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L
ithium iron phosphate (LiFePO4) has
emergedasan importanthigh-rate cath-
ode material for rechargeable batteries1

and is unique because of its strongly aniso-
tropic diffusivity,2,3 its strong elastic aniso-
tropy,4 and its tendency to phase-separate
into lithium-rich and lithium-poor phases.5�9

Despite conclusive observations of phase
boundaries in chemically delithiated LiFePO4

nanoparticles,10�12 the general consensus
has been that phase boundaries always form
during electrochemicaldischarge, thereby lim-
iting battery performance.5,13 However, this
limitation is inconsistent with dramatic rate
improvements resulting from smaller nano-
particles, doping,14 and surface coatings.15

The feasibility of phase boundary forma-
tion has recently been challenged by both
phase-field models16,17 and ab initio cal-
culations.18 In a companion paper,17 we
demonstrate that high discharge currents
can suppress phase separation in reaction-
limited nanoparticles, making the spinodal
a dynamical property of intercalation sys-
tems. In this paper, we consider the addi-
tional effect of elastic coherency strain and
find that it leads to a quantitatively accurate
phase-field description of LixFePO4 that is
useful for interpreting experimental data.
With mathematical analysis and numerical
simulations of galvanostatic discharge, we
conclude that coherency strain strongly
suppresses phase separation, leading to
better battery performance and improved
mechanical durability.
Coherency strain arises when molar vol-

ume is a function of composition, that is,
due to the difference in lattice parameters
between FePO4 and LiFePO4. Two-phase sys-
tems with identical crystal structure and small
misfit strains generally form coherent inter-
faces.19,20 It has been suggested that LixFePO4

retains coherency throughout nucleation and
growth,9 and in situ observation of crystalline

material during battery operation supports
this prediction.21,22

As we show, the observation of aligned
phase boundaries and striped morphol-
ogies in LixFePO4

10�12 provides conclusive
evidence of coherency strain. Furthermore,
it is necessary to consider the fully aniso-
tropic elastic constants and misfit strain to
interpret experiments. Simplified elastic
analysis has led to the conclusion that {100}
is always the preferred orientation,23,24

although {101} phase boundaries are some-
timesobserved.11,12Our fully anisotropic anal-
ysis predicts that {101} is the low-energy
orientation, and we attribute the observation
of {100} boundaries to a partial loss of coher-
ency resulting from dislocations (or cracks).

* Address correspondence to
bazant@mit.edu.

Received for review October 30, 2011
and accepted February 3, 2012.

Published online
10.1021/nn204177u

ABSTRACT

A theoretical investigation of the effects of elastic coherency strain on the thermodynamics,

kinetics, and morphology of intercalation in single LiFePO4 nanoparticles yields new insights

into this important battery material. Anisotropic elastic stiffness and misfit strains lead to the

unexpected prediction that low-energy phase boundaries occur along {101} planes, while

conflicting reports of phase boundary orientations are resolved by a partial loss of coherency in

the [001] direction. Elastic relaxation near surfaces leads to the formation of a striped

morphology with a characteristic length scale predicted by the model, yielding an estimate of

the interfacial energy. The effects of coherency strain on solubility and galvanostatic discharge

are studied with a reaction-limited phase-field model that quantitatively captures the

influence of misfit strain, particle size, and temperature on solubility seen in experiments.

Coherency strain strongly suppresses phase separation during discharge, which enhances rate

capability and extends cycle life. The effects of elevated temperature and the feasibility of

nucleation are considered in the context of multiparticle cathodes.

KEYWORDS: Li-ion battery . LiFePO4
. phase-field model . coherency strain .

phase boundaries . stripe morphology . Butler�Volmer kinetics
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The origin of striped morphologies10 has not been
satisfactorily explained. It has been suggested that
they result from the characteristic wavelength of spin-
odal decomposition,12 although it is not clear why the
instability would be frozen in this state. We show
instead that stripes represent the stable equilibrium
state of finite size particles and predict that the spacing
scales with the square root of particle size. As a result,
we are able to extract the interfacial energy from
experimental micrographs.
The reported solubility of Li in FePO4 varies signifi-

cantly and depends on particle size and tempera-
ture.8�10,21,23,25�28 These differences in solubility can
now be explained in light of coherency strain. Phase-
field calculations of solubility as a function of particle
size and temperature are able to fit experimental data
with just two parameters.
An alternative to coherent phase separation is for

entire particles to remain homogeneous and form a
mosaic, with some particles existing at low concentra-
tion and others at high concentration.21,29,30 This
scenario is energetically favorable since there is no
phase boundary energy or change in solubility, but it
requires exchange of material between nanoparticles.
By constructing phase diagrams for both the coherent
and mosaic scenarios, we find a limited role for coher-
ent nucleation and growth and predict that moder-
ately elevated temperatures ought to suppress all two-
phase coexistence, even in large particles.

