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ELECTROCHEMICAL THIN FILMS AT AND ABOVE THE
CLASSICAL LIMITING CURRENT∗

KEVIN T. CHU† AND MARTIN Z. BAZANT†

Abstract. We study a model electrochemical thin film at DC currents exceeding the classical
diffusion-limited value. The mathematical problem involves the steady Poisson–Nernst–Planck equa-
tions for a binary electrolyte with nonlinear boundary conditions for reaction kinetics and Stern-layer
capacitance, as well as an integral constraint on the number of anions. At the limiting current, we
find a nested boundary-layer structure at the cathode, which is required by the reaction boundary
condition. Above the limiting current, a depletion of anions generally characterizes the cathode side
of the cell. In this regime, we derive leading-order asymptotic approximations for the (i) classical bulk
space-charge layer and (ii) another nested highly charged boundary layer at the cathode. The former
involves an exact solution to the Nernst–Planck equations for a single, unscreened ionic species, which
may apply more generally to Faradaic conduction through very thin insulating films. By matching
expansions, we derive current-voltage relations well into the space-charge regime. Throughout our
analysis, we emphasize the strong influence of the Stern-layer capacitance on cell behavior.
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Introduction. Thin-film technologies offer a promising way to construct re-
chargeable microbatteries, which can be directly integrated into modern electronic
circuits [1, 2, 3, 4, 5, 6]. Due to the power-density requirements of many applications,
such as portable electronics, microbatteries are likely to be operated at high-current
density, possibly exceeding diffusion limitation. In a thin film, very large electric
fields are easily produced by applying only small voltages, due to the small electrode
separation, which may be comparable to the Debye screening length. Under such
conditions, the traditional postulates of macroscopic electrochemical systems [7, 8]—
bulk electroneutrality and equilibrium double layers—break down near the classical
diffusion-limited current [9]. The mathematical justification for these postulates is
based on matched asymptotic expansions in the limit of thin double layers [10, 11, 12],
which require subtle modifications at large currents.

The concept of a “limiting current,” due to the maximum steady-state flux of
diffusion across an electrochemical cell, was introduced by Nernst a century ago [13].
Consider the simplest case of a binary electrolyte between parallel plate electrodes
with cation redox reactions and inert anions. Assuming neutrality, the bulk con-
centration is a linear function of distance (due to steady diffusion) with a gradient
proportional to the current. Since the total number of anions is fixed, the total inte-
gral of the bulk concentration must also be fixed, which implies that the concentration
at the cathode decreases linearly with current. The “diffusion-limited current” corre-
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Fig. 1. Profiles of the dimensionless potential (top left), electric field (top right), total ionic
concentration (bottom left), and charge density (bottom right) in three regimes: below the classical
diffusion-limited current (j = 0.5), at the limiting current (j = 1), and above the limiting current
(j = 1.5). These are numerical solutions to our model problem with the following dimensionless
parameters: ε = 0.01, δ = 0, kc = 10, jr = 10.

sponds to a vanishing bulk concentration at the cathode, and, as the name suggests,
it can never be reached, except with an infinite voltage.

It was eventually realized that the classical theory is flawed, as illustrated in
Figure 1 by numerical solutions to our model problem below. The bulk concentration
remains linear, but the system is clearly able to achieve and even exceed the classical
limiting current (as shown in the lower left panel of the figure). Levich was perhaps
the first to notice that the assumption of bulk electroneutrality yields approximate
solutions to the Poisson–Nernst–Planck (PNP) equations, which are not self-consistent
near the limiting current, since the predicted charge density eventually exceeds the
salt concentration near the cathode [14]. This paradox was first resolved by Smyrl
and Newman, who showed that the double layer expands at the limiting current
as the Poisson–Boltzmann approximation of thermal equilibrium breaks down [15].
Rubinstein and Shtilman later pointed out that mathematical solutions also exist for
larger currents, well above the classical limiting value, characterized by a region of
nonequilibrium “space charge” extending significantly into the neutral bulk [16]. As
shown in Figure 1, the space-charge layer exhibits anomalously large electric fields
and charge densities, compared to the equilibrium double layers at smaller currents.

The possibility of superlimiting currents has been studied extensively in the differ-
ent context of bulk liquid electrolytes, where a thin space-charge layer drives nonlinear
electro-osmotic slip. This phenomenon of