¼ 1 nm,
a permittivity of ε¼ 5ε0, a temperature of T¼ 450 K, and a
concentration of c ¼ 0:5 M, implying lc ¼ 1.33d [7]. The
electrode potential in units of thermal volts is u0 ¼ 100. At
such large voltages, the counterion density saturates to its
maximal value, and the dense “layers” of counterions are
followed by an overscreening layer of opposite charge
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Fundamental Measure Theory, which represents
the excess free energy density in terms of various
weighted densities of the ions [26, 27]. The Fun-
damental Measure Theory approach can accu-
rately describe the layering for a hard-sphere
fluid at an interface [27, 28].

Along with describing the excess free energy
due to crowding, cDFT approaches also provide
corrections for the finite size of the ions in terms of
electrostatics, as well as the correlations between
ions. One common approach is to include a con-
tribution to the chemical potential from convolu-
tions of ionic densities with direct correlation
functions [28, 29], which is itself supplied as an
input from the Mean Spherical Approximation.
This approach, and other related approaches, can
give overscreening and charge ordering at an
interface that is characteristic of concentrated
electrolytes and ILs [29, 30].

The nonlinear integro-diferential equations
that result from the cDFT theories are far less
computationally expensive than Monte Carlo or
Molecular Dynamics simulations. Even so, they
do not have the same analytical simplicity and
physical transparency of the simple modified PB
approaches described above that they seek to
replace. For example, due to the complexity of
the functionals, it can be significantly more diffi-
cult to implement the functional numerically than
the simple PB theories [28]. Furthermore, the
functionals do not output simple formulas for
important quantities such as decay lengths from
an interface or differential capacitance, in contrast
to the modified PB theories. While the predictive
power of cDFT functionals for the microscopic
structure of the EDL is strong, the application of
less accurate local density approximation
approaches as described in previous sections can
be more practical.

Recently, de Souza et al. [9] took inspiration
from integral theories of the EDL and developed a
simplified version for ILs. In the model, the elec-
trostatic part of the free energy is expressed in
terms of the weighted ionic densities, homoge-
nized over the size of a single ion. The approach
is similar to preceding theories including intramo-
lecular ionic charge distributions and also to the
charged-shell functionals derived from the Mean

Spherical Approximation [53–59]. When applied
to the highly concentrated limit of ILs, the theory
reproduces the layered structure at interfaces, as
seen in Fig. 5. At high concentrations, the effec-
tive screening length for the decay of oscillations
scales inversely with the Debye length, as quali-
tatively observed in experiments and simulations.
The resulting theory is successful in quantitatively
reproducing the charge density distributions and
differential capacitance observed in molecular
simulations as well as experimentally observed
EDL structures involving crowding of large cat-
ions [30]. Interestingly, Adar et al. [32] also mod-
ified the electrostatic term and obtained a similar
decay length.

Practically all of these theories neglect internal
degrees of freedom of the ILs. Many ILs ions are
actually quite large organic molecules, sometimes
with lengthy alkyl chains [1, 10]. To include these
effects, approaches have either coarse grained
[29] the ions into a few representative spheres or
developed approaches from polymer physics and
applied them to ILs [33, 34]. These theories for the
EDL of ILs can account for internal
rearrangement of ions in applied field, which is
often observed in molecular simulations.

Mean-Field Theory of the Electrical Double Layer
in Ionic Liquids, Fig. 5 Ionic concentration profile as
predicted by the weighted-density functional in Ref. [9]
as a function of distance from the electrode in units of ion
diameter. Here, the parameters are T ¼ 300 K, ε ¼ 2ε0,
c ¼ 5M, d ¼ 0.5 nm, and s ¼ 1.2 C/m2. Due to the use of
weighted densities, the theory predicts sharp overcrowding
peaks and a long tail of decaying oscillations in charge
density further from the interface

Mean-Field Theory of the Electrical Double Layer in Ionic Liquids 9



Solvents and Mixtures

The EDL of ILs in their pure form is perhaps a
simplified picture. Some ILs are hydroscopic,
meaning that they sorb water from the environ-
ment, but actually ILs in their pure form are pos-
sibly not the most interesting for applications
[1]. Introducing organic solvents in ILs increases
the ionic conductivity of these electrolytes dra-
matically [1]. It is, therefore, practically even
more interesting to have a picture of the EDL in
ILs with added solvent. Alternatively, several ILs
can be mixed to tune the exact physiochemical
properties that are desired, or more conventional
inorganic salts can be dissolved in ILs [1], and
EDLs in such cases would also be worthy of
description.

As has been typical in theories of dilute elec-
trolytes, the solvent has often been modeled as
dielectric continuum in which the ions reside
[1, 2]. This simply means one alters the salt con-
centration and dielectric constant in the above
theories. Such an approach can often capture the
qualitative changes to the differential capacitance
which occurs upon dilution of ILs [1, 2]. However,
this approach misses the competition which
occurs between the ions and solvent in the EDL
or in an adsorbed state at the electrode, which
manifests itself in differential capacitance mea-
surements, for example [17]. Therefore, one
requires theories of the EDL which are generaliz-
able to more than two components, with the
responses to electrostatic fields possibly being
different for each component [20].

The competition between solvent and ions in
ILs, or even different types of ions in mixtures of
ILs, is a balance between the steric, specific, and
electrostatic interactions. For excluded volume
effects, generalizations of the above equations of
state exist to any number of components with
different sizes [35]. One quickly loses analytical
tractability when the number of components is
more than 3–4, which means it is favorable to
opt for more accurate equations of state, such as
multicomponent generalizations of the CS,
Eq. (2).

