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Abstract

In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of
excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of micro-
scopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are
often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface
conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae
for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface
conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally,
we derive surface conservation laws for a few examples from diffusive and electrochemical transport.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the chemical composition of an inter-
face plays an important role in its dynamics (both its motion and
the evolution of its chemical composition). A few interesting
and important examples include the effect of surfactants on sur-
face tension [1-3], the charging dynamics of electrochemical
double layers [4-8], electrokinetic phenomena [9-20] and soap
film dynamics [21,22]. Unfortunately, theoretical modeling of
the interaction between chemical composition and interfacial
dynamics can be quite challenging because it involves coupling
dynamics at the macroscopic scale away from the interface with
a microscopic model for the interfacial region. Sometimes it
may not even be clear which microscopic model is appropriate
for a particular problem. Many successful approaches based on
the notion of an excess surface concentration [23—-25] have been
developed and applied to a wide-range of problems. While this
approach is well-founded for microscopically sharp interfaces,
the theoretical foundations for this methodology in the context
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of microscopically diffuse interfaces (especially for dynamic
interfaces) do not appear to have been thoroughly explored.

For microscopically diffuse interfaces (i.e., interfaces where
the chemical composition smoothly varies across the interface),
the notion of a surface excess concentration and dynamics of
surface excess quantities can be rigorously justified via asymp-
totic analysis. In this article, we present a general procedure
based on asymptotic analysis for deriving surface conserva-
tion laws (including derivation of the structure of the interfacial
layer) that couple dynamics in the bulk with dynamics of the
interfacial region and demonstrate the application of our for-
mulation to example problems in diffusive and electrochemical
transport. Our results are only valid in the “sharp interface”
limit (i.e., when the distance over which the volume density
of the diffuse species varies is small relative to macroscopic
length scales of the problem). Fortunately, this limit is the only
one that is physically meaningful—if an interface is too diffuse,
it may not be appropriate to treat it as an interface in the first
place.

In previous work involving surface conservation laws, the
thickness and boundaries of the interfacial layer are often de-
fined in an ad hoc manner [6,7,25]. While this approach yields
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surface conservation laws of the correct form, it leaves the defi-
nition of surface quantities, which are computed by integrating
over the thickness of the interfacial layer, ambiguous. In con-
trast, our derivation uses asymptotic analysis to more rigorously
define surface quantities that appear in surface conservation
laws. Previous work also focuses primarily on surface conser-
vation laws in the absence of transport within the interface itself
[3,26-31] and deriving the surface conservation laws in the con-
text of specific problems [4—7,10]. Our derivation unifies these
earlier results by providing a general framework for deriving
surface conservation laws for application to a wide range of
transport problems. We only require that, near the surface, the
flux for the transport process scales in the same manner as a
linear combination of gradients of field variables. Fortunately,
these types of fluxes are very common in transport theory [32].
We emphasize that the formulation of surface conservation laws
we present is not based on phenomenological physical argu-
ments; rather, they are a direct consequence of the asymptotic
analysis. Moreover, the generality of our formulation allows
us to derive surface conservation laws for nonlinear transport
processes when the bulk is far from equilibrium (e.g., electro-
chemical transport of around metallic particles at large applied
fields) and for systems with complex interfacial structure. To
the authors’ knowledge, surface conservation laws for these
types of problems have not been previously derived.

2. Surface conservation laws

When studying chemically active interfaces, the state of
the interface is commonly described at macroscopic scales by
specifying the excess surface concentrations of all chemical
species. Intuitively, excess surface concentrations are defined
as the amount of material per unit area of surface after the
material in the “bulk” has been removed from the interfacial
region. However, this definition is physically and mathemati-
cally ambiguous—in the region near the interface, how is one
to distinguish between material that is part of the bulk and
material that is part of the interface? The ambiguity of this
definition was recognized long ago by Gibbs [33-35] and is
typically dealt with by arbitrarily selecting a concentration, C*,
at some point within the interface (when viewed at a micro-
scopic length scale) to be the reference “bulk” concentration
[23,24,36]. Any deviation of the concentration near the inter-
face from C* is treated as a contribution to the excess surface
concentration. In terms of this reference concentration, the ex-
cess surface concentration is defined as the integral of (C—C*)
over the thickness of the interface.

While somewhat inelegant from a theoretical perspective,
this formulation of excess surface concentration has been used
quite successfully for studying interfaces of equilibrium sys-
tems. For systems in thermal equilibrium, the excess sur-
face concentrations can be related to other thermodynamic
variables, such as bulk concentrations and other excess sur-
face concentrations via adsorption isotherms [1,23,24,37,38].
However, when the dynamics of surface species is impor-
tant (e.g., fast adsorption—desorption kinetics, nonnegligible
surface-diffusion), isotherm models need to be replaced by sur-
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Fig. 1. Schematic diagram of fluxes at an interface. Note that the surface excess
concentration I” and the surface fluxes J; are defined only on the interface
itself.

face conservation laws for the excess surface concentrations
which provide dynamic coupling between bulk concentrations
and excess surface concentrations:
or
ot
Here I'', J; and J,, are the surface excess concentration, the sur-
face flux and the normal flux, V; denotes a surface derivative,
and the sign on the normal flux is chosen to be positive when
the flux is into the boundary layer (see Fig. 1). In this situation,
the thermodynamic definition of excess surface concentrations
becomes unsatisfactory because all of the variables in (1) de-
pend implicitly on the choice of C* whose governing equation
and relationship to other macroscopic variables may be difficult
to derive.