Phase-Field Model. We begin with the reaction-
limited phase-field model for ion intercalation in single
nanoparticles from our prior work17,31,32 and extend it
to include coherency strain. The theory couples elec-
trochemical surface reactions to bulk phase separation
using a thermodynamically consistent generalization
of Butler�Volmer kinetics. The reaction rate depends
on the Cahn�Hilliard33 (or van der Waals)34 gradient
energy, introduced to model the formation of phase
boundaries.

Individual nanoparticles are modeled as open ther-
modynamic systems in contact with an electrolyte
mass reservoir at constant temperature, pressure, and
chemical potential. To incorporate phase boundaries,
we begin with the free energy functional of Cahn
and Hilliard that includes coherency strain19,20,33

and introduce constraints to account for constant
pressure35 and constant potential36 which are im-
posed on the particle. The resulting Gibbs free energy
functional is

G[c(xB), uB(xB)] ¼
Z
V

Fs[f (c)þ eΔφc]

�

þ 1
2
K(rc)2 þ 1

2
Cijklεijεkl � σijεij

�
dV (1)

where c(xB) is the mole fraction of lithium, uB(xB) is a
displacement vector, Fs is the number of lithium sites
per unit volume, f(c) is the homogeneous Helmholtz

free energy per lithium site,Δφ is the interfacial voltage
at the particle surface, κ is the gradient energy coeffi-
cient that introduces interfacial energy, (1/2)Cijklεijεkl is
elastic strain energy, Cijkl is the elastic stiffness tensor,
σhij is an applied external stress tensor, and εhij is the
homogeneous component of elastic strain. Here, σij =
Cijklεkl(xB) is the stress field, and εij(xB) is the elastic strain
field

εij(xB) ¼ εij þ 1
2
(ui, j þ uj, i) � ε0ij c(xB) (2)

with three contributions,37 respectively: homogeneous
strain εhij, strain resulting from compositional inhomo-
geneity, and stress-free inelastic strain assumed to vary
linearly with composition (Vegard's Law), where εij

0 is
the lattice misfit between FePO4 and LiFePO4.

Physically, εhij is the homogeneous component of
total strain that is applied everywhere to reach equi-
librium with the external pressure.35 It minimizes eq 1
when the system is in mechanical equilibrium with an
applied stress state σhij. Treating strain in this way
assumes that εij

0c(xB) is heterogeneous on the micro-
scopic scale but homogeous on the macroscopic scale
of the particle; that is, the macroscopic system is
significantly larger than the length over which the
misfit strain changes (the interfacial width). Particles
bathed in electrolyte are in a state of hydrostatic stress
so that σhij = �Pδij, where P is the pressure in the
electrolyte, and δij is a Kronecker delta. For solids, “PV
work” is generally very small and can be neglected at
atmospheric pressure, and thus in eq 1 we consider
free expansion of the particle at P = 0.

Since elastic relaxation ismuch faster than diffusion,
the displacement vector uB(xB) is determined from
mechanical equilibrium (δG/δuB = 0):

r 3 σij ¼ 0 (3)

Following Garcia et al., who introduced a Lagrange
multiplier for the electrochemical potential,36 we
also define Δφ in eq 1 as a Lagrange multiplier for
a constraint on the composition field such thatR
V c(xB)dV = X, where X is the mean state of charge

(i.e., LixFePO4). In order to connect thermodynamics
with electrochemistry,17,38,39 we identifyΔφ=φ�φe as
the interfacial voltage of the Faradaic half-cell reaction,
Li T Liþ þ e�, where φ and φe are the electrostatic
potentials of ions and electrons, respectively. In equi-
librium, there is a unique potential difference, the
Nernst voltage Δφeq, which minimizes eq 1 once the
state of charge has been defined. When a potential
Δφ 6¼ Δφeq is applied, the system is displaced from
equilibrium, and lithium enters or leaves the system
until Δφ = Δφeq, at which point the constraint on the
composition field is obeyed and equilibrium is
reached.

