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We introduce a framework for analyzing and designing EIS inversion algorithms. Our framework stems from the observation of
four features common to well-defined EIS inversion algorithms, namely (1) the representation of unknown distributions, (2) the
minimization of a metric of error to estimate parameters arising from the chosen representation, subject to constraints on (3) the
complexity control parameters, and (4) a means for choosing optimal control parameter values. These features must be present to
overcome the ill-posed nature of EIS inversion problems. We review three established EIS inversion algorithms to illustrate the
pervasiveness of these features, and show the utility of the framework by resolving ambiguities concerning three more algorithms.
Our framework is then used to design the generalized EIS inversion (gEISi) algorithm, which uses Gaussian basis function
representation, modality control parameter, and cross-validation for choosing the optimal control parameter value. The gEISi
algorithm is applicable to the generalized EIS inversion problem, which allows for a wider range of underlying models. We also
considered the construction of credible intervals for distributions arising from the algorithm. The algorithm is able to accurately
reproduce distributions which have been difficult to obtain using existing algorithms. It is provided gratis on the repository https://
github.com/suryaeff/gEISi.git.
© 2020 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ab9c82]
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Electrochemical impedance spectroscopy (EIS) is a central
technique for analyzing electrochemical systems such as corroding
surfaces,1–4 fuel cells,5–9 batteries,10–14 sensors,15 solar cells,16,17

and biological systems.18,19 The application of a small oscillating
current (or potential) results in a small oscillating potential
(or current), which is then studied as a function of the angular
frequency of the oscillation.20–22 The small magnitude of the input
oscillation suppresses nonlinear behaviors in the frequency domain,
allowing the system to be studied using relatively simple perturba-
tion models.23 The ratio of the oscillating potential to the oscillating
current in frequency domain, i.e., the impedance, often exhibits
features which are easily correlated with the parameters of the
model.

The success of EIS data analysis is contingent on the ability to
express the system as a quantitative physical model, but it is often
the case that the system is not sufficiently well-understood to allow
such a model to be written. In such cases, the distribution of
relaxation time (DRT) problem may be solved, wherein the under-
lying model is assumed to be a series of relaxation processes with a
distribution of characteristic timescales.24–31 The DRT problem is a
linear Fredholm integral of the first kind, which can be solved via
Fourier, Laplace, or Mellin transform, although questions con-
cerning the existence and uniqueness of the resulting solution
inevitably arise.32,33 Similar inverse problems have a long history
in statistical mechanics, where microscopic distributions, such as the
density of states or the partition function, are directly inverted from
thermodynamic data.34 Resolution of the DRT problem yields the
distribution of characteristic timescales, which can be used to
identify the number, size, and average timescale of physical
processes within the system,24,25,27,29 and in some cases, assess
the propriety of the assumed relaxation process.24,27,29 The DRT
problem also allows resolution of overlapping features in the
impedance spectra, whose visual identification is often challenging.
The DRT model has found increasing acceptance over the past
decade, as evidenced by recent works on batteries,25,30,31,35–37 fuel
cells,24,27,38–40 and geophysics.26

This acceptance may be partly attributed to the relative maturity
of DRT inversion algorithms, i.e., algorithms used to obtain the
DRT, which span a range of approaches such as Fourier

transform,9,24 construction of L-curves,26 genetic algorithm,27,28

maximum entropy method,29 various least-squares methods,41,42

various regularization methods,25,30,40,42–44 and Monte Carlo
method.45 Generic inversion toolboxes46 have also been used to
solve the DRT problem.47 This impressive breadth of approaches
poses an interesting challenge concerning the classification and
design of DRT inversion algorithms. As noted by Saccoccio, Han,
Chen, and Ciucci, there is a need for “speed and accuracy bench-
marks for the various methods”,30 so as to allow one to characterize
the optimality of inversion algorithms, and choose an appropriate
algorithm given the nature of the problem and the availability of
computational resource. Concurrently, there is a need for a frame-
work which can be used to analyze the optimality of inversion
algorithms, so as to allow the design of an appropriate algorithm
given the nature of the problem and the availability of computational
resource.

We consider one such framework, founded upon the observation
that there are four features common to all well-posed EIS inversion
algorithms. These features can be broadly stated as (1) the
representation of unknown distributions, (2) the minimization of a
metric of error to estimate the parameters arising from the chosen
representation, subject to constraints on (3) the complexity control
parameters, and (4) a means for choosing optimal control parameter
values. For brevity, we will refer to these four features as the
representation, the interior problem, the complexity control para-
meter, and the exterior problem. We illustrate the prevalence of the
framework through a review of three established DRT inversion
algorithms, and show the utility of the framework by resolving
ambiguities and difficulties concerning three more DRT inversion
algorithms. We then introduce the generalized EIS inversion
problem, which expands upon the concept of DRT to allow for a
wider range of underlying models, design the corresponding general-
ized EIS inversion (gEISi) algorithm, and consider the construction
of credible intervals for the parameters arising from the algorithm.
The gEISi algorithm is able to reproduce distributions which exhibit
a wide range of smoothness, which has been difficult to perform
using existing EIS inversion algorithms. We also present validation
against synthetic data generated from the distributed Randles circuit,
which is impossible to analyze using existing EIS inversion
algorithms. The application of the gEISi algorithm to experimental
data modelled by the distributed Randles circuit will be the subject
of a future companion paper.48zE-mail: bazant@mit.edu
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Overview of the Concept

We begin with the nomenclature of terms used in the present
work. The term EIS inversion problem refers to a general class of
problems in which distributions are inferred from the impedance
spectra, assuming some simplified underlying physics. The classical
example of an EIS inversion problem is the DRT problem, which has
been discussed in the introduction :
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The DRT problem uses the Debye model, which assumes an
underlying relaxation process.20 Note that w g t¥Z R; ,ˆ ( ( )) implies
that the predicted impedance (Ẑ ) has the angular frequency (ω) as
independent variable, and the Ohmic resistance ( ¥R ) as well as the
DRT (γ(τ)) as model parameters. The unit of γ(τ) is Ω/s, indicating
that γ(τ) is not a probability distribution. Data from the literature
suggests that the domain of γ(τ) can spread over several orders of
magnitude.49,50 It is thus convenient to perform the substitution
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Here G(v)= τγ(τ) is the DRT on a logarithmic scale. The objective
of the DRT problem is to estimate G(v) given a vector of measured
impedance values Z, with Z(ωj) as the jth component of Z.

Florsch, Revil, and Camerlynck proposed a variation to the EIS
inversion problem, wherein the Debye model is replaced with the
Havrilliak-Negami model26:
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Here α and β are constants which are determined prior to solving the
EIS inversion problem. In particular, Florsch considered the case
whereby α= 0.5 and β= 1, which corresponds to an infinite series
of parallel diffusive-capacitive processes. The motivation for using
the Havrilliak-Negami model is simple, yet significant: if the correct
model is chosen, the distribution G(v) should exhibit low com-
plexity. This supposition is used to conclude that the impedance data
obtained from their archaeological sample can be best explained by
the polarization of an electronically conductive sample.

Yet another variation to the EIS inversion problem is the
distribution of diffusion time (DDT) problem,43 which is appropriate
for cases whereby prior knowledge suggests that the underlying
physics is better explained by a diffusive process. The model is
chosen based on the nature of the diffusive process:
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Here Ŷ is the predicted admittance, and ŷ describes the underlying
diffusion process. Song and Bazant provides a list of expressions for
ŷ based on the boundary conditions and the symmetry of the system
under consideration.43 The integral is performed over the admittance
rather than the impedance, so as to reflect the parallel nature of
diffusion normal to the surface of electrodes. The DDT problem was
solved for the impedance spectra of a silicon-nanowire Li-ion battery
anode,51 yielding a distribution of nanowire radii, which was
subsequently confirmed against scanning electron microscopy image
analysis.

The works of Florsch, Revil, and Camerlynck26 and Song and
Bazant43 demonstrate that prior knowledge can be used to construct
the underlying physics of an EIS inversion problem, such that the
resulting distribution G(v) corresponds to an observable, as opposed
to a mathematical construct whose utility is restricted to the
identification of the number, size, and average timescale of under-
lying processes.24,27,29 This motivates the idea of a generalized EIS

inversion problem, in which the form of the underlying physics is
not specified a priori, and the corresponding generalized EIS
inversion algorithm, which solves the problem independently from
the underlying physics. We will explore this concept in greater detail
in the section “Design of Algorithm” .

The remainder of this section, which discusses the proposed
framework, and the section “Analysis” , which reviews select
algorithms, will focus on the DRT problem, given its prevalence
in the literature. However, the concepts outlined therein are also
applicable to the more general class of EIS inversion problem.