Fortunately, for many problems, there is a natural way to de-
fine C* in terms of bulk concentrations (which almost always
have relatively straightforward governing equations). Define C*
to be the limit of the corresponding bulk concentration, C(x), as
x approaches the interface. Unlike thermodynamic definitions
of the excess concentration which are defined in terms of a ref-
erence concentration chosen at microscopic length scales and
suffer from the difficulty of relating that reference concentra-
tion to macroscopic variables, the choice of C* just described is
directly related to macroscopic variables because it is explicitly
defined in terms of those variables. Note that C* is not neces-
sarily a constant; it may still be a function of position along the
surface of the interface.

Equation (1) seems physically intuitive: the time rate of
change in the surface concentration results from a combination
of surface diffusion and flux from the bulk. However, it is im-
portant to remember that the equation describes the evolution
of excess concentrations, not absolute concentrations. Thus, J;
and J,, must be carefully defined so that they contribute solely
to changes in the excess concentration, not to changes in ref-
erence concentration C*. Even excellent discussions of surface
conservation laws, such as [25], often overlook this subtle point.
One purposes for this article is to bring attention to this issue
and provide a systematic method, based on fundamental physi-
cal principles, for defining and calculating the fluxes that appear
in surface conservation laws at microscopically diffuse inter-
faces.

For microscopically sharp interfaces, such as the monolayer
interfaces that arise in problems involving surfactants at liquid—
gas interfaces [1-3] or the compact layer in electrochemical
systems [24,37], J; and J, are very simply defined because
the bulk truly extends all the way to the interface. As a result,

=—V; - Js+ Jn. (D
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Fig. 2. Schematic diagram of a microscopically diffuse interface. The dashed
line represents the outer “edge” of the boundary layer, which is not at a math-
ematically well-defined location. Note that in addition to the fluxes within the
boundary layer, it is possible for the interface to possess fluxes that physically
reside on the microscopic interface itself. For some systems, these “microscop-
ic” surface fluxes may provide a significant contribution to the total surface flux
in the boundary layer.

the excess surface concentration is the amount of material per
unit surface area that resides precisely on the interface. In other
words, the excess surface concentration is the absolute surface
concentration. Thus, the surface can truly be thought of as a dis-
tinct phase, and a conservation law argument based on a balance
of fluxes into a “control volume” on the interface is mathemati-
cally valid. As a result, J,, is the flux of bulk material normal to
the surface and J; is the flux within the surface itself driven by
transport processes intrinsic to the interface (e.g., surface diffu-
sion in a lipid bilayer).

That surface conservation laws hold for microscopically
sharp interfaces is not surprising. What is interesting is that
Js and J, can be defined in such a way that surface conser-
vation laws also hold for microscopically diffuse interfaces
(see Fig. 2). For instance, in their studies of the evolution
of surface excess concentrations of electrolyte around colloid
particles [4,5,10], Dukhin, Deryagin, and Shilov made use of
surface conservation laws for excess ion concentration to cou-
ple ion transport in the bulk to the behavior of the electrical
double layer. A key observation about microscopically diffuse
interfaces is that surface transport within the boundary layer
near the interface is driven by the same transport processes
that occur in the bulk. In contrast, at microscopically sharp
interfaces, surface transport could potentially be completely
different from bulk transport because the underlying physical
processes driving surface transport (which are related to the
specific nature of the interface) might be fundamentally differ-
ent.

Unfortunately, the derivation of surface conservation laws
for microscopically sharp interfaces is not valid for diffuse in-
terfaces because the notion of a surface “control volume” is no
longer well-defined. The main problem is the lack of a distinct
separation between the bulk and the interfacial region. Rather,
there is a thin region near the interface over which concentra-
tions vary rapidly. Intuitively, what we would like to do is de-
fine surface quantities by directly integrating over the boundary
layer. This procedure, however, must be carried out carefully

in order to obtain physically meaningful results. The basic idea
in deriving surface conservation laws, which we shall elaborate
on in the next section, is that all integrations over the bound-
ary layer should involve only excess quantities; integration of
absolute quantities leads to divergent results.

It is important to note that (1) neglects contributions due
to motion and deformation of the interface (e.g., terms in-
volving convection in the normal direction and surface dila-
tion [11,39,40]). Since our analysis sheds no new insight for
these terms, we shall ignore them to simplify the discussion.