It is now possible to define the overpotential η in a
variational sense for phase-separating intercalation
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systems:

η(c,r2c, uB) ¼ Δφ �Δφeq ¼ 1
eFs

δG

δc
(4)

Since η = 0 at equilibrium, we see that η is the driving
force for intercalation in systems that are out of
equilibrium and is equivalent to the variational deriva-
tive of the energy functional (eq 1). It is a subtle but
important point that we define overpotential relative
to the Nernst voltage rather than the voltage plateau
of the phase-separated system at zero current. The
Nernst voltage is an equilibrium material property, but
the voltage plateau is an emergent property of the
entire cathode. A flat voltage plateau is commonly
cited as a hallmark of phase separation, but as we will
demonstrate, coherency strain leads to upward-sloping
plateaus in single particles.

With these definitions, a thermodynamically con-
sistent theory of the Faradaic (charge transfer) current
density J at the surface of the particle can be derived,
based on a generalized Butler�Volmer equation for
solids and concentrated solutions:17,38,39

J ¼ J0[e
�Reη=kT � e(1 � R)eη=kT ],

J0 ¼ k0
a1 � R
þ aR

γA
, Δjeq ¼ kT

e
ln
aþ
a

(5)

where J0 is the exchange current density, aþ is the
lithium ion activity in the electrolyte, and a is the
intercalated lithium activity. The activities are related
to Δφeq by the Nernst equation. Following Bai et al.,17

we set the activity coefficient of the activated state,
γA = (1 � c)�1, to account for site exclusion, aþ = 1 to
neglect electrolyte concentration variations, and R = 1/2
for symmetric charge transfer. It is crucial that the
reaction rate depends not only on the lithium concen-
tration, c, but also on its Laplacian, r2c (via the
Cahn�Hilliard gradient energy) and on the elastic
displacement uB (via coherency strain energy). As pre-
dicted by Singh et al.,31 the reaction rate is thus
amplified at phase boundaries, causing them to pro-
pagate likewaves at sufficiently low current.17 Here, we
show how these phenomena are affected by coher-
ency strain.

To model the experimentally relevant case of gal-
vanostatic discharge, the current flow into the particle
is constrained by an integral over the active area at the
surface of the particle:

I ¼
Z
A

Dc
Dt

dA,

Dc
Dt

¼ J0[e
�Reη=kT � e(1 � R)eη=kT ]þ ξ (6)

where ξ is a Langevin noise term. These equations are
the boundary conditions for intercalation at the parti-
cle surface. To account for the bulk of the particle,
we use a depth-averaged approximation17,31,32 where

eq 6 constitutes a 2D system of equations that can be
solved on the particle's active surface for the mean
concentration c in each lithium channel. This approxi-
mation is valid for sufficiently small nanoparticles
(<100 nm, mostly free of Li/Fe antisite defects),40,41

where diffusion in channels along the b-axis is much
faster than surface reactions, leading to a quasi-
steady concentration profile in the depth direction.
As we show below, anisotropic elasticity favors homo-
geneity in the b direction (Figure 1), a prediction
supported by phase-field simulations of diffusion in
the lithium channels.42

Finally, the elastic model is reduced to 2D by
assuming plane strain and neglecting displacements
in the b direction. This is reasonable since the lithium
channels are much longer than their (atomic scale)
thickness. The simulations below further assume finite
square particles with stress-free boundaries. We use a
natural boundary condition, n̂ 3rc = 0, which assumes
that the surface energy does not change with state
of charge and imposes a contact angle between the
phase boundary and the particle surface of 90�. More
numerical details can be found in the Methods section.

RESULTS

Phase Boundary Orientation. Since LiFePO4 is ortho-
rhombic, it is necessary to consider its fully anisotropic
elastic stiffness and lattice mismatch when analyzing
phase boundary morphology. Assuming that the elas-
tic modulus of each phase is the same (homogeneous
modulus assumption), Khachaturyan37,43 related the
elastic energy of an arbitrarily anisotropic elastic inclu-
sion to a function of direction:

B(nB) ¼ Cijklε
0
ijε

0
kl � nBiσ

0
ijΩjl(nB)σ0

lmnBm (7)

nB is the interface normal, andΩ, which is related to the
elastic Green's tensor, is defined by its inverse tensor
Ωij

�1 = CikljnBknBl. Elastic energy is a function of orienta-
tion nB because a phase boundary produces zero strain
in the normal direction. The direction nB0 thatminimizes
eq 7 defines the habit plane, which is the elastically
preferred orientation of the phase boundary that
minimizes strain energy.

Equation 7 is plotted in Figure 1a for FePO4 using
anisotropic elastic constants calculated via first-
principles4 and experimentally measured anisotropic
lattice mismatch.10 The figure reveals that {010} and
{001} interfaces are high-energy, which justifies a

posteriori the depth-averaged approximation which
assumes fast diffusion and no phase separation in
the {010} depth direction. The orientation of nB0 was
obtained by numerical minimization and is drawn in
red. There are four minima which lie along the {101}
family of crystal planes, and B(nB0) = .19 GPa.