Framework.—We claim that all well-posed DRT inversion
algorithms possess four common features, namely, representation,
interior problem, complexity control parameter, and exterior pro-
blem. The representation approximates the unknown distribution
with a discrete or continuous set of basis functions. The most
common representation is the sum of triangular basis functions:
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Here g is the vector of basis function weights with gm as the mth
component of g, m is the index of the basis functions, M is the total
number of basis functions, and Δm(v) is the basis function. This
representation is functionally identical to linear interpolation, and
possesses variations according to the treatment of the end-points.41

It is useful to distinguish between fixed-mesh and floating-mesh
representations. Floating-mesh representations incorporate the mesh
points as parameters in the basis function expansion, while fixed-
mesh representations do not. For example, Eq. 5 is a fixed-mesh
representation, since it is only parameterized by the weights of the
basis function (gm), and not by the location of the mesh points (vm).
This distinction is significant, because floating-mesh representations
tend to approximate distributions using a smaller number of
parameters. To illustrate this point, consider the true underlying
distribution shown in Fig. 1a, which is unimodal Cole-Cole centered
at t= 0. We collect 10 noisy impedance measurements per decade
between ω1= 10−4 and ωJ = 104, and define the accuracy of a
representation as:
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Here Gtrue(v) is the true underlying distribution. We invert the
underlying distribution using the RR/RI algorithm introduced in the
section “RR/RI Algorithm” , which employs a fixed-mesh representa-
tion, and the gEISi algorithm introduced in the section “Generalized
EIS Inversion Algorithm” , which employs a floating-mesh represen-
tation. The mesh boundaries of the RR/RI algorithm are determined
from the upper and lower limits of the measurement angular
frequencies25,26,30,31,41–43:

w= -v ln 8J0 ( ) [ ]

w= -+v ln 9M 1 1( ) [ ]

We then adjust the number of parameters used in the RR/RI
algorithm to match the accuracy of the gEISi algorithm.

The unimodal Cole-Cole distribution is accurately reproduced by
both algorithms, but the RR/RI algorithm requires 86 parameters to
match the accuracy of the gEISi algorithm, which only requires 6
parameters. This order-of-magnitude reduction in the number of
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parameters does not translate to a reduction in computational time,
which rather increases by an order of magnitude. The relative
efficiency of the RR/RI algorithm,30 as well as the majority of
algorithms employing the fixed-mesh representation,25,26,31,43 arises
from the use of near-analytical linearly constrained quadratic
programming. In contrast, the floating-mesh representation almost
inevitably requires stochastic programming to solve,27,28 which can
be computationally expensive. Nevertheless, this reduction in the
number of parameters will be significant in context of the general-
ized EIS inversion problem, which is discussed in the section
“Generalized EIS Inversion Problem” .

The representation of the unknown distribution leads to a set of
unknown parameter values, which are estimated via the interior
problem, subject to a constraint on the complexity control parameter.
The interior problem shows the least variation among the four
common features, and is typically the minimization of a misfit. The
idea of estimating parameter values subject to a constraint on the
control parameter will be demonstrated in a subsequent paragraph.

The third common feature is the complexity control parameter.
Implicit in the works of Florsch, Revil, and Camerlynck26 and Song
and Bazant,43 which have been discussed in “Overview of the
Concept” , is the idea that the application of a proper underlying
model tends to result in a distribution with low complexity. As a
corollary, if two different underlying models result in two distribu-
tions with different complexities, the underlying model yielding the
distribution of lower complexity should be favored. It is important to
recognize outright that this is a restatement of Occam’s razor,52–54

i.e., among competing hypotheses, all else being equal, favor that
which requires the least assumptions. We will explore the relation-
ship between complexity and Occam’s razor in greater depth in the
section “Design of Algorithm” . The existence of complexity is also
recognized by Hershkovitz, Tomer, Baltianski, and Tsur, who

defines complexity as the number of parameters needed to approx-
imate a DRT.27,28

Intuitively, we grasp that a highly fluctuating distribution is
complex, while a smoothly varying one is not. The idea of
complexity is central to the DRT problem, because the ill-posed
nature of the problem is in effect resolved by limiting the complexity
of the distribution. Consider the hierarchical Bayesian algorithm of
Ciucci and Chen.25 For an exponential hyperprior, it can be shown
that the interior problem takes the form:
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Here L1 is the first derivative operator, ξ is a parameter describing
the width of the hyperprior, and 1·  and 2·  are the first and second
norm operators, respectively. This interior problem may be thought
of as the minimization of model misfit subject to a penalty on the
first derivative of g. The parameter ξ controls the complexity of the
resulting DRT. When ξ becomes large, the penalty becomes
insensitive to changes in the first derivative, yielding a highly
oscillatory distribution. In contrast, when ξ becomes small, due to
the singular nature of the ln[·] operator, L g1 tends to vanish
everywhere, yielding a more uniform distribution.

Hereon, we will define the complexity control parameter as a
quantitative constraint on the complicated behavior of a DRT. In the
hierarchical Bayesian algorithm, the control parameter is ξ. It is
useful to distinguish between the complexity control parameter and
the complexity, the latter being a description of the complicated
behavior. In the context of the hierarchical Bayesian algorithm, the
complexity is the first derivative of the distribution, i.e., L g1

2( ) .
The exterior problem selects an appropriate value for the control

parameter. The exterior problem can be quantitative, as is the case for
most EIS inversion algorithms, but it can also be qualitative, as was
done by Boukamp, who uses common sense for the “‘adjustment of the
[parameters of the] window function, which should lead to an
‘acceptable” DRT”.24 Note that the parameters of the window function
are the control parameters of Boukamp’s DRT inversion algorithm. In
contrast to the the representation, which is largely dominated by
triangular basis functions, or the interior problem, which is typically the
minimization of a misfit, the exterior problem exhibits great variation in
form. We will discuss these in greater detail in subsequent sections.

The relationship between the four common features described in
this section has been summarized in Fig. 2. EIS inversion algorithms
can be constructed by defining the four common features, which act
as standardized modules in a program. We will now demonstrate the
prevalence of the four common features in the literature.

Sample Algorithms

In this section, we classify three distinct EIS inversion algorithms
according to the four common features. The first algorithm, taken from
Saccoccio, Han, Chen, and Ciucci, consists of ridge regression coupled

Figure 2. The common features of well-posed EIS inversion algorithms.
After defining the representation and the complexity control parameter, one
can set up an interior problem which estimates the unknown parameters
subject to a constraint on the control parameter, and an exterior problem
which determines an appropriate value for the control parameter.

Figure 1. (a) True and inverted distributions corresponding to a unimodal
Cole-Cole distribution, obtained using the RR/RI algorithm and the gEISi
algorithm. (b) The accuracy of the representation as a function of the number
of parameters used in the RR/RI algorithm. The gEISi algorithm returns a
DRT containing 6 parameters.
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to a real-imaginary cross-validation routine.30,31 The work of
Saccoccio, Han, Chen, and Ciucci is notable for its thorough
investigation of the real-imaginary cross-validation routine, which
provides compelling evidence for the effectiveness of the routine in
cases whereby the error in the real part of the impedance is independent
of the error in the imaginary part of the impedance. Hereon, we will
refer to this algorithm as the ridge regression/real-imaginary cross-
validation (RR/RI) algorithm. The second algorithm is the least-squares
vector minimization (LEVM) algorithm of macdonald.41,42 This algo-
rithm possesses an implicit exterior problem, which will become
apparent through a comprehensive analysis of the surrounding litera-
ture. The third algorithm, adapted from Hershkovitz, Tomer, Baltianski,
and Tsur, provides an example of the four common features in a DRT
inversion algorithm which uses a floating-mesh representation.27,28 In
deference to the work of Hershkovitz, Tomer, Baltianski, and Tsur, we
will refer to this algorithm as the impedance spectroscopy analysis
using genetic programming (ISGP) algorithm.

The algorithms considered in this and subsequent sections are not
presented in their original form. To improve ease of understanding,
simplifications have been made to parts of these algorithms, and
various symbols have been changed to align with the present work.
Unless stated otherwise, these changes are superficial, and should
not alter the behavior of the algorithms substantially.

RR/RI algorithm.—The work of Saccoccio, Han, Chen, and
Ciucci provides the quintessential example of the four common
features. The DRT problem solved by Saccoccio, Han, Chen, and
Ciucci is a simplified form of Eq. 2, where the Ohmic resistance has
been manually eliminated from the experimental data.
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The chosen representation is the sum of triangular basis functions,
i.e., Eq. 5, which introduces g as unknown parameter values:
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The interior problem is composed of two optimization subrou-
tines:
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Here λ is the regularization parameter, and re[·] and im[·] are the real
and imaginary operators, respectively. These equations are similar to
Eq. 10, in that they involve the minimization of misfit subject to a
penalty on the first derivative of g, but differ in the use of only the
imaginary (Eq. 13) and the real (Eq. 14) parts of the data set. The
superscripts  and  denote that the parameters are obtained using
only the imaginary and real parts of the data set, respectively.