2.1. Dimensionless formulation of equations

In deriving the general form for J; and J,, involved in sur-
face conservation laws for microscopically diffuse interfaces,
it is convenient to examine all equations in nondimensional
form. To avoid confusion when reintroducing dimensions, let
us take a moment to fix the physical scales used in the nondi-
mensionalization process. At the macroscopic scale, the spatial
coordinates, (X, Y, Z), are scaled by the characteristic size of
the system, L. At the microscopic scale, the tangential, (x, y),
and normal, z, spatial coordinates are scaled by L and §, re-
spectively, where § is the characteristic thickness of the inter-
facial layer. Time, ¢, is scaled by the bulk diffusion time scale,
=12 /D. Concentrations, c;, are nondimensionalized by tak-
ing the reference concentration to be the maximum physically
realizable concentration, cmax. Bulk, F;, and surface fluxes, J;,
are scaled using cmaxL /T and Cmax L2 /T, respectively. Other
physical variables that appear later in this article are nondi-
mensionalized as follows. The electric potential, ¢, is scaled by
the thermal voltage kpT /e, where kp is Boltzmann’s constant
and e is the absolute charge of an electron. Thermodynamic en-
ergy variables, U and F, and the entropy, S, are scaled using
kpT (the thermal energy) and kp, respectively. Table 1 gives
a summary of the physical scales used to nondimensionalize
equations in this article.

The dimensional form of any of the equations in this arti-
cle can be obtained by first replacing each dimensionless vari-
able with its associated dimensional variable divided by the
appropriate characteristic scale and then multiplying the entire
equation by an appropriate physical scale to restore units to the
f:quation.l For instance, if the dimensionless concentration, c,
appears in a dimensionless equation, it should be replaced by
C/cmax When re-dimensionalizing the equation.

2.2. Derivation of Eq. (1) for microscopically diffuse
interfaces

To derive surface conservation laws of the form (1) at micro-
scopically diffuse interfaces, our goal is to appropriately define
I', Js and J, in terms of macroscopic variables. Our approach
will be to use asymptotic analysis [41,42] to carefully integrate
concentrations and fluxes over the boundary layer.

1 Note that differential operators will also need their units restored.
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Table 1
Summary of physical scales used to nondimensionalize equations

Variable(s)

Spatial coordinate X, Y. Z,x,y
Spatial coordinate z

Physical quantity Physical scale

L (macroscopic length scale)
& (microscopic length scale)

Time t =12 /D (bulk diffusion time scale)

Concentration ¢ cmax (maximum physically realizable
concentration)?

Bulk flux F;, J} cmaxL/T

Surface flux J" cmaxL2 /T

Electric potential ) kpT /e (thermal voltage)

Energy U,F kpT (thermal energy)

Entropy S kp

2 Cmax = 1/a3, where @3 is the characteristic volume of each solute/solvent
particle.

We begin by writing the conservation law that governs the
time evolution of a chemical species in the bulk:
ac

%~ _V.F 2
o (2

where c is the concentration and F is the flux. For our deriva-
tion, we assume that there is no flux of material through the
interface? itself so that 9F/dn = 0 and that the spatial coordi-
nates in (2) have been nondimensionalized using a character-
istic macroscopic length scale. In these units, the thickness of
the boundary layer over which ¢ varies rapidly is O (e€), where
€ = §/L is the ratio of the interfacial and macroscopic length
scales.

We study the “sharp interface” limit (defined as the limit
€ — 0) by taking (2) for the outer equations and deriving the
inner equations by rescaling the spatial coordinates. In the fol-
lowing discussion, we shall distinguish inner and outer vari-
ables by using the hat (") and bar accents (), respectively.
Also, we shall use (X, Y, Z) (upper case variables) and (x, y, z)
(lower case variables) to represent the outer and inner spatial
coordinates, respectively. Since the focus will be on the region
immediately neighboring the surface, we shall take (x, y) to be
Cartesian coordinates tangential to the interface and z to be the
coordinate normal to the interface.

Rescaling (2) using the inner coordinates (x, y, €z) = (X,
Y, Z), we find that the governing equations in the boundary
layer are
08 _ o o1 9F, 3
a2z )
where the subscripts s and n indicate tangential and normal
components of the flux and divergence operator, respectively.
Note that in (3), we have implicitly assumed that in changing to
tpe inner coordinates, the normal derivative of the normal flux
F,, picks up a factor of 1/€ because

F.(x,y,2) =€F,(X,Y, 2). )

This relationship between the inner and outer normal fluxes is a
direct consequence of our requirement that, near the interface,

2 This assumption may be relaxed in situations where there are processes
intrinsic to the interface (e.g., chemical reactions).

F scales in the same manner as a linear combination of gradi-
ents of macroscopic field variables:

F=>"ficl.c2,....ca)Vei, )

where f; are arbitrary functions of ¢y, 2, ..., ¢,. For fluxes of
the form (5), the factor of € in (4) arises from the fact that the
flux itself involves derivatives of space. We emphasize, how-
ever, that for our general analysis, we only require that fluxes
satisfy (4) without regard for the origin of this relationship.