Figure 2a,c compares the simulated {101} phase
boundaries with experimental observations by
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Figure 1. Spherical plots of B(nB), the elastic strain energy of a flat interface as a function of normal direction for (a) a coherent
interface and (b) a semicoherent interface which has lost coherency in the [001] direction. The red arrows indicate nB0, the
direction of minimum energy. (c) Polar plot of B(nB) in the in the a�c plane comparing coherent and semicoherent energies.
Energy is in units of GPa.

Figure 2. Comparison of simulated and experimental Li0.5FePO4 microstructures. See Figure 3 for simulation dynamics. (a)
Phase boundaries align along {101} planes to minimize elastic coherency strain. (b) Loss of coherency in the [001] direction
causes the stripes to form along {100} planes. (c) HRTEM image of a {101} phase boundary. Reprinted from ref 12 with
permission from Elsevier. (d) TEM image of {100} stripes.10 Reproduced by permission of The Electrochemical Society.
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Ramana et al.12 Laffont et al. also appear to have
observed a {101} interface in Figure 2b of ref 11.

However, {100} interfaces have been reported in
some experiments,10,12 even though according to
Figure 1a this orientation should not be elastically pre-
ferred. The resolution to this apparent discrepancy may
be the formation of dislocations that lead to a loss of
coherency in [001], the direction of negativemisfit strain.
Indeed, Chen et al.10 report observing cracks and disloca-
tions running along phase boundaries in the [001]
direction.

Stanton and Bazant44 recognized the importance of
negative misfit for LiFePO4 with isotropic elastic analysis,
but here we consider the fully anisotropic case. Figure 1b
plots B(nB) for a semicoherent interface with ε33

0 = 0, and
Figure 1c compares the coherent and semicoherent
cases in cross section. The semicoherent habit plane lies
along the {100} family of planes, and curiously B(nB0)
remains unchanged by the loss of coherency. The orien-
tation of the interface changes, but its elastic energy does
not. Simulation and experimental observation of {001}
interfaces are compared in Figure 2b,d.

The mechanism by which coherency is lost remains
to be determined. It could be that the phases initially
form coherently but then lose coherency over time as
dislocations form. It is also possible that phase bound-
aries form semicoherently upon lithiation, alignedwith
pre-existing cracks or defects.

Equilibrium Morphology. Modulated structures result-
ing from coherency strain are often observed in
experimental systems, and stripes are an equilibrium
morphology that minimizes energy in finite size par-
ticles.37,45 Stripes form due to elastic relaxation at the
surface of the particle and align normal to nB0. The
characteristic wavelength λ of the stripes balances the
elastic energy of surface relaxation which scales with
volume, and total interfacial energy which scales with

particle size.37,45 Evidence of this relaxation is visible near
the boundaries of the simulated particle in Figure 2b.

The wavelength of periodicity is described by a
scaling relation derived in the Methods section:

λ ¼
ffiffiffiffiffiffiffiffiffi
2γLc
Δf

r
(8)

where λ is the period of the striping, γ is interfacial
energy, Lc is the width of the particle in the [001]
direction, and Δf is the difference in free energy
density between the homogeneous state and the
coherent phase-separated state; Δf has a chemical
contribution from the homogeneous free energy den-
sity f(c) and an elastic contribution from coherency
strain (eq 9). We estimate Δf = 4.77 MJ/m3 using the
regular solution model and gradient energy that were
fitted to experimental data in Methods.

Phase-field simulation and experimental observa-
tion of stripes are compared in Figure 2b,d. Using eq 8,
the striping in Figure 2d can be used to obtain the
FePO4/LiFePO4 interfacial energy. Applying eq 8 to the
striped pattern in Figure 2d, with Lc = 4 μm and λ ≈
250 nm (measured away from the corner to mitigate
the influence of particle geometry), we infer a phase
boundary energy of 37 mJ/m2. For the phase-field
simulation in Figure 2d, Lc = 500 nm, λ ≈ 90 nm, and
γ = 39 mJ/m2 according to eq 8. The interfacial
energy can also be calculated directly from the
phase-field model,33,46 which yields γ = 39 mJ/m2.
This value of γ follows the rule of thumb that
coherent interfaces have interfacial energies less
than 200 mJ/m2,47 and it confirms both the validity
of the scaling relation and our choice of phase-field
parameters (in particular κ, which has until now been
difficult to estimate).