The complexity control parameter is the inverse of the regular-
ization parameter (1/λ), and the complexity is the first derivative of
the DRT. This complexity control parameter makes sense, because
increasing λ causes the penalty on the square of the first derivative to
grow, resulting in smoother probability distributions.

The exterior problem is the real-imaginary cross-validation
routine, wherein g is used to predict the real part of the data set,
and g is used to predict the imaginary part of the data set:

l º - + -
l

 * Z Z g Z Z gargmin re im 152
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2
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The interior problem is embedded within the exterior problem,
because g and g are both functions of λ. When excessively low
control parameter values are assumed, the inferred DRT is

over-smoothed, causing the cross-validation error to exhibit a large
bias component, and when excessively high control parameter
values are assumed, the inferred DRT is under-smoothed, causing
the cross-validation error to exhibit a large variance component. The
trade-off between bias and variance is discussed in greater detail by
Saccoccio, Han, Chen, and Ciucci.30

LEVM algorithm.—The LEVM algorithm allows for several
representations. The present work will focus on the continuous
variable representation, which has been reported to outperform its
discrete and fixed counterparts. This representation takes the form:
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The location of the mesh points (v) parameterizes the model, making
this a floating-mesh representation. The interior problem is the
minimization of misfit:

º -* *g v Z Z, argmin 18
g v,

2
2ˆ [ ] 

The representation and the interior problem of the LEVM
algorithm are well-characterized, but there are no apparent control
parameter and exterior problem. However, we can infer the existence
of the control parameter from the discussion presented by
Macdonald on the inversion of water data.41 Macdonald has, in
effect, taken the total number of mesh points (M) as the complexity
control parameter, which is sensible, because a more complicated
DRT would require more mesh points to approximate. Conversely,
through a priori specification of M, Macdonald constrains how
complicated the DRT can be. This observation is supported by the
analysis of the output of the interior problem, in which M is
increased to improve the normalized misfita:
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As per the case of Eq. 15, the interior problem is embedded within
the exterior problem, as g* and v* are both functions of M. This
exterior problem implies that each additional mesh point results in
diminishing improvement in misfit, and so the number of mesh
points should be balanced against the degree of freedom left in the
data set (J− 2M− 1). However, in the subsequent discussion on the
inversion of n-pentanol and glycerol data, it became evident that
Eq. 19 is insufficient. For the glycerol data, with a total of 10 mesh
points, “the [normalized misfit] was about 0.0094, and the estimated
relative standard deviations of the [g] were all below 0.1 and mostly
below 0.06”, but when the number of mesh points is increased to 11,
“the relative standard deviations of 6 of the 11 [g] were then above
0.1, with one above 0.34”, leading Macdonald to reject the solution
containing 11 mesh points despite a continued decrease in normal-
ized misfit. Macdonald thus implicitly recognizes the statistical
significance of g as constraints in the exterior problem:

s g 0.34 20( ) [ ]

Here s[·] is the relative standard deviation operator. Eqs. 19 and 20
constitute the full exterior problem.

aEquation 19 is reconstructed from the description of the normalized misfit provided
in Appendix B of Ref. 41. This exterior problem assumes that the measurement
error of the real and the imaginary parts of the impedance are completely correlated,
thus yielding J independent measurements.
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ISGP algorithm.—The ISGP algorithm employs a flexible
representation composed of multiple basis functions27,28:
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The lth basis function G v g;l l( ( )) may be Gaussian, Lorentzian,
hyperbolic secant, Kirkwood-Fuoss or Cole-Cole, each having three
parameters, or Pearson VII or Havrilliak-Negami, each having four
parameters, or the five-parameter pseudo-Voigt distribution. The
DRT is thus parameterized by the type of the basis function as well
as the parameters of those basis functions. To illustrate the indexing,
consider the case whereby L= 2:
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Thus the DRT is represented by the sum of a Gaussian distribution
(G1) with mass g1,1, mean g2,1 and standard deviation g3,1, and a
Cole-Cole distribution with mass g1,2, mean g2,2 and depression g3,2.
In principle, the large number of possible basis functions allows the
form of the underlying model to be detected, but the success of such
an approach has not been demonstrated.

The ISGP requires as input two sets of impedance data (Z1 and
Z2). The first data set is used to solve the interior problem, which is
the minimization of misfit:
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This interior problem is not compatible with gradient-based optimi-
zation methods, since it considers the type of basis function ({Gl}) as
a decision variable, thus motivating the use of genetic programming.

The ISGP uses the total number of parameters needed to
represent the DRT (M) as the complexity control parameter, which
is in line with the intuition that complicated distributions possess
more features, and thus require more parameters to approximate.
Likewise, by constraining M, it becomes possible to limit how
complicated the DRT can be.

Hershkovitz, Tomer, Baltianski, and Tsur28 reported the fol-
lowing exterior problem:
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HereMH is the recommended maximum number of parameters in the
representation of the DRT, which is specified by the user,  1

2 is the
misfit arising from the interior problem, and  2

2 is the validation
misfit. This exterior problem is likely erroneous, because as M
increases, the objective function in Eq. 26 decreases. This objective
function thus favors models with M in excess of MH, which
contradicts the description of MH as the recommended maximum
number of parameters. We assume that this is a straightforward case
of mistaking a multiplication for a division, and the exterior problem
is supposed to be:

º + ´ + - *M M Margmin 0.8 0.2 1 exp 29
M

H1
2

2
2[ ] [ ( )] [ ]

In the section “Design of Algorithm” , we will use the ISGP
algorithm with Eq. 29 as the exterior problem.

Analysis

The examples discussed in “Sample Algorithms” illustrate the
prevalence of the four common features. In this section, we consider
the utility of the four common features as a tool for analyzing and
supplementing known DRT inversion algorithms. The Fourier
transform algorithm of Schichlein, Müller, Voigts, Krügel, and
Ivers-Tiffée9 and Boukamp24 lacks parameters which describe the
width of the window function. An exterior problem which identifies
an optimal width is constructed. The L-curve algorithm of Florsch,
Revil, and Camerlynck26 lacks a parameter which describes the
rotation of the L-curve, which is needed to complete the exterior
problem. Manipulation of the exterior problem yields equivalent
forms which carry statistical meaning, allowing the rotation para-
meter to be determined. The maximum entropy algorithm of Hörlin
is well-defined,29 but does not seem to work well for certain smooth
distributions, which is unusual for a maximum entropy method. We
will use the four common features to analyze this unexpected
behavior.

Fourier transform algorithm.—The Fourier transform algorithm
of Schichlein, Müller, Voigts, Krügel, and Ivers-Tiffée9 and the
subsequent modified version published by Boukamp24 are founded
upon the deconvolution theorem, which states that convolution
integrals are multiplications in the frequency domain:

ò= -

=
-¥

¥

  

h x f y x g y dy

h f g

if and only if

30

( ) ( ) ( )
( ) ( ) ( ) [ ]

Here [·] is the Fourier transform, which is defined as:

ò pº -
-¥

¥
 h x h x ixs dsexp 2 31[ ( )] ( ) ( ) [ ]

Note that f, g, h, x and y are dummy variables, and will not be used in
the remainder of this section.

Equation 11 is transformed to a convolution integral by
performing the substitution w= -u ln( ):

ò=
+ --¥

¥
Z u G v

G v

i v u
dv;

1 exp
32ˆ ( ( )) ( )

( )
[ ]

The real and imaginary parts of Z u G v;ˆ ( ( )) are linked by the
Kramers–Kronig relations. It is thus sufficient to consider the
imaginary part of the impedance:

ò
ò
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º -

-¥

¥

-¥
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I Z G v u v dv
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2 im sech

33
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Here K is the kernel, which describes the underlying model. This
leads to a deconvolution of the form:

=



F
I

K
34( ) ( ˆ)

( )
[ ]

Similar methods based on the application of convolution theorem on
Fourier, Laplace, and Mellin transforms have been used extensively
in the literature on inverse problems in statistical mechanics.34,55–58

In practice, measurement yields a vector of impedance values
(Z), which is affected by measurement error. The measured
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impedance cannot be directly substituted into Eq. 34. If the
measurement error is a white noise, the Fourier transform of
I=−2 im[Z] yields a finite value at high frequencies:


¥
 Ilim constant 35

s
( ) [ ]

The Fourier transform of the relaxation kernel vanishes at high
frequencies:


¥
 Klim 0 36

s
( ) [ ]

As a consequence, if the measured impedance is substituted directly
into Eq. 34, the Fourier transform of the DRT diverges:

=  ¥
¥ ¥





F
K

I
lim lim 37

s s
( ) ( )

( )
[ ]

The DRT oscillates wildly, indicating that the problem is ill-posed.
The modification proposed by Boukamp concerns the method for
suppressing the high-frequency amplitudes induced by the direct
substitution of I into Eq. 34:

=



F W s
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[ ]