Next, we derive an evolution equation for the excess concen-
tration in the boundary layer:

Yy, y,z,t)=¢(x,y,2,1) —c*(x, 9, 1), (6)

where ¢*(x, y,t) =limz_oc(X, Y, Z, t). Notice that we have
chosen the reference concentration to be the limit of the bulk
concentration as the interface is approached. Taking the time
derivative of this equation and using inner and outer evolution
equations, (2) and (3), we find that

dy .1 9F, . 9F,
v, . F. - — — =V, -FF—1 , (7
a1 < ST 27 > ( s 5T az) ™

where F* = limyz_, ¢ F.

To obtain an evolution equation for the surface excess con-
centration I, it is tempting to integrate this equation over the
boundary layer. Unfortunately, naive integration over the entire
range of the inner variable can lead to divergent integrals. For
example, integrating the last term on the right-hand side of (7)
leads to

o - - o0
. 0F, . 0F,
lim — |dz={ lim dz = o0. (8)
Z—0 0Z Z—0 0Z
0 0

Clearly, we have made an error in the asymptotic integration
because the boundary layer has an O(e) width and all of the
integrands are O(1), which suggests that all of the integrals
should be O (¢) quantities.

The problem with the intuitive approach is that it makes the
mistake of equating the asymptotic limit € — 0 with the spatial
limit z — oo. Realizing this subtle distinction (which is safe to
neglect for many asymptotic analyses), we can reformulate the
integration over the boundary layer as the limit of a sequence
of integrals over finite intervals, which tends to the entire half-
space [0, 0o) as € — 0. In choosing the domain of integration,
we want to be sure to capture the entire boundary layer so that
the notion of the total surface excess concentration is physically
meaningful. In addition, we want the region of integration at the
macroscopic length scale to go to zero as € — 0 so that we are
truly integrating over only the boundary layer. We can simul-
taneously achieve both of these goals by taking the region of
integration at the macroscopic length scale (i.e., where Z is the
variable in the normal direction) to be [0, a] where a = O (e”)
with 0 < p < 1. Since the width of the boundary layer is O (¢),
this choice of « ensures that the integration region completely
covers the boundary layer but tends to 0 in the asymptotic limit.

Even with this choice of integration region, we must still
exercise care to make sure that all integrands are of excess
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quantities so that integrations over the inner coordinate are con-
vergent. The key idea is that only excess concentrations are
asymptotically integrable, absolute concentrations are not. This
restriction suggests that we rewrite (7) as

3 . 19F, . 9F
_)/:—VS~(FS—FZT) —2 4 lim —Z2.
ot €2 9z | 7-00Z
Integrating this equation over the boundary layer (at the macro-
scopic length scale), we obtain

€))

o

BF
—dZ=—-| V- F —F})dz -
/ f ' ) 62 0z

0

+/ li oF, dz (10)
m .
Z—0 07

Changing from the outer to the inner coordinate for all of the
integrals except the last term yields

(=)

73 €

a/ 743
dy
Ldz=—¢ | V- (F, —F¥)d
S bmu ]
0 0

/€
1a
:-ef (F —F*)dz——Fn(x v, a/€)
€
0
oF,
1 11
+“(z1§10 az) (n

Note that to move from the first to the second line in the above
equations, we have explicitly integrated the normal derivative

and applied the no flux boundary condition, % (z=0)=0. Ex-
panding the last term in (11) using a Taylor series, we find that

73 afe

9 2 g
E/a_idz:_e/VS~(FS—F;*)dZ—an("’y’“/E)
0

Finally, recalling that f‘n (x,y,a/€) = an (X, Y, ), the above
equation can be simplified to

+F, (X, Y, ) - F,(X, 7,00+ 0(«?).  (12)

afe afe
€ / %dzz—e / v, - (I:‘S —F})dz
0 0
—Fy(X,Y,0) + O(c?). (13)

By choosing 1/2 < p in the definition of «, we find that the
O(a?) term becomes negligible compared to the remaining
terms in the € — O limit so that the leading order asymptotic
equation describing surface concentration evolution satisfies

o0

/8—7/ :—e/vs.(ﬁs—F;*)dz—Fn(x, Y, 0). (14)
0

From this equation, it is clear how we should define the surface
excess concentration, surface flux and normal flux to arrive at
the surface conservation law (1):

o0

rEe/y&, (15)
0
o0

Jo=c / (Fy — F*) dz. (16)
0

J,=F(X,Y,0) -1 =—F~, (17)

The sign difference between J, and F,, is merely a byproduct
of the choice of orientation for the local coordinate system in
our analysis. As mentioned earlier, the sign convention for the
normal flux is that J,, be positive when the direction of the flux
is into the boundary layer.

It is worth mentioning that the presence of the € in the time
dependent term and the surface flux term in (14) indicates that
the relative importance of these terms relative to bulk transport
(i.e., the normal flux term) may depend on the choice of time-
scales and the magnitude of surface transport. This observation
is elaborated upon in the examples discussed in Sections 3
and 4.

2.3. Formulation in terms of chemical potentials

In general, it is best to express driving forces for fluxes in
terms of gradients of chemical potentials [38,43]:

F[Z—Cl’(ZLijV/Lj)—i-uCi, (18)
J

where the L;; are mobility coefficients® that relate the drift ve-
locity of species i to the gradient of the chemical potential of
species j and u is the background velocity that contributes to
advective transport. Note that in order to satisfy (4), we require
that the normal component of the background velocity, u,,, at
the interface must vanish.