Figure 3 shows the dynamics of phase separation
for a homogeneous particle of composition Li0.5FePO4

Figure 3. Initially homogeneous system (Li0.5FePO4, 500 � 500 nm) decomposes into regions of high and low lithium
concentration when held at zero current. (a�d) Phase boundaries align along {101} planes to minimize elastic coherency
strain. (e�h) Loss of coherency in the [001] direction results produces {100} interfaces. See Supporting Information for
movies.
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that is held at zero current. This might correspond to a
particle which is allowed to relax after having been
rapidly discharged to x = 0.5 (so that it remains
homogeneous). Both the coherent and semico-
herent cases are shown. The initial decomposition
is followed by a period of coarsening, but coarsening
stops when the stripes reach their characteristic
wavelength, which scales with

√�
Lc. Thus the stripes

are dependent on particle geometry and do not
coarsen, as would be expected if they were related
to the must unstable wavelength of spinodal
decomposition.12

Critical Particle Size. Phase-field methods have been
used in studies of size-dependent solubility without
coherency strain,39,48 and a minimum system size was
found below which two-phase coexistence is prohib-
ited. This minimum size is set by the diffuse width of
the phase boundary. Here we find that the critical
particle size criterion changes with the introduction
of coherency strain.

Figure 4 compares phase-field calculations and
measurements of the solubility limits as a function of
particle size and temperature. A regular solution was
used for f(c), and the regular solution parameter Ω and
gradient energy κ were obtained with a least-squares
regression of the phase-field model to the data points in
Figure 4 (see Methods). With just these two parameters,
we were able to simultaneously fit both size and tem-
perature dependence of lithium solubility (four experi-
mental data sets). This confirms that the LixFePO4 system
may reasonably be described as a regular solution.

The fitting in Figure 4b offers new insight into the
experiments themselves. In ref 9, the differences in the
miscibility gap were originally thought to be related to
particle size, but according to Figure 4, 100 nm and
42 nm particles should not show significantly different
solubilities. As Figure 4b shows, the shrinking misci-
bility gap in samples A and B is plausibly explained by
coherency strain. This assertion is confirmed by X-ray
diffraction (XRD) analysis in the paper, which found strain

in samples A and B but not in C. Samples A and B were
prepared differently than C, which may explain why
phase boundaries did not form in sample C.

The equilibrium phase boundary width was mea-
sured from simulation to be 12 nm, which is in good
agreement with the 12�15 nm width measured by
STEM/EELS.11 In phase-field simulations of small parti-
cles near the critical size, we observed that phase
separation always occurs as a sandwich (see Figure 4a
inset), sometimes with the lithiated phase in the middle,
and other times with the delithiated phase in themiddle.
Presumably, this is a result of elastic interaction between
the phases. Both cases require the formation of two
interfaces, explaining why the critical particle size of
22 nm is roughly twice the interfacial thickness.

Phase Diagram. Figure 5 shows a phase diagram that
was calculated using the fitted regular solution model
(see Methods). The mosaic phase diagram was
calculated using f(c), and the coherent phase diagram
was calculated by adding elastic energy via eq 9 to f(c).
The eutectoid reaction6,7 involving a disordered phase
at higher temperatures has been neglected. The phase
diagram reveals that coherency strain stabilizes the
solid solution at temperatures above 150 �C, well
below the disordering temperature.

The illustrations in Figure 5 depict nanoparticles in a
completely delithiated cathode that has been dis-
charged to the corresponding points in the phase
diagram. At point A, the particles are inside the mosaic
miscibility gap but do not transform since there is no
phase transformation pathway. The microstructure is
thus metastable with respect to mosaic decomposition.
At point B, the particles cross the coherentmiscibility and
coherent nucleation inside particles becomes possible.
Phase transformation will proceed slowly in this region
since nucleation is an activated process, and for fast
discharge, this region will be bypassed.

By point C, the particles have crossed the mosaic
spinodal and spontaneously form a mosaic if they are
able to exchange ions through the electrolyte. Current

Figure 4. Comparison of calculated andmeasured LiFePO4 solubility limits as a function of temperature and particle size. (a)
Size dependence at room temperature. Data points from ref 28. (b) Size and temperature dependence. Data points from ref 9.
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plays as important role in the onset of this transition
since the position of the spinodal moves inward and
eventually disappears with increasing current,17 as we
calculate in the next section.