Here W(s) is the window function, which Boukamp defines as:

a b b a b a= + + - +W s s s; ,
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4
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The parameters α and β describe the width and decay of the window
function, respectively. The window function converges to 0 more
rapidly than  K( ), thus restoring the property:
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We have thus far treated the vector I as if it were a continuous
function on , and thus subject to Fourier transform. In practice, the
data set can be made continuous on  via interpolation and
extrapolation, as was done by Boukamp. This procedure is valid,
but difficult to explain within the limited scope of the present work.
For brevity, the present work employs a closely related formulation
based on the discrete Fourier (DF) transform. The DF transform
operator ([·]) acts on a vector of equispaced data as follows:
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We define the arrangement operator () as:
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Note that the indexes j and ¢j in Eq. 42 are defined on {1, ... J} and

- ,...J J

2 2
⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦{ }, respectively. The arrangement operator allows

direct substitution of  I[ ] with  I[ ].
The Fourier transform algorithm possesses a representation of the

form:
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The parameters a and b are related to the DF transform of the
distribution via:

= a Fre 44[ ( )] [ ]

= b Fim 45[ ( )] [ ]

Here F is the vector of DRT evaluated at v, with G(vm) as the mth
component of F. The interior problem is a deconvolution of the form

a b= - -    * W sF I s; , 461 1[ ( ) ( ) ( )] [ ]

The symbol is an element-wise division with º  K( ) evaluated
at = ¢

-
s

v v

j

M 1
, where ¢j is the index of  I( ), as defined in Eq. 42.

Equation 46 implies that J=M, since the size of F* must be equal to
I. Note that for F* to occur in order of increasing t, the data set I
needs to be input in order of increasing u.

The difficulty faced by Boukamp concerns the selection of
window parameters α and 1/β, which we identify as the complexity
control parameters of the DRT inversion algorithm. This is sensible,
given that increasing α and decreasing β increases the amplitude of
high-frequency terms included in F*. The objective, then, is to
construct an exterior problem to determine appropriate values of α
and β.

This can be neatly achieved by utilizing the real part of the data
set in a validation step:

a b º -
a b

* * *Z Z F, argmin re 47
,

2
2[ ˆ ( )] [ ] 

This exterior problem requires the real part of the measurement error
to be independent of the imaginary part of the measurement error.

We demonstrate the effectiveness of the proposed exterior
problem using the sample problem of Schichlein, Müller, Voigts,
Krügel, and Ivers-Tiffée,9 which consists of three Debye and three
Cole-Cole elements connected in series:
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The parameter values ( m aR, , ) of the sample problem are reported
in Table I. The underlying distribution takes the form:
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We generate synthetic data for angular frequencies in the domain
ω= 10−2 to 106 rad s−1 with 10 data points per decade.

The inversion result is reported in Fig. 3. The Fourier transform
algorithm is clearly able to distinguish the six characteristic timescales
of the process, as well as the distribution masses associated with each
characteristic timescale. However, the algorithm overestimates the
variances associated with the Debye elements. This is because it is

Table I. List parameter values used for the sample problem. The
first three element, i.e., m = 1, ... 3 have αm = 1, and are thus Debye
elements.

m 1 2 3 4 5 6

Rm 1 0.5 1 0.5 1 1
μm −11.5 −9.2 −6.9 −4.6 −2.3 0
αm 1 1 1 0.85 0.8 0.75
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impossible to reproduce the high-frequency component of the Dirac
delta distributions while also preventing the interior problem from
becoming ill-posed. Accurate reproduction of the Dirac delta distribu-
tions require the Cole-Cole distributions to be highly oscillatory;
accurate reproduction of the Cole-Cole distributions require the Dirac
delta distributions to be excessively smoothed. This concept is critical
to the design of EIS inversion algorithms, and will be expanded upon in
the section “Design of Algorithm” .

L-curve algorithm.—The L-curve algorithm employs fixed-mesh
triangular basis function representation, i.e., Eq. 5. The interior
problem is the minimization of the regularized misfit:

l

l

º - +

º + 

*g Z Z L

g g

argmin

argmin 50

g
g

g

2
2

misfit

1 2
2

complexity

penalty

ˆ

( ) ( ) [ ]

       
  

The complexity control parameter is the inverse of the regularization
parameter (1/λ), and the complexity is the first derivative of the
distribution ( L g1 2

2  ).
The conventional definition of the L-curve, which may be attributed

to Hansen,59 is a log-log plot of the complexity against the misfit,
parameterized by the regularization parameter. For illustration, we have
generated the L-curve corresponding to the unimodal Cole-Cole
distribution reported in Fig. 1a, which is shown in Fig. 4a. The L-
curve algorithm claims that the appropriate value of the regularization
parameter is that which corresponds to the corner of the L-curve, i.e.,
somewhere in between 0.1 and 0.0001. This range compares favorably
with the optimal regularization parameter of 7.1× 10−4 obtained using
the RR/RI algorithm, but suffers from ambiguity in the definition of a
corner. This issue is partially resolved by Florsch, Revil, and
Camerlynck by defining the corner of an L-curve as the minimum
obtained when the L-curve is rotated clockwise, as illustrated in Fig. 4b.
The exterior problem takes the form:

Figure 3. (a) Nyquist plot of the impedance data as well as the prediction
obtained from the inversion output of the Fourier transform algorithm. The
noise takes the form = + ´ ´ +Z Z Z N iN0.005 0, 1 0, 1ˆ ∣ ˆ∣ ( ( ) ( )).
(b) True and inverted distribution obtained using proposed exterior problem.
The black arrows indicate the location and magnitude of the Dirac delta
distributions.

Figure 4. (a) The L-curve corresponding to the unimodal Cole-Cole distribution reported in Fig. 1a. The corner is identifiable but ambiguous. (b) Rotation of the
L-curve yields an unambiguous minimum. (c) True and inverted distribution obtained using the proposed exterior problem. The inversion output of the RR/RI
algorithm is included as a reference.
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This exterior problem is incomplete, since the angle of rotation (θ)
remains unknown.

The determination of θ is challenging due to the lack of a
statistically meaningful interpretation for the rotation of the L-curve.
Our objective is to manipulate the exterior problem into a form
which carries statistical sense, and thus determine an appropriate
value for θ. Applying the first-order optimality condition to the
objective function of Eq. 50,

l = -


*

d

d
g 52( ) [ ]

This establishes g* as a function of λ. This relationship must, in
particular, hold true when λ= λ*:

l l= -
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Applying the first-order optimality condition to the objective
function of Eq. 51,
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Combining the previous two expressions,
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This establishes a non-obvious relationship between θ and the
relative size of the misfit and the penalty. By requiring the misfit
to be of the same order as the penalty, as argued by Hansen,60 we
obtain the condition θ*= π/4. Application of this angle of rotation to
the L-curve of Fig. 4a yields λ*= 0.040, which corresponds to the
green curve shown in Fig. 4c. This choice of regularization
parameter results in a DRT which is less oscillatory than that of
the RR/RI algorithm, but also relatively over-smoothed.

Florsch, Revil, and Camerlynck have defined the L-curve as the
log-log plot of ò-¥

¥
G v dv( ) against the misfit, as opposed to the

conventional pairing of complexity and misfit. The analytical
justification for the efficacy of the L-curve requires the conventional
pairing to be used.60 The use of an unconventional definition
accounts for the distinct lack of L shape in the curves reported by
Florsch, Revil, and Camerlynck, and the attendant difficulty in
determining λ*. The supplemented exterior problem introduced in
the present work is intended for the conventional pairing. We note
that a well-established exterior problem based on the identification
of the point of maximum curvature exists,59 and is also intended for
the conventional pairing.

Maximum entropy algorithm.—Hörlin applied the maximum
entropy algorithm to a modified DRT problem obtained by sub-
stituting º -E v G v vexp 2( ) ( ) ( ) and x wºu Z uˆ ( ) ˆ ( ) into Eq. 32:
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This does not change the essential nature of the problem, but
modifies the appearance of the DRT in a useful way. According to
this integral, the Warburg impedance corresponds to a uniform
distribution:
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The Debye relaxation process corresponds to a Dirac delta distribu-
tion:
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Here m tº ln0 0( ) is the log-characteristic timescale of the relaxation
process. Warburg and relaxation processes are more discernible on
E(v) than G(v).

The maximum entropy algorithm employs a fixed-mesh trian-
gular basis function representation:
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The interior problem takes the form:
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Here  is the misfit, T is the temperature,  is the entropy, σ2 is the
measurement variance, and sum[·] is the vector summation operator.
We use the symbols  , T, and  to emphasize the connection
between the algorithm and thermodynamics. The misfit  is the
internal energy of the system, which is composed of quadratic
interactions between the experimental data and the model prediction.
The system tends to collapse to the state with the lowest internal
energy, which corresponds to an ill-posed problem, but is prevented
from doing so by the temperature, which weights the contribution of
entropy. For a fixed distribution mass, the entropy is lowest when the
distribution is a Dirac delta, and highest when the distribution is
uniform.