Substituting this expression into (16) and (17) and rearrang-
ing a bit, we obtain

o0
J'Y =-—1I; <ZLijVs,U«7> + F,u’: +6/6i(ﬁs —
J 0

(S
(Z,: Lij—* ) (20)

)dz, (19)

m
0\8

3 In dimensional form, mobility coefficients are related to diffusion coeffi-
cients via the Einstein relation: D;; = kT L;;. With our choice of energy scale,
the dimensionless Einstein relation is D;; = L;;.
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where we have imposed iz, = 0, u; is the tangential component
of the background velocity, and the superscript i indicates on
the J; and J,, indicates that these fluxes are for the ith species.

The expression for Ji can be simplified because the last in-
tegral term is equal to zero. As (3) shows, a rescaling of the
conservation law associated with (18) to the inner coordinate
yields the leading order equation:

v|:c, (ZL,,E:’)} 0. Q1)

Integrating this equation and using asymptotic matching for the
boundary conditions as z — oo, we find that at leading order,

D Lijh;=) Liju} (22)
J J

in the inner layer. That is, special linear combinations of the
chemical potentials involving the mobility coefficients are con-
stant in the normal direction and slowly varying in the tangen-
tial direction. Equation (21) has the following physical interpre-
tation: in the sharp interface limit, the interfacial layer is always
in quasi-equilibrium at the bulk diffusion time scale, T = L?/D.
It is important to note that at faster time scales, which may be
appropriate for systems with external forcing, this result may
break down because the time derivative term could balance the
normal flux term when (3) is rescaled to the faster time scale.
Using this observation, Jf; becomes

o
Jf;:_n(ZLUvmj) +F,~uj+e/é,~(ﬁv uf)dz. (23)
J 0

The surface conservation law for transport follows directly from
these results:

o0
orl; n (A
atl =V- ﬂ(ZLUVS/Lj)+Fl~u;‘+e/c,~(uy—uf)dz
J 0

au*t
—c (Z Li,-a—nf). (24)
j

It is worth mentioning that the surface transport term (the term
involving the surface divergence) does not always contribute to
the leading order surface conservation law. Whether the surface
transport term must be retained at leading order depends on the
magnitudes of I; (which depends implicitly on bulk field vari-
ables) and the tangential component of bulk chemical potential
gradients. Interestingly, when the surface transport term is sig-
nificant, the surface conservation law depends explicitly on the
small parameter € (through I7;).

Theoretical derivation of interfacial structure

While surface conservation laws may be derived by substi-
tuting arbitrary models for the structure of the boundary layer
into (15)—(17), the quasi-equilibrium nature of the interfacial
layer allows us to theoretically derive the boundary layer struc-
ture from the chemical potential using (22). Starting with a free
energy for the system that incorporates the physical effects we

wish to include, chemical potentials may be easily computed as
the functional derivatives of the free energy with respect to the

concentrations of the individual species*:

i Z(SF/SC,', (25)

where F is the total free energy of the system. Thus, formu-
lating the transport equations in terms of chemical potentials
yields a systematic method for deriving boundary layer struc-
ture and surface conservation laws directly from fundamental
physical principles without resorting to ad hoc models for the
interfacial layer. We shall demonstrate this general approach for
several example problems in the next two sections.

3. Applications to neutral solutions

In this section, we present surface conservation laws for
neutral solutions. Because we have formulated surface conser-
vation laws in terms of chemical potentials, derivation of the
integrated fluxes for these systems is a straightforward appli-
cation of the formulae in Section 2.3. For simplicity, we shall
assume that fluid flow is absent.

3.1. Dilute solutions

For dilute solutions of a single neutral species, we can write
the free energy, F, for the system as

F=U—TS=/CCD+C(10gc—1)dx, (26)

where U, T and S are the internal energy, the absolute tem-
perature (scaled to 1 in dimensionless units) and entropy of the
system, respectively, c is the concentration of solute, and @ is
the energy of interaction between solute particles and the sur-
face (per unit concentration of solute particles). Note that the
free energy density per unit concentration of solute in (26) is
determined up to an arbitrary additive constant, which we take
to be —1 (—kT in dimensional form) to simplify the expres-
sion for the chemical potential (derived below). The interaction
energy, @ (z), between solute particles and the surface extends
over a distance € (typically a few molecular diameters) and can
account for hydrophobic interactions, polarization effects, etc.
@ (z) essentially gives the affinity of the solute particles for the
surface. Note that in the dilute solution approximation, solute
particles do not directly interact with each other or with solvent
particles.

Computing the functional derivative of (26), we obtain an
expression for the chemical potential

w=logc+ @. 27

4 This expression for the chemical potential implicitly assumes that the sys-
tem is locally in thermal equilibrium. Given this assumption, it is easy relate
(25) to the definition from equilibrium thermodynamics by recognizing that the
functional derivative of the total free energy with respect to concentration is
merely the partial derivative of the free energy density with respect to concen-
tration, which yields the local chemical potential of the system at each point in
space.