Point D illustrates the case where particles ex-
change lithium with their immediate surroundings
but do not freely exchange lithium with each other.
Discharge occurs rapidly to a point inside the coherent
spinodal without time for exchange of ions between
particles, and the particles relax to a phase-separated
state. This case might result from chemical delithia-
tion,8,10,12,26,28 a high degree of Li antisite defects,27 the
particle size and spacing, or even the synthesis tech-
nique itself.9,23 All of these appear to influence the
formation of phase boundaries.

The difference in solubilities predicted in Figure 5
can be used as a guide to the interpretation of experi-
mental data. If a mosaic forms, the existence of a
second phase first becomes possible inside the mosaic
solubility limits, and particles will have compositions of
either xR = 0.01 or xβ = 0.99. XRD measurements of a
system of fully intercalated and fully deintercalated
individual particles confirms the appearance of a sec-
ond phase by x = 0.04 at room temperature,21 and
equilibrium measurements find very little room tem-
perature solubility.9,25

However, if coherent phase boundaries form inside
particles, the onset of phase separation in Figure 5 will
only occur for 0.09 < x < 0.91. Frequent reports of
extended regions of solid solution8�10,23,26�28 support
this prediction, and several authors23,26 have attributed

their observations to retained strain. Moreover, the XRD
measurements of Chen et al.10 on striped particles did
not detect phase separation until at least 10% of the
lithium had been extracted. Badi et al.27 also recently
measured the composition of coexisting LiRFePO4 and
LiβFePO4 phases and foundR≈ 0.1 and β≈ 0.9. Both of
these observations agree precisely with the predicted
coherent miscibility gap in Figure 5 at room
temperature.

Phase Separation at Constant Current. Spinodal decom-
position in systems with coherency strain was studied
by Cahn,19,20 who found that for homogeneous sys-
tems at equilibrium, strain energy can be approxi-
mated for small fluctuations as

1
2
Cijklεijεkl � 1

2
B(nB0)(c � X)2 (9)

Since strain energy is a function of the mean composi-
tion of the system, coherency strain invalidates the
common tangent construction and leads to an up-
ward-sloping voltage plateau.24

A linear stability analysis of the evolution equations
(eq 6) at constant current was performed by Bai et al.,17

and the amplification factor was found to be

s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 þ I2

4

r
(η0 þKk2)þ I

J00
J0
þ 1
2
Kk2

 !
(10)

Bar notation indicates evaluation of functions at the
homogeneous state c = X. The overpotential η is
approximated for small perturbations by inserting

Figure 5. Phase diagram comparing coherent and mosaic phase separation. Solid lines are the limits of miscibility, and
dashed lines indicate the spinodal. Hashing denotes the regionwhere coherent nucleation is feasible. The illustrations depict
a fully delithiated cathode that has been discharged to points A, B, C, and D in the phase diagram. Particles exchange lithium
inA, B, andC. InD, discharge occurs rapidly to a point inside the coherent spinodalwithout time for exchange of ions between
particles. The particles only exchange lithium with their immediate surroundings.
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eq 9 into eq 1 and taking the variational derivative:

η ¼ f 0(c) � Kr2cþ B(nB0)(c � X) (11)

Linear stability with and without coherency strain is
presented in Figure 6a. The curves show a transition
from phase separating to homogeneous filling as
current increases. Coherency strain promotes the sta-
bility of the solid solution by reducing the critical
current and shrinking the spinodal. The neutral stability
curves in the figure represent the boundary between
stable and unstable dynamics (s = 0), and the s = 1
curve is where the amplification factor is large enough
to produce phase separation on the order of the
discharge time. This curve is an indicator of when
complete phase separation is observable and has a
maximum at I/I0 = 0.047, where I is the applied current
and I0 is the exchange current. In between the coher-
ent curve and the s = 1 curve is a region of quasi-solid
solution where there are unstable modes, but not
enough time for complete phase separation.17

The transition from fully phase separating to quasi-
solid solution is captured in the simulated microstruc-
tures of Figure 6, which show Li0.6FePO4 at different
currents. By I/I0 = 0.05 (slightly above the maximum of
the s = 1 curve), phase separation is just barely visible.
Thus we conclude that, due to coherency strain, phase
separation is suppressed when the applied current
exceeds only a few percent of the exchange current.

Voltage curves during discharge were calculated at
different currents and are presented in Figure 6d. The
most striking difference compared to the incoherent
case17 is the upward-sloping voltage plateau when

phase separation occurs, which was predicted at equi-
librium by Van der Ven et al.24 The first ions to enter the
particle do extra mechanical work straining the sur-
rounding lattice, and this work is recovered by the last
ions, which enter lattice sites that have already been
partially strained. When phase separation is sup-
pressed at higher currents, however, there are no
phase boundaries and hence coherency strain does
not play any role.