Specific interactions can also become quite
important when solvent or water is present

[36]. The cations of ILs are often hydrophobic,
but the anions are usually not (an example of
which is [Bmim][PF6]), which leads to large
asymmetry in the response of water in the EDL
depending on the polarity of the interface
[37]. Interestingly in Ref. [38], it was shown that
hydrophilic ILs may have less water at the elec-
trodes, the signatures of which were experimen-
tally confirmed through cyclic voltammetry.
Alternatively, if lithium salts are dissolved, the
water will coordinate to the lithium cations, dras-
tically changing the response [35].

It is also essential to include how the species
respond to electrostatic potentials. For mixtures of
ILs, the charge of the ions is typically the domi-
nant effect, but for solvent the responses can be
quite different. If the solvent has a large dipole
moment, such as water, one can include a
Langevin term [36] to describe the response of
the dipole to external fields (note, this approach
has limitations, and one often needs to use effec-
tive dipole moments to recover bulk properties of
the solvents). In the absence of significant dipole
moments, the polarizability of the solvent could
be accounted for [39].

As an example of these competitions, Budkov
et al. [36] investigated a theory of a small amount
of water in an IL. The dipolar response of the
water and its affinity for anions caused an enrich-
ment of water in the EDL at moderate positive
voltages, but a depletion at moderate negative
voltages took place owing to unfavorable specific
interactions with cations [37]. This caused a peak
to occur in the differential capacitance at moderate
positive voltages, which is often seen in experi-
ments [17]. At large (negative and positive)
applied voltages, there is always enrichment of
water in the EDL as it is favorable for water to
reside in regions of large electric fields.

Underscreening and Beyond

As previously mentioned, surface force measure-
ments can reveal the layered structure of ILs at
interfaces [40], which the more involved EDL
theories can capture [28]. These theories predict
that the charge density has decaying oscillations
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until the bulk is reached. However, past the lay-
ered structure, these measurements actually find
monotonically decaying interactions that extend
far beyond what one expects. This was first
reported by Gebbie et al. [41], where the effect
was interpreted as ILs behaving as a dilute elec-
trolyte with 99.997% of the ions being bound up
in ion pairs. This observation was further con-
firmed by a number of groups, with Smith et al.
[40] demonstrating that moderately concentrated
electrolytes (1 M) exhibit this monotonic tail,
referred to as underscreening [42], that would
extend further into the electrolyte with increasing
concentration.

This motivated the investigation of ion pairing
effects in the EDL of ILs. If ILs are actually dilute
electrolytes, with the concentration of free charge
carriers of the order of 0.003%, then one can
reinterpret the compacity parameter as the con-
centration of “free” ions (not bound up into ion
pairs or aggregates) over the maximal concentra-
tion of “free” ions [1, 15]. Upon doing so with
0.003% of “free” ions, the values of Debye capac-
itance are significantly smaller than what is found
in experiments. Moreover, for a “dilute electro-
lyte,” there should be a strong U-shaped differen-
tial capacitance curve consistent with Gouy-
Chapman, but a bell shape is often found in exper-
iments of ILs. This was further investigated byMa
et al. [43] in a cDFT theory, where it was found
that the Debye capacitance when 99.997% of the
ions were paired was not consistent with experi-
mental observations.

The extent of ion pairing is still an open ques-
tion in ILs [44–47]. Aside from mean-field theo-
ries [43, 44], the balance between ions in a
“clustered state” and in “free” state has been
explored using molecular dynamics simulations,
such as Refs. [46, 48]. The former study showed
that for typical ILs, the percentage of free ions
(which is equivalent to the revised meaning of
compacity) is of the order of 10–20%, depending
on temperature – the larger percentage for higher
temperatures following the Arrhenius-like law
with very small free energy difference between
the states of the order of 1 kBT.

Importantly, one could expect that the extent of
ion pairing and clustering will “effectively

change” in the EDL, due to changed balance
between the two states (paired vs. free). Indeed,
with ions clustered, and majorly into neutral clus-
ters, they contribute less or no charge into the
EDL, increasing the effective (high-frequency)
dielectric constant. The effect expected here is
the electric field-induced destruction of clusters –
“dipoles” – in the EDL in favor of free ions –
“monopoles” (the physics of this effect is analo-
gous to the Frumkin effect of electric field-
induced desorption of organic molecules from
electrodes in favor of electrosiorption of ions of
electrolyte [49]). In Ref. [50], a simple mean-field
theory was constructed to describe this effect. The
main new prediction was, in spite of the low value
of compacity in the bulk of IL, it effectively
increases in the EDL and gives rise to the “bell”
shape of differential capacitance rather than the
“camel” shape that a simpler theory would sug-
gest for low values of compacity.

In such concentrated electrolytes as ILs, aggre-
gates larger than ion pairs can exist, motivating
theories of ionic aggregation and cluster-
ing [51]. Recently, McEldrew et al. [52] applied
polymer theories to superconcentrated electro-
lytes, where aggregates of arbitrarily large size
can be systematically accounted for in a general
framework. It was predicted there that an infinite,
percolating network of ions can form, which is
referred to as the gel phase. The existence and
properties of the gel phase in ILs, and its relation
to the fragile glass phase, are open questions.

Beyond underscreening, there are still many
other interesting avenues of research. For exam-
ple, the dynamics of charging the EDL in super-
capacitors (electrokinetic phenomena at
interfaces) and surface chemistry of any defects
are all areas of great importance in improving the
performance of EDL supercapacitors which have
ILs as electrolytes.
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