K.T. Chu, M.Z. Bazant / Journal of Colloid and Interface Science 315 (2007) 319-329 325

As we showed in Section 2.3, in the interfacial layer, [i is equal
to u* in the normal direction, which leads to a Boltzmann dis-
tribution for the concentration:

é(z) =exp(u* — @(2)). (28)

We can rewrite this expression in terms of the bulk concen-
tration just outside of the interfacial layer by observing that
¢* = e from asymptotic matching and the fact that the solute
surface interaction decays far away from the surface. Thus, we
find that

é(z) =c*e PO, (29)

Note that this is exactly the boundary layer profile obtained by
Anderson et al. using the assumption that the interfacial layer is
in equilibrium [44].

The surface excess concentration of solute, I, is the integral
of the excess concentration over the boundary layer:

oo oo

I'=¢ /(é(z) - c*) dz = e[c*(e_(p(z) - 1) dz. (30)
0 0

After the integral in this expression has been explicitly evalu-

ated, the surface conservation law for dilute solutions of neutral

solutes is derived by substituting the surface excess concentra-

tion (30) and the chemical potential (27) into (24), which leads

to the following transport equation for the surface excess con-

centration:

o _ 1l (I" Vylogc®) oc” G1)

_— . ogC - —,

o1 ¢ s 108 on

where L is the nondimensional mobility coefficient for solute

particles. It is interesting to observe that the driving force for

surface transport and the source term for transport between the

bulk and interfacial regions depend only on the concentration

in the bulk. This result is generally true for transport problems

where fluid flow is negligible.

3.2. Concentrated solutions

For concentrated solutions of a single neutral species, the
size of the individual solute particles cannot be neglected and
steric effects must be accounted for. Bulk solutions are con-
sidered concentrated when the dimensionless parameter v =
a3cmax, which represents the bulk volume fraction of solute,
is not small. In this case, we can use concentrated solution
theory to qualitatively describe bulk transport. However, even
when v < 1, concentrated solution theory may be necessary if
the surface interaction energy, @, is strong enough to condense
particles near the surface. As for dilute solutions, we begin by
writing the free energy for the system using ideal solution the-
ory [45]:

F=U-TS
=/CCD + [cloge + (1 —¢)log(1 — ¢)] dx, (32)

where the last term in F accounts for the entropy of the solvent
particles, assuming they have the same size as the solute parti-
cles. This classical model for steric effects, dating back at least

to Bikerman [46], can be derived by taking the continuum limit
of a discrete model with solute and solvent molecules restricted
to a regular lattice. As such, it can be good approximation for
solid solutions, such as lithium intercalation oxides [47], al-
though it substantially underestimates steric effects in liquids.
It would be straightforward to apply our general derivation of
surface conservation laws to more accurate approximations of
the entropy of hard-sphere liquids [48], so we proceed with this
simple first approximation.

Taking the functional derivative of (32), we find that the
chemical potential for concentrated solutions is given by

M:log<lic>+(b. (33)

Note that unlike dilute solutions, there is a maximum concen-
tration for the solute that arises from the sharp increase in the
chemical potential at high solute concentrations (low solvent
concentrations) caused by the solvent’s entropic contribution to
the free energy.

As before, we can derive the concentration profile of solute
atoms by using the fact that, within the interfacial layer, the
chemical potential is constant in the direction normal to the sur-
face:

é@) =exp(* — ®(@)[1 +exp(u* — ()] (34)

For concentrated solutions, the simple Boltzmann distribution
for the quasi-equilibrium concentration profile in the normal
direction is replaced by a Fermi-Dirac-like distribution with
a maximum concentration of 1 (cpax = l/a3 in dimensional
form). Note that expression of ¢(z) in terms of the bulk con-
centration, ¢*, outside of the interfacial layer does not lead to
a significant simplification of (34). The surface excess concen-
tration is found by integrating (34) over the interfacial layer.
To derive the surface conservation law for concentrated neu-
tral solutions, we substitute (33) and the expression for the
surface excess concentration into the general formula for the
surface conservation law in terms of chemical potentials (24).

4. Application to electrolytes

In electrochemical systems, the solute particles are electri-
cally charged, so transport processes are affected by electric
fields (both self-generated and externally applied). When mod-
eling electrochemical systems, it is common to model transport
in the bulk separately from the response of the double layer
at surfaces. Surface conservation laws justify and generalize
the usual phenomenological approaches for coupling bulk and
double layer dynamics. In this section, we discuss surface con-
servation laws for dilute and concentrated electrolyte solutions.
As we shall see, the key difference between these two cases is
the microscopic model that must be used to describe the elec-
trical double layer.