DISCUSSION

According to Figure 5, temperature may play an
important role in improving battery performance. Most
battery research focuses on room temperature opera-
tion where discharge passes through the hatched
region of Figure 5. Nucleation is possible in this region
since the coherent miscibility is crossed before the
mosaic spinodal. However, for temperatures greater
than 70 �C, the situation reverses, and the mosaic
instability occurs before coherent nucleation. Therefore,
moderately elevated temperatures could be useful for
stabilizing the solid solution. Homogeneous particles
haveadvantages forbatteryperformance since theyhave
larger active area for insertion and do not waste energy
forming phase boundaries. They also avoid the internal
stresses caused by phase boundaries, which benefits
cycle life. Furthermore, elevated temperature leads to
improved kinetics. Indeed, Andersson et al.49 observed a
large increase in capacity when cycling LiFePO4 at 60 �C
compared to room temperature.
LiFePO4 appears to be limited by the stability of

the electrolyte rather than the material itself. With

Figure 6. Analysis and simulation of galvanostatic discharge. (a) Linear stability boundary as a function of current. (b)
Constant�current discharge curves for a single nanoparticle with coherent interfaces. (c�f) Phase boundary morphology
showing formation of a quasi-solid solution as discharge rate is increased (Li0.6FePO4, 100 � 100 nm). See Supporting
Information for movies.
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appropriately chosen electrolytes that are stable at
high temperatures, LiFePO4 cells have shown good
thermal stability and improved capacity at tempera-
tures up to 150 �C,50with cells even having been cycled
at 250 �C.51 It is important to note that this temperature
effect could impact accelerated aging tests, which are
performed at high temperatures and then extrapo-
lated to room temperature using empirical models.
The fact that we calculate a small phase boundary

energy γ may have significant consequences for the
role of nucleation at small currents. Cahn and Hilliard
showed that nucleation and growth competes with
spinodal decomposition near the limit of metasta-
bility.20,52 In the case of Figure 5, the energy barrier
for nucleation in the hashed region is important.
Applying the approximation of Cahn and Hilliard, we
estimate the room temperature energy of coherent
homogeneous nucleation to be 102 kT at the mosaic
spinodal. Although this energy is fairly large, hetero-
geneous nucleation at the particle surface is a more
likely pathway in small nanoparticles with a large sur-
face to volume ratio. The heterogeneous nucleation
barrier is likely to be only a fraction of the homoge-
neous barrier, placing heterogeneous nucleation well
within the realm of kinetic relevance. Energy barriers
must generally be less than 78 kT for observable rates
of nucleation.47

The change in surface energies of the particles
during lithiation may also be important. The difference
in surface energy between lithiated and delithiated
iron phosphate is much larger than γ,53 and so the
lithiated phase will likely wet some facets of the
external particle surface, further reducing the over-
potential required for nucleation.17 Therefore, our
future work will focus on accurately calculating the
critical nucleus and heterogeneous nucleation barrier
energy in order to understand the role of nucleation.

CONCLUSION

In this paper, we have presented a thermodynami-
cally consistent phase-field model for nanoparticulate
intercalation materials and focused on the significance
of coherency strain in the LixFePO4 two-phase system.
With just two free parameters (the regular solution
parameter Ω and the gradient energy κ), our model
simultaneously explains observed phase boundary

orientations, stripemorphologies, themeasured phase
boundary width, interfacial energy, size and tempera-
ture-dependent solubilities, and reports of extended
solid solution.
Elastic analysis reveals that {101} is the preferred

phase boundary, that negative misfit strain along the
[001] axis explains the observation of {100} phase
boundaries, and that elastic relaxation at the surface
of the particles is the origin of stripes. Analysis
and simulation of galvanostatic discharge shows that
coherency strain significantly suppresses phase sep-
aration during discharge and leads to upward-sloping
voltage curves for single particles below the critical
current. By deriving a simple scaling relation, we have
been able to estimate the phase boundary energy by
measuring the stripe wavelength in an experimental
micrograph. Our formula predicts γ = 39 mJ, in precise
agreement with the calculated value from the phase-
field model. This small interfacial energy suggests that
nucleation may play a limited role in the phase trans-
formation process.
Using the single particle description (neglecting

macroscopic gradients in porous electrodes), the
behavior of a cathode composed of a large number
of nanoparticles was also considered. Whereas a state
of phase separation is the equilibrium state for a
single particle held at zero current, a mosaic pattern
is the equilibrium state for a collection of particles that
can exchange lithium. This results in a phase dia-
gram for the mosaic system which is different from
the coherent phase diagram, leading to the predic-
tion that elevated temperatures, which favor the
mosaic mechanism, may be beneficial for battery
performance.
In conclusion, although phase boundaries have

been observed experimentally, we suspect that most
electrochemical data for high rate LiFePO4 are incon-
sistent with phase boundaries forming inside nano-
particles. This is largely a dynamical effect since our
theory predicts that coherency strain reduces the
critical current for homogeneous intercalation to only
a few percent of the exchange current. This very strong
suppression of phase separation during battery opera-
tion helps to explain why LiFePO4 nanoparticles have
much greater rate capability and cycle life than the
original material.5