The complexity control parameter is the inverse temperature
(1/T) and the complexity is entropy ( ). With increasing tempera-
ture, the contribution of entropy increases, thus yielding broader
distributions which may be thought of as simpler. The exterior
problem is a constraint on the misfit:

= e 1 63( ) [ ]

This exterior problem is used to calculate the optimal temperature
(T*). The evaluation of the misfit requires the measurement variance
to be known, which may be obtained from repeat measurements, or
by comparison with the Kramers–Kronig transform of the impe-
dance spectra.

We illustrate the difficulty faced by the maximum entropy
algorithm through an example, wherein the the true impedance
takes the form:

w
w w

d
p

=
+

+ = +Z
i i

E v v
1

1

1 2
64ˆ ( ) ⟺ ( ) ( ) [ ]

We collect 10 log-equispaced synthetic data per decade over the
angular frequency range ω1= 10−4 rad s−1 and ωJ = 104 rad s−1.
The resulting probability distribution is inverted over the domain
τ1 = 10−6 and τM = 106, as shown in Fig. 5a. The uniform
distribution associated with the Warburg element has dispersed
into a large number of peaks which are difficult to distinguish from
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Debye elements with relatively small resistances. As illustrated in
Fig. 5b, modifying the temperature does not yield a strict improve-
ment in the result. At lower temperatures, the Dirac delta distribution
becomes more prominent, but this occurs at the expense of
increasing the overall oscillation of E(v). At higher temperatures,
the algorithm reproduces the uniform part of E(v) with greater
accuracy, but the Dirac delta distribution is suppressed.

The simultaneous reproduction of simple and complex features in
a distribution is the central challenge in the design of EIS inversion
algorithms. This problem is not unique to the maximum entropy
algorithm, as evidenced by the inability of the Fourier transform
algorithm to simultaneously reproduce the Dirac delta and the Cole-
Cole distributions (see “Fourier Transform Algorithm” ), and has
been repeatedly observed in the literature. For example, application
of the RR/RI algorithm on the fractal element, whose DRT is
characterized by a smooth domain terminated by a discontinuity,
has been reported to output an oscillatory distribution.30 Likewise,
the adaptive multi-parameter regularization approach of Žic,
Pereverzyev, Subotić and Pereverzyev returns an oscillatory dis-
tribution for the fractal element.44 Dion and Lasia are able to invert
the fractal element with minimal oscillation using a generic
inversion toolbox.47 However, the interior and exterior problems
used are not reported. To our knowledge, no DRT inversion
algorithm has addressed the simultaneous reproduction of simple
and complex features comprehensively, although the ISGP
algorithm27,28 and the hierarchical Bayesian algorithm25 have
provided partial resolution to this problem.

The difficulty in simultaneously reproducing the uniform and
Dirac delta distributions using the maximum entropy algorithm may
be fundamentally attributed to the use of entropy as complexity,
which aligns with our intuition, but only in the limit as  ¥T ,
which yields a uniform distribution. To illustrate this point, consider
the two distributions shown in Fig. 5c, which possess equal entropy.
We intuitively perceive the dotted multimodal distribution to be
more complicated than the solid unimodal distribution, in contra-
diction to the value of entropy assigned by Eq. 61. As a
consequence, the distribution reported in Fig. 5a may be simple
from an entropic point-of-view, but complex according to intuition.

Rectification of the maximum entropy algorithm would likely
require entropy to be re-defined.

Design of Algorithm

Thus far, complexity has been described in terms of intuition, and
has been associated with the idea of smoothness in distributions.
This is true of most of the algorithms listed in “Sample Algorithms”
and “Analysis” . The RR/RI algorithm of “RR/RI Algorithm”

considers the first derivative of the distribution as the complexity,
and thus smooth distributions with low first derivatives are simple.
The Fourier transform algorithm of “Fourier Transform Algorithm”

considers the high-frequency terms of G(v) as the complexity, whose
suppression leads to simple, smooth distributions. In this section, we
argue that the intuitive understanding of complexity is incorrect, and
that it should be described in terms of the physics implied by the
distribution, and guided by Occam’s razor.

The works of Florsch, Revil, and Camerlynck26 and Song and
Bazant43 suggests that when an appropriate underlying model is
used, the inverted distribution tends to appear less complicated.
Figure 6 illustrates (a) the DRT and (b) the DDT obtained when a
Warburg element is inverted using a relaxation and a diffusion-like
model, respectively. The diffusion-like model returns a less com-
plicated distribution relative to the relaxation model, suggesting the
relative propriety of the diffusion-like model.

We draw this observation to its logical conclusion, wherein the
application of an exactly correct underlying model results in the
simplest possible distribution. That is, if the impedance arises due to
an integral over the underlying model:

òw w=
-¥

¥
Z G v z v dv, 65ˆ ( ) ( ) ˆ ( ) [ ]

then the simplest distribution is obtained when w w m=Z z , 0
ˆ ( ) ˆ ( ), for

which G(v)= δ(v− μ0). This leads to the counterintuitive conclu-
sion that the simplest possible distribution is the Dirac delta
distribution. This conclusion is consistent with Occam’s razor; as
illustrated in Fig. 7, for an underlying relaxation model, the Dirac
delta distribution corresponds to a single relaxation process. Any

Figure 5. (a) True and inverted distribution obtained using the maximum entropy algorithm. The noise takes the form = + ´Z Z Zˆ ∣ ˆ∣
´ +N iN0.005 0, 1 0, 1( ( ) ( )). (b) Effect of temperature on the inverted distribution. (c) We intuitively perceive the dotted multimodal distribution to be

more complicated than the solid unimodal distribution. However, the entropy of the two distributions are equal.
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other distribution would imply various combinations of multiple
types of relaxation processes (Fig. 7b) and multiple relaxation
processes of the same type (Fig. 7c). As a corollary, complexity
increases with modality and variance.

The idea of the Dirac delta distribution as the zero point
of complexity in EIS inversion problems contradicts much of the
EIS inversion literature. The Fourier transform algorithm,9,24

L-curve algorithm,26 maximum entropy algorithm,29 the RR/RI
algorithm,30,31 the hierarchical Bayesian algorithm,25 as well as
several other unmentioned algorithms43,45 all perceive the Dirac
delta distribution as possessing maximum complexity. As a con-
sequence, these algorithms are not able to identify the Dirac delta
distribution when it occurs in conjunction with smooth features, as
illustrated in “Fourier Transform Algorithm” and “Maximum
Entropy Algorithm”.

In the remainder of this section, we will use this phenomen-
ological picture of complexity to construct an improved EIS
inversion algorithm, applicable to the generalized EIS inversion
problem, subject to constraints on the allowed computational time.
We will also consider the construction of credible intervals for the
parameters and distributions arising from the algorithm. We apply
the algorithm to a DRT problem exhibiting a wide range of
smoothness, and compare its performance with the algorithms
discussed in “Sample Algorithms”. We also apply the algorithm to
three generalized EIS inversion problems taking the form of a
distributed Randles circuit61 possessing nearly overlapping distribu-
tion peaks.

Generalized EIS inversion problem.—The generalized EIS
inversion problem is an abstraction of the DRT problem, in which

the underlying model is specified, but not assumed a priori:

bw=Z Z G v; , 66l
ˆ ˆ ( { ( )}) [ ]

The model Ẑ is parameterized by b, which takes on definite values,
and {Gl(v)}, which is a collection of distributions. Our objective is to
construct a generalized EIS inversion algorithm which estimates the
parameters b and {Gl} given any such model. The generalized EIS
inversion problem includes models taking the form of a Fredholm
integral of the second kind, which necessitates an iterative solver.

To illustrate the generalized EIS inversion problem, consider the
Randles circuit61:
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The Randles circuit describes a charge-transfer process with
resistance RCT and timescale τCT occurring in series with a diffusion
process with resistance RD and timescale τD, both located within an
electrical double layer. Due to surface inhomogeneity, τD is
distributed, leading to a diffusion impedance of the form:
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The remainder of the model is recast in the form of the DRT
problem:
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Equations 69 and 70 constitute a single model of the generalized
form, with ¥R as b, and GCT(v) and GD(v) as {Gl(v)}. The
generalized EIS inversion problem corresponding to the Randles
circuit contains an embedded integral, which is incompatible with
linearly constrained quadratic programming. Furthermore, it is a
Fredholm integral of the second kind.