For electrolytes, transport is driven by gradients in the elec-
trochemical potential, so the nondimensionalized conservation
laws for ionic species are given by
80,'

o = V. (Vi + civ), (35)
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where c¢; are the concentration of ion i, w; is the electrochem-
ical potential for species i, v is the fluid velocity, and we have
assumed that all of the ions have the same diffusivity [38]. Note
that the flux in this equation is just a special case of (18) where
L;;j is an identity matrix.> While fluid flow plays an important
role in many systems of current interest (e.g., electrokinetic mi-
crofluidic pumps and mixers [13,14,19,20]), we shall neglect it
to keep the following discussion simple. In this situation, the
surface conservation law (24) becomes

or; LU
ot on
Before considering ion transport in various special cases, we
mention that for electrochemical systems, the small parameter €
is the ratio of the Debye screening length, A p, to the character-

istic system size. In this article, the Debye length will be defined
by

| €kT
AD = , 37
b 2¢2Cq 7

where ¢; is the dielectric constant for the electrolyte and Cy
is the average concentration of neutral salt. Alternative choices
for the Debye length typically differ from this definition by an
O (1) multiplicative constant.

=V, (Vi) —c (36)

4.1. Dilute electrolytes

The free energy for general dilute electrolyte solutions is
similar to the free energy for dilute neutral solutions:

F=U-TS
=/(Zci(logc,~ — 1)+Zzici¢—62|v¢|2> dx. (38)

In this expression, the first term in the integrand is the entropic
contribution from the solute particles, the second term accounts
for the interaction energy between the charged particles and the
electric potential, and the last term is the energy of the electric
field. Note that € is defined to be consistent with the definition
in (37).

Taking the functional derivative of the free energy with re-
spect to ¢;, we find that the electrochemical potential of the ith
ionic species takes the simple form

i =logc; +2z;¢. (39
Using (39) for the electrochemical potential, (35) reduces to the

commonly used Nernst—Planck equations [37,49]:

ac;

2 =V (Ve +ziciV9), (40)
Within the double layer, the electrochemical potential is con-
stant in the normal direction, so the concentration profile pos-

sesses a Boltzmann distribution:

éi(2) =cfem O, (1)

5 In dimensional form, L;; would be a scalar multiple of the identity matrix.

where 1/(2) = $(2) — ¢*.

For the case of a symmetric, binary electrolyte, (41) leads
to the commonly used Gouy—Chapman—Stern (GCS) model for
the double layer [23,37,38,50]. It is well known that the GCS
model can be theoretically justified by noting that the dou-
ble layer is always in quasi-equilibrium in the sharp interface
limit [51]. However, the quasi-equilibrium structure of the dou-
ble layer is not at all surprising in light of our discussion in
Section 2.3—it follows directly from the fact that the electrical
double layer is a sharp interfacial layer.

For symmetric, binary electrolytes, we can derive explicit
expressions for the excess surface concentrations. In this case,
the excess concentration of each of the two ionic species is
given by

ye =i —cf =cH(eFF — 1), 42)

where ¢* = (¢’ +¢*)/2 is the average concentration in the bulk
and zx is the charge number for the positive ion. Following
[52], this quantity is straightforward to integrate by changing
the variable of integration in (15) to I/A/ and using the fact that

90 N
W _ e sinn( EY 43)
0z 2

for the GCS model. Carrying out the integration, we find that
the excess surface concentration of species i is given by

_ 26\/?(63':24:{/2 _ 1)7

Iy (44)

iF
where ¢ = (13(0) — ¢* is the zeta-potential [23,37,38] across the
diffuse part of the double layer. Using this expression for I} in
(36), the surface conservation law for symmetric, binary elec-
trolytes is fully specified in terms of bulk field variables and
boundary conditions, and the structure of the boundary layer
has been completely integrated out.

Because the charge density and neutral salt concentration are
both important components of the response of an electrochem-
ical system, it is interesting to derive surface conservation laws
for these quantities [8,52]. Toward this end, we define eq and
ew to be the surface charge density and surface excess neutral
salt concentration, respectively®:

oo
€
eq:g/(m—y—)dz
0

- %(F+ —I)= _2eVe sinh(%), (45)

Z+

o0
€
ew:gf(ﬂﬂ/—)dz
0

- %(n +r)= deyer sinh2<£>. (46)

4 4

6 The factor of 1 /2 in the definition of ¢ is present for mathematical conve-
nience. The total surface charge density is 2eq.
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Using (45) and (46), we can combine the surface conservation
laws for individual ions (36) and write out the electrochemical
potential in terms of ¢* and ¢* to obtain

0 g™

68—[5 =€V - (qVslogc™ +zywVs¢*) — z4c* ad; , (47)
0 ac*

ea—l;) =€V (wVslogc* + 219 Vs¢*) — % (48)

Since we have explicit expressions for g and w, (47) and (48)
are completely specified in terms of bulk field variables yielding
surface conservation laws that can serve as effective boundary
conditions for the bulk equations written in terms of these field
variables [8,51,52].