METHODS
Numerical Methods. Equation 6 and Equation 3 were solved in

2D as a coupled system of differential algebraic equations using
finite difference methods on a square grid. Dirichlet boundary
conditions, uB= 0, were applied to displacements, andNeumann
boundaries, (∂c/∂nB) = 0, were applied to concentration. This
boundary condition on c imposes a contact angle between the
phase boundary and the surface of 90� and assumes that the
surface energies of FePO4 and LiFePO4 are the same. At each time

step, it was necessary to solve for c(xB), ui(xB), uj(xB),Δφ, εh11, εh22, εh33,
and εh12. The Matlab function ode15s was used for time integra-
tion, and the integral constraint was implemented with a
singular mass matrix. Error tolerances of RelTol = 10�3 and
AbsTol = 10�5 were used. A grid spacing of up to h = 2 nm was
sufficient to resolve the diffuse interface. A 100 � 100 grid was
used for the discharging and size dependence simulations, and
a 300 � 300 grid was used to simulate microstructure in larger
particles. Simulations were run on a dual quad-core Linux
workstation, used a maximum CPU usage of 400%, required
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up to 4.4 Gb of memory, and took between a fewminutes and a
few hours to complete depending on the simulation.

Phase-Field Parameters. The inputs to the phase-field model
that must be selected for the LixFePO4 system are the homo-
geneous free energy per particle f(c), the gradient
energy coefficient κ, the elastic stiffness Cijkl, and the lattice
mismatch εij

0. We use GGAþU first-principles calculations of Cijkl
for FePO4

4 and lattice mismatch measured in ref 10. For f(c), we
assume a regular solution:

f (c) ¼ Ωc(1 � c)þ kT(c ln(c)þ (1 � c)ln(1 � c)) (12)

The regular solution parameterΩ and the gradient energy κwere
obtained with a least-squares regression of the phase-field model
to experimentalmeasurements of themiscibility gap,9,28 illustrated
in Figure 4. Phase-field simulations were performed by allowing a
square particle at x=0.5 to relax to equilibrium at zero current. The
solubility limits were then found by taking the minimum and
maximum compositions in the equilibrated microstructure.

The best fit was achieved withΩ = 115meV/Li (11.1 kJ/mol)
and κ = 3.13� 109 eV/m (5.02� 10�10J/m). The root-mean-square
errorwas 2.3%. Both values are close to thoseusedbyTang et al.16,42

Sample C in Figure 4b had no measured strain and large particles
that do not exhibit a size effect. Thus it is influenced by f(c) only. The
fact that a particularly good fit is achieved with sample C supports
the use of a regular solution for LixFePO4.

Stripe Scaling. We adapt the arguments of Khachaturyan37,45

to derive an expression for the period of striping in finite size
Li.5FePO4 particles. Illustrated in Figure 7a, the stripes form to
balance elastic relaxation at the {001} surfaces of the particle
(energy/volume) and total interfacial energy (energy/area). The
change in energy due to elastic relaxation, Δf = 4.77 MJ/m3, is
illustrated in Figure 7b and is found with a common tangent
construction applied to f(c)þ 1/2B(nB0)(c� X)2, as described in refs
19, 20, and 46. Assuming that the width of relaxation w at the
boundary is comparable to the size of the stripes, the change in
energy due to relaxation and creation of phase boundaries is

ΔE ¼ 2ΔfLaLbwþγ
La
w
LbLc (13)

The equilibrium stripe size will minimizeΔE, and so we solve forw
when dΔE/dw = 0:

dΔE

dw
¼ 2ΔfLaLb � γLaLbLc

w2
¼ 0 (14)

Solving for the stripe period λ = 2w, we obtain

λ ¼ 2w ¼
ffiffiffiffiffiffiffiffiffiffi
2γLc
Δf

r
(15)

The
√�
Lc dependence reveals that striping is an effect of finite size

domains. As the domain size approaches infinity, the equilibrium
state approaches two infinite domains separated by one interface.
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