Idealized EIS inversion algorithm.—The idealized form of the
generalized EIS inversion algorithm employs a floating-mesh
Gaussian basis function representation:
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Here Rml, mml
, and nml are the mass, mean, and log-variance of the

ml
th basis function of the lth distribution. Typically, the use of a

floating-mesh representation increases the computational time re-
quired to solve the problem, since it is incompatible with linearly
constrained quadratic programming. However, as illustrated by the
Randles circuit, the generalized EIS inversion problem will be
largely incompatible with linearly constrained quadratic program-
ming to begin with, and so this increase in computational time may
be thought of as a sunk cost. In fact, we expect the reduction in the
number of parameters effected by the use of the floating-mesh
representation to reduce the overall computational time. The use of
Gaussian basis function follows the observation made by Han,
Saccoccio, Chen, and Ciucci31 concerning the effectiveness of radial
basis functions.

Figure 6. (a) The DRT and (b) the DDT of a planar Warburg element. The
DRT is obtained using the RR/RI algorithm, while the DDT is obtained using
the gEISi algorithm introduced in the section "Generalized EIS Inversion
Algorithm" set to a planar Warburg model. For completeness, we include
the analytical DRT of the planar Warburg element, i.e., Eq. 57. The solution
for v ⩾ 4.34 has been excluded to improve visibility. The true impedance
corresponds to a planar Warburg model with d= -G v v ln 0.01( ) ( ( )).
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We adapt the interior problem from the RR/RI algorithm of
Saccoccio, Han, Chen, and Ciucci.30 The real part of the idealized
interior problem takes the form:
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Here ,  , and  are the misfit, penalty, and hyperprior on the
measurement error, l and λν are the regularization parameters on
the modality and the variance of the distributions, μϵ and s

2 are the
hyperprior expectation and variance of the log-variance of measure-
ment error, and νϵ is the log-variance of measurement error. We
calculate the misfit using the real part of the data set and the average
of the imaginary part of the data set to account for models containing
pure capacitive terms.26 The imaginary part of the interior problem
takes the symmetric form:
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The inverse of the regularization parameters, i.e., l1 and 1/λν are
the complexity control parameters. The complexity is the modality
and the variance of the distributions, following the phenomenolo-
gical picture of complexity outlined in Fig. 7.

The idealized exterior problem is the real-imaginary cross-
validation routine:
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Generalized EIS inversion algorithm.—An application of the
idealized generalized EIS inversion algorithm to an experimental
data set modelled by the distributed Randles circuit results in an
unacceptably high computational time. The difficulty lies in the
discrete nature of the  [·] operator, which prevents the use of
efficient gradient-based methods, and the inability to obtain initial
guesses for l and λν. We obtain a reasonable compromise between
accuracy and computational time by using a proxy measure for
modality, and eliminating the variance of the distribution from the
complexity.

The simplified interior problem takes the form:

b m n n º +
b m n n

     


R, , , , argmin 79l l l
R, , , ,l l l

{ } [ ]
{ }

Figure 7. A phenomenological picture of complexity in EIS inversion problems. (a) The Dirac delta distribution is the simplest possible distribution. (b) Increase
in modality and (c) variance correspond to an increase in complexity.
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b m n n º +
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The simplified control parameter is the total number of basis
functions used:

åº
=

M M 81
l

L

L
1

[ ]

This control parameter appears to be a reasonable approximation of
modality. In the second validation problem of the section “General
Validation” , the Cole-Cole distributions of the charge transfer and
diffusion processes are reasonably approximated by a small number
of Gaussian basis functions, suggesting that M will be of the same
order as the modality for many problems of practical interest. The
elimination of variance from the complexity results in a slight
widening of the inversion output; this effect is observed in Fig. 6b,
wherein a small but nonvanishing variance is observed, which would

Figure 8. The objective of the exterior problem as a function of the complexity control parameter and the inversion output of (a), (b) the RR/RI algorithm, (c),
(d) the LEVM algorithm, (e), (f) the ISGP algorithm, and (g), (h) the gEISi algorithm. The objective of the exterior problem and the complexity control parameter
are described in (a) “RR/RI Algorithm”, (c) “LEVM Algorithm”, (e) “ISGP Algorithm”, and (g) “Generalized EIS Inversion Algorithm”.
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have been otherwise absent for the idealized generalized EIS
inversion algorithm.

The simplified exterior problem takes the form:

b m n
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The details on the optimization algorithm used to solve Eqs. 79
through 82 are discussed in the Appendix.

Construction of credible intervals.—The details on the construc-
tion of credible intervals for b and {Gl(v)} are likewise discussed in
the Appendix. Briefly, we use the Markov chain Monte Carlo
algorithm to construct 8 independent sample chains of appropriate
length. Each Monte Carlo sample corresponds to a set of parameter
and distribution values drawn from the joint posterior probability
density function of b and {Gl(v)}. We construct the 95% credible
interval by rejecting the highest and lowest 2.5% of parameter and
distribution values in the combined sample chain.

Comparison with existing algorithms.—We compare the per-
formance of the simplified generalized EIS inversion algorithm,
hereon referred to as the gEISi algorithm, against the RR/RI
algorithm, the LEVM algorithm, and the ISGP algorithm as we
report them in the present work. The RR/RI algorithm is run with
M= 81. For the LEVM algorithm, the standard deviation of g is
calculated using the MATLAB command nlparci. For the ISGP
algorithm, the basis function is fixed to Gaussian, MH is set to 10,
and the interior and exterior problems are solved using the non-
dominated sorting genetic algorithm-II (NSGA-II) of Deb, Agrawal,
Pratap, and Meyarivan.62 We collect synthetic data within the
angular frequency range ω1 = 10−2 and ωJ = 102 with 10 data
points per decade of angular frequency, with the underlying model:
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The true DRT is the sum of a Dirac delta and a Cole-Cole
distribution:
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The inversion output of the four algorithms and the corresponding
objective of the exterior problem as a function of the complexity control

parameter are shown in Fig. 8. The exterior problem of the RR/RI,
LEVM, ISGP, and gEISi algorithm converges at l = -*log 8.710[ ] ,
M*= 4, M*= 6, and M*= 3, respectively. The RR/RI algorithm and
the LEVM algorithm are unable to simultaneously reproduce the sharp
and smooth features of the DRT. The failure of the RR/RI algorithm
may be attributed to an inappropriate choice of complexity, while that
of the LEVM algorithm arises due to the tendency for s gm[ ] to diverge
as g 0m , suggesting an inappropriate exterior problem. Increasing
the domain of τ results in a marginal improvement in fit but does not
change the qualitative aspects of the solutions. In contrast, by choosing
a complexity which approximately aligns with the phenomenology
described in “Design of Algorithm” , the ISGP algorithm and the gEISi
algorithm are able to reproduce the Dirac delta and the Cole-Cole
distribution accurately. The 95% credible interval obtained by the gEISi
algorithm likewise bounds the true distribution accurately.

General validation.—We further validate the gEISi algorithm
using three generalized EIS inversion problems taking the form of
Eqs. 69 and 70. The distributions of each problem possess nearly
overlapping peaks, which is reflected in the merging of semicircular
features in Figs. 9a, 9d, 9g. Although the concept is not directly
applicable here, we note that the separation between the distribution
peaks is close to the resolution limit discussed by Florsch, Revil, and
Camerlynck,26 which highlights the inherent difficulty of the chosen
problems. The first problem illustrates an idealized situation in
which the true underlying distributions are unimodal Gaussian, and
are thus exactly represented by a small number of basis functions in
the chosen representation. The second problem explores the effect of
basis function mismatch by using unimodal Cole-Cole distributions,
which cannot be exactly approximated by a finite number of
Gaussian basis functions. The third problem shows the effect of
increasing the modality of the true underlying distributions.

We collect 10 noisy impedance measurements per decade of
angular frequency between ω1= 10−2 and ωJ = 106, and invert
the underlying distributions using the gEISi algorithm. The results
are summarized in Fig. 9. As shown in Figs. 9a, 9d, 9g, the
impedance spectra of all three problems are reproduced satisfactorily.
The true underlying distributions of the first (Figs. 9b, 9c) and third
(Fig. 9h, 9i) problems are reproduced accurately, with the remaining
difference correctly captured by the 95% credible intervals. However,
the true underlying distribution of the second problem, in particular
GCT, is not correctly bounded by the corresponding credible interval.
This issue is persistent across randomly generated measurement noise
profiles and stochastic optimization steps. We believe that this issue
arises because the mismatch between the single Gaussian basis
function used to approximate GD is fortuitously captured by the

Table II. True underlying distributions of the generalized EIS inversion problems under consideration and their corresponding parameter values.
In all three problems, we set ¥R to 10 and the measurement error to = + ´ ´ +Z Z Z N iN0.005 0, 1 0, 1ˆ ∣ ˆ∣ ( ( ) ( )).
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Problem 1 Problem 2 Problem 3
R1 50 R1 50 R1 25
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σ1 1.5 α1 0.8 R3 50
σ2 1.5 α2 0.8 σ1 1.5
τ1 0.001 τ1 0.001 σ2 1.5
τ2 0.02 τ2 0.02 σ3 1.5

τ1 0.000 05
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addition of a small Gaussian peak in GCT at t≈−5. This hypothesis
is supported by the large credible interval of GD, which suggests that
the impedance spectra effected by GD can be partially or fully
accounted for by adjusting the small Gaussian peak in GCT. The
frequency with which this issue is encountered decreases rapidly with
the peak-to-peak separation of GCT and GD, and becomes nonexistent
when t tlog10 2 1( ) exceeds 2.