4.2. Concentrated electrolytes

The simplest theory of transport in concentrated electrolytes
is based on the free energy

F=U-TS
= /(ZC,‘ logce; + <1 — Zci> 10g<1 — ZC,‘)
+ZZ,'C[¢—€2|V¢|2) dx. (49)

As for concentrated neutral solutions, steric effects are included
by adding a contribution from the solvent entropy as in (32),
assuming that the molecules of all species present in the sys-
tem (including the solvent) are of the same size. This model,
due to Bikerman [46], has been developed by a number of au-
thors [53-59]. As noted above, it may be accurate for solid
electrolytes but significantly underestimates the entropy of lig-
uid electrolytes and thus only provides a first approximation
of steric effects [48]. It is important to mention that there are
more sophisticated (and accurate) theories involving statistical
density functional theory [60-63]. Unfortunately, these theo-
ries are generally more cumbersome to analyze and often re-
quire advanced numerical methods in order to gain physical
insight [59].

Next, we derive electrochemical potentials for the ith ionic
species by taking the functional derivative of the free energy
with respect to the ith concentration:

Ci
Wi :10g<m> +zi . (50)

Following Kilic et al. [64], this expression for the electrochemi-
cal potential leads to a modified Nernst—Planck equation for ion
transport

a. .
v (Ve e+ | e [ Ve ). 5D
ot I_chj 7

Notice that, unlike dilute electrolytes, the transport of different
ionic species are directly coupled via the last term in the flux.
Following our previous procedure, we can derive the con-
centration profile of each ionic species within the double layer
by using the fact that each of the ©; must be constant in the

normal direction. This observation leads to a linear system of
equations for the ionic concentrations, which is easily solved to
yield

exp(it — zi9(2))
14+ X exp(u’ — 2;p(2)

As for concentrated neutral solutions, the concentration profiles
have a Fermi—Dirac-like form.

A little further progress can be made for the special case
of symmetric, binary electrolytes. The excess concentrations of
the ionic species in this case are given by

¢i(z2) = (52)

e:FZ:F‘w&

1 + 2v sinh? (Z:FI/AI/Z)

yizéi—ci:c*[ —1}, (53)
where c*, 1@ and v are as defined in our discussion of dilute
electrolytes and concentrated neutral solutions. Unfortunately,
integration of these excess concentrations for the concentrated
electrolyte model does not yield a particularly simple expres-
sion for the surface excess concentration [59]:

2
=¥ sgn(g‘)z:Fe\/; log(l +2v sinh2(1¢§/2))

T coshu— 1
coshu —
+(1_”)6/7.2
1+ 2vsinh“u
0
) —1/2
x I:—log(1+2vsinh2u)i| du. (54)
V

Combining this expression for the surface excess concentration
and the electrochemical potential for concentrated electrolytes
(50) yields the surface conservation law for concentrated, sym-
metric binary electrolytes.

4.3. Dominant terms in electrochemical surface conservation
laws

In general, the relative importance of the terms in a set of
surface conservation laws (written in any form) may depend on
the choice of time scales and the magnitude of surface trans-
port. In the context of electrochemical transport, we find that
the boundary conditions applied in many theoretical studies
are merely the leading order form (in different asymptotic and
physical regimes) of the surface conservation laws derived in
the previous section. For instance, in induced charge electro-
osmosis problems in dilute solutions at weak applied electric
fields [19,20], eq and ew remains O (¢) quantities. Thus, com-
pared to the normal flux term, the surface flux term is negligible
and the time-dependent term is only important at short times,
t = O(¢). In this situation, the double layer charging equation
(47) becomes [19,20]:
ag ¢
— =0——,
ot on
where o = ¢* is the bulk conductivity of the solution and time

has been rescaled using 7 = /€ so that the dynamics are on
the RC time scale [8,19,20]. At t = O(1) time scales, only the

(55)
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normal flux remains an O(1) quantity, so we are left with a
“insulator” boundary condition for the electric potential:

d¢
o— =

on
At higher applied fields or for highly charged particles [4—7,
52], the dilute solution electrolyte model leads to surface excess
concentrations as large as O(1/¢) for some of the ionic species
in the double layer. As a result, surface currents becomes im-
portant and evolution of ionic concentrations within the double
layer occurs on an O (1) time scale. In this situation, no terms in
(36) are negligible, so we must retain all terms in (47) and (48).

0. (56)

5. Summary

In this article, we have presented a general formulation and
derivation of surface conservation laws at microscopically dif-
fuse interfaces. Because surface conservation laws form the
crucial connection between bulk and interfacial dynamics, it
is important to know that they are theoretically well-founded.
Our work fills this apparent void in the literature and provides
a solid theoretical foundation based on techniques from asymp-
totic analysis. Our analysis has also led to explicit formulae
for the surface and normal fluxes involved in surface conser-
vation laws. In addition to formulae for arbitrary interfacial
models, we have presented a formulation of surface conserva-
tion laws for the important class of interfacial models derived
using the principles of nonequilibrium thermodynamics. This
formulation provides a method for developing interfacial mod-
els in a systematic and physically sound manner. Finally, we
have demonstrated the derivation of surface conservation laws
in the specific contexts of diffusive and electrochemical trans-
port. We emphasize, however, that surface conservation laws
are very general and apply to a wide-range transport processes.
The basic approach is to first specify (or derive) a model for the
interfacial layer and then to compute the surface excess concen-
trations and surface flux using the general formulae presented
in this article.
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