The overall performance of the gEISi algorithm as applied to the
distributed Randles circuit appears to be satisfactory. In all three
validation problems, the numbers, sizes, and average timescales of

the charge transfer and diffusion processes are correctly estimated,
and the true underlying distributions are competently bounded by the
95% credible intervals. The gEISi code, implemented in MATLAB,
can be downloaded from https://github.com/suryaeff/gEISi.git.

Conclusions

The present work have argued that all well-posed EIS inversion
algorithms possess four common features, namely, the representa-
tion, the interior problem, the complexity control parameter, and the

Figure 9. (a), (d), (g) Nyquist plot of the impedance data as well as the prediction obtained from the inversion output of the gEISi algorithm. (b), (e), (h) True
and inverted distributions corresponding to the charge transfer process. (c), (f), (i) True and inverted distributions corresponding to the diffusion process. The
first, second, and third row of figures correspond to the first, second, and third problems listed in Table II, respectively.

Journal of The Electrochemical Society, 2020 167 106508

https://github.com/suryaeff/gEISi.git


exterior problem. These features can be constructed and analyzed
nearly independently of each other, leading to the concept of a
framework for the design of EIS inversion algorithms. The ubiquity
of these features has been demonstrated through a review of
established DRT inversion algorithms, and are subsequently used
to troubleshoot several ill-defined DRT inversion algorithms, and
understand the unexpected behavior of others.

Complexity has been linked to model selection, leading to the
conclusion that it should be appropriately defined in terms of the
modality and the variance of the distribution. This observation, in
conjunction with practical considerations on the availability of
computational resource, led to the development of the gEISi
algorithm, which is applicable to the generalized EIS inversion
problem. The gEISi algorithm employs a floating-mesh Gaussian
basis function representation, coupled to an interior problem which
minimizes a misfit subject to a constraint on the control parameter,
which we define as the total number of basis functions. The optimal
control parameter value is determined through an exterior problem
which minimizes the real-imaginary cross-validation error. The
credible intervals of the parameters and distributions arising from
the gEISi algorithm are estimated using Markov chain Monte Carlo
algorithm. A preliminary comparison between the gEISi algorithm
and several established DRT inversion algorithm suggests that it is
able to overcome several limitations which has been observed in the
literature. The gEISi algorithm is also validated against several
generalized EIS inversion problems taking the form of distributed
Randles circuit, which are impossible to analyze using existing DRT
inversion algorithms.

It should be made clear, however, that the success of the gEISi
algorithm is dependent on the ability to determine the true under-
lying model. This allows the determination of the physicochemical
parameters of the system, distributed or otherwise. In the companion
paper,48 we will apply the gEISi algorithm coupled to the distributed
Randles circuit to analyze several experimental data sets arising
from the impedance of polymer-coated steel surfaces.
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Appendix

The resolution of Eqs. 79 through 82 is remarkably difficult,
because the model is input by the end-user, and therefore not known
a priori. In such cases, it is prudent to use a combination of
optimization algorithms; in the present work, three optimization
algorithms are used, namely, simulated annealing, constrained trust
region, and constrained pattern search. These will be discussed
individually in the subsequent paragraphs.

The construction of credible intervals for b and {Gl(v) necessi-
tated the addition of constraints on the interchangeability of basis
functions. These constraints take the form:

m m + 85m m 1l l
[ ]

m m= =+
 86m M m 1l l l 1

[ ]

The first constraint states that the means of the basis functions in the
lth distribution must be increasing. In the absence of this constraint,
basis functions can interchange, leading to an inflated estimate of the
credible intervals for m nR , ,l l l{ }. The second constraint states that
the highest mean of the lth distribution must be lower than the lowest
mean of the (l+ 1)th distribution. In the absence of this constraint,
basis functions can interchange among different distributions,
leading to an inflated estimate of the credible intervals for

m nR , ,l l l{ } and {Gl(v)}. The concept of interchangeability among
different basis function is illustrated in Fig. A·1. It is also convenient
to set a convention whereby {Gl(v)} is nonnegative:

R 0 87ml [ ]

This arises from the assumption that the end-user knows with
certainty that the form of the model is correct up to a sign. Trial-and-
error suggests that this constraint is helpful in reducing the
computational time needed to solve the exterior problem.

Figure 9. continued
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The initial guess for the interior problem at each value of M is
generated from the previous interior problem by decomposing the
previous optimal fit using a moment-matching equation. The exterior
problem, i.e., Eq. 82 is solved by sequential enumeration. The gEISi
code, implemented in MATLAB, can be downloaded from the
supporting information.

A.1. Simulated annealing.—For brevity, let g be a vector of all
parameter values arising from the chosen Gaussian representation,
with γg as the gth element of g . The size of g is K+ 3M+ 1, since
the point parameters b, distributed parameters {Gl(v)}, and the log-
variance of the measurement error νϵ give rise to K, 3M, and 1
parameter each. Let g* be the maximum likelihood estimate of g ,
g p( ) be the proposed step of the simulated annealing, and let g n g,( ) be
the (n, g)th step of the simulated annealing. Finally, let Ns be the
effective number of successful iterations of simulated annealing.

The simulated annealing code requires as inputs the perturbation
size gD and the decorrelation length Nd. The derivation of gD and
Nd will be discussed in a subsequent section. The pseudocode of the
simulated annealing takes the form:

Here N(0, 1) and U[0, 1] are random numbers generated from the
standard normal and standard uniform distribution, respectively, and
p is the acceptance probability of the proposed step. In effect, this
pseudocode performs Markov chain Monte Carlo under an increas-
ingly relaxed condition as Ns approaches 0. The Monte Carlo
iterations are done one parameter at a time, with each accepted
step accounting for a fraction of an effective number of successful
iterations.

A.2. Perturbation size and decorrelation length.—For the
simulated annealing to succeed, the parameter space explored by

the Monte Carlo steps should encompass the maximum likelihood
estimate. In this section, we derive approximate expressions for the
decorrelation length and the perturbation size, defined as the number
and size of successful Monte Carlo steps needed to explore a
parameter space encompassing the maximum likelihood estimate
with confidence 1− α, respectively.

Let g g gc º + 2 ( ) ( ) ( ). In a regular Markov chain Monte
Carlo algorithm, we have:
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We want p to be of reasonable size; excessively small p leads to
excessively high computational time, while excessively large p leads
to small, ineffective steps. Setting =p

e

1 , and evaluating g n g,( ) at the
maximum likelihood estimate,
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Let H be the Hessian of χ2 evaluated at the maximum likelihood
estimate. Then around the maximum likelihood estimate, we can
approximate χ2 as:

g g g g g gc c» + - -* * *H
1

2
90p p p2 2 T( ) ( ) ( ) ( ) [ ]( ) ( ) ( )

Since the Monte Carlo simulation is done one parameter at a time,
only the diagonal elements of the Hessian matters. We assign the
allowed difference in Eq. 89 to the diagonal elements:
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By evaluating the diagonal elements of the Hessian at the current
maximum likelihood estimate, provided that the maximum like-
lihood estimate does not fluctuate excessively throughout the
simulated annealing process, a consistent and reasonable perturba-
tion size can be obtained.

Next, we consider the decorrelation length. Our strategy is to
obtain the size of the parameter space encompassing 1− α of the
probability mass relative to the perturbation size, and calculate the
decorrelation length by approximating successful Monte Carlo steps
as random walk.
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For a Gaussian independently and identically distributed error, we
have, as a conservative estimate,
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Here norminv[·] is the standard normal inverse operator. Substituting
the limiting error into Eq. 90, and neglecting the difference in the
hyperprior terms,
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Here gD max( ) is the size of the parameter space corresponding to the
limiting error. Substituting the expression for limiting error,
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We neglect the off-diagonal elements of the Hessian, and split the
right-hand side of the equation among the diagonal elements:
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It remains to compare the perturbation size to the size of the
parameter space corresponding to the limiting error. Taking each
successful Monte Carlo step as a random walk, and approximating
the misfit g *( ) with the idealized value of 2J,
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In practice, the Monte Carlo steps do not fully resemble a random
walk, since they are directed toward g*. To account for this drift, we
scale Nd according to the dimensionality of the parameter space:

Figure A·1. The impedance data in (a) is inverted using a model consisting of two distributed relaxation processes, yielding the two distributions shown in (b).
The dashed lines of corresponding color is the 95% credible interval of the distributions. (c) In the absence of Eq. 86, the 95% credible interval of the
distributions are indistinguishable and overestimated.
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We also drop the term −2(2J) to allow for a conservative estimate.
Eq. 98 has been derived assuming that the full data set has been
used, corresponding to 2J degrees of freedom. For Eqs. 79 and 80,
every instance of 2J should be replaced with J+ 1.

A.3. Constrained trust region.—MATLAB’s default constrained
trust region algorithm fmincon is used to solve Eqs. 79 and 80, setting
the maximum number of function evaluations and the maximum number

of iterations to 100(K+ 3M+ 1)2. The usual constraints on interchan-
geability and mass of basis functions apply. Constrained trust region is
used to refine the solution obtained using simulated annealing.

A.4. Constrained pattern search.—The execution of con-
strained pattern search is identical to the constrained trust region,
except done one parameter at a time, and using the default settings of
fmincon. The constrained pattern search is performed whenever Δγ
is updated in the simulated annealing pseudocode. Trial-and-error
suggests that the constrained pattern search is a quick and effective
method of accelerating the convergence of the simulated annealing,
without sacrificing the stochasticity of the simulated annealing.

A.5. Interior problem.—The simulated annealing, constrained
trust region, and constrained pattern search are combined to solve
the interior problem. Assume that a rough initial guess of the interior
problem g 0( ) exists, and refine this initial guess using the optimiza-
tion problem:
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The superscript  denotes that the parameters are obtained using
both the imaginary and the real parts of the data set. The interior
problem code also requires as input the number of basis functions
used to represent each distribution {Ml}, also called the modality or
the case under consideration. The derivation of g 0( ) and {Ml} will
be discussed in a subsequent section. Let Xval be the cross-
validation error.

The pseudocode of the interior problem takes the form:

A.6. Sequential enumeration.—The argument of the exterior
problem (M) is an integer. We thus solve the exterior problem by
sequentially increasing M, and then generating new cases and rough
initial guesses for the resulting interior problem. The generation of
new cases and rough initial guesses will be discussed in subsequent
sections. Let *Xval be the current optimal cross-validation error, *Xprev
be the previous optimal cross-validation error, g* be the current
optimal maximum likelihood estimate, g*prev be the previous optimal
maximum likelihood estimate, *Ml{ } be the current optimal mod-
ality, *Ml prev{ } be the previous optimal modality, and {{Ml}} be the
set of cases under consideration.

The pseudocode has two parts, corresponding to M= L, i.e., the
case where each distribution is approximated by 1 basis function,
and M> L. The pseudocode for M= L takes the form:

g g

= ¼

¼



*

*

*

M

X X

M

Solve the interior problem for 1, , 1

Set to

Set to

Set to 1, , 1

l

l

val val

{ } { }

{ } { }

This pseudocode requires a true initial guess g 0( ) for the interior
problem, which is provided by the end-user.

g g

g g

g g

g g

g g

g g

g g

g g

= +

= + +



 

 

 

   

 

 

   

 

 

X

X

X X

Set to 0
Solve Eq. 100 for the case under consideration, with sub steps:

Perform simulated annealing with initial guess , and set to
the output

Perform constrained trust region with initial guess , and set to
the output

Solve Eq. 79 for the case under consideration, with sub steps:

Perform simulated annealing with initial guess , and set to
the output

Perform constrained trust region with initial guess , and set to
the output

Solve Eq. 80 for the case under consideration, with sub steps:

Perform simulated annealing with initial guess , and set to
the output

Perform constrained trust region with initial guess , and set to
the output

val

0

val

val val

‐

‐

( ) ( )
‐

( ) ( )

( )
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The pseudocode for M> L takes the form:

g g

g g

g g

a- >

<

=

= 

* *

* *

* *

* *

*

*

*

*

*

*

X X J

X X

M M

M M

M

X X

X X

M

While 2 2 ,

Set to

Set to

Set to

Generate from

For each element in , perform:

Generate from consistent with the case under

consideration
Solve the interior problem for the case under consideration

If ,

Set to the case under consideration
End

End
End

l l

l l

l

l

prev val

prev val

prev

prev

prev

0
prev

val val

val val

( )

{ } { }

{{ }} { }
{{ }}

{ }

( )

At every iteration of the while loop, the control parameter
= åM Ml l increases by 1. The code compares the current optimal

cross-validation error against the previous optimal cross-validation
error, and allows the algorithm to proceed only if the reduction in
cross-validation error exceeds 2α(2J), where α is the approximate
probability mass left unexplored by the simulated annealing. Note
that 2α arises from a conservative estimate of the confidence of the
optimization problem, while 2J is the idealized value of the misfit.
This threshold accounts for incomplete optimization and model
mismatch; since the present work uses only synthetic data, which
does not experience model mismatch, α can be set to an arbitrarily
low value. We have opted to set α= 0.01 in “Comparison with
Existing Algorithms” , which is effectively vanishing. To provide a

sense of scale, with regards to Fig. 8d, -* *X Xprev val is of the order of
100, while 2α(2J) with α= 0.01 is in the order of 1.

More generally, by calibration against the experimental data used
in the companion paper, as well as other experimental data generated
in our laboratory, α is set to a more reasonable value of 0.1. For
direct comparability with the analysis which will be published in our
companion paper,48 in “General Validation” , we set α to 0.1.

A.7. Moment matching.—The pseudocode for the interior
problem requires the generation of a rough initial guess g 0( ) from
the previous optimal maximum likelihood estimate g*prev. This is
done by increasing the modality to match the case under considera-
tion, and then matching the first two moments of g 0( ) and g*prev. For
clarity, recall that {Ml} is the case under consideration, *Ml prev{ } is the
previous optimal modality, and g is composed of the point
parameters b, the distribution masses {Rl}, the distribution means
ml{ }, and the distribution log-variances n l{ } . Let *Ml,prev be the lth
element of *Ml prev{ } , and let *Rm ,prevl

, m*m ,prevl
, and n*m ,prevl

be the ml
th

distribution mass, mean, and log-variance of the lth distribution,
respectively.

The pseudocode of the moment-matching algorithm takes the
form:

A.8. Cases under consideration.—The cases under considera-
tion {{Ml}} is generated by increasing each element of *Ml prev{ }
independently. For example, if =*M 1, 2, 2l prev{ } { }, then

=M 2, 2, 2 , 1, 3, 2 , 1, 2, 3 ;l{{ }} {{ } { } { }} we will then proceed
to consider these three cases in the pseudocode of the exterior
problem. Trial-and-error suggests this heuristic works well over a
wide variety of EIS inversion problems.

A.9. Construction of credible intervals.—The construction of
credible intervals for b and {Gl(v)} is done using Markov chain
Monte Carlo performed one parameter at a time. The execution of
the algorithm is identical to simulated annealing, with the relaxation
term removed:

b b
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g g g g

-
+ - -

 -
+ - -

   

   

N

N
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2
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d
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replace , ,

⎛
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⎞
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In principle, the most efficient implementation of the Monte Carlo
algorithm consists of a single chain of length ?Nd. However, due to
the various approximations taken in the derivation of Nd, we cannot
interpret it as more than a competent approximation for the
decorrelation length. Trial-and-error suggests that better credible
intervals are obtained by obtaining multiple independent Monte
Carlo chains of length Nd. Simulated annealing is used to decorrelate
successive runs of Markov chain Monte Carlo algorithm.

It is useful to reiterate some of the definitions used in simulated
annealing. Let g n g,( ) be the (n, g)th step of the algorithm, with n as the
index of Monte Carlo sample and g as the index of parameter under
consideration. After every parameter has been considered once, the
index n increases, and a single Monte Carlo sample is obtained. We
define g gºn n,1( ) ( ) to be the nth Monte Carlo sample of the algorithm.
Let g n{ }( ) be the collection of samples arising from a single run of the
Monte Carlo algorithm, and let g{ } be the collection of samples arising
from all runs of the Monte Carlo algorithm. The pseudocode for the
construction of credible intervals takes the form:

g

g
g
g g

g g
g

g
g g

g

= +


*

N

N

N N

Set to 1

Set to
While 8,

Perform Markov chain Monte Carlo with initial guess , and

collect

Append to

Set to the last element of

Perform simulated annealing with initial guess , and

collect

Set to the last element of
1

End

n g

n g

n

n

n g n

n g

n

n g n

MS
,

MS
,

,

,

,

MS MS

{ }
{ } { }

{ }

{ }
{ }

( )

( )

( )

( )

( ) ( )

( )

( )

( ) ( )

At this point, we obtain a large collection of samples g{ }. This sample
is post-processed and sorted to give the 95% credible interval:

g
b

b ¥

¥

G

G R
R

v

v

For each element in ,

Calculate and
End
For each element in and , e.g ., ,

Sort in ascending order
Reject the highest and lowest 2.5% of the set

End

l

l

{ }
{ ( )}

{ ( )}
{ }

The first and last elements of each set corresponds to the upper and
lower 95% credible interval for the corresponding parameter or
distribution value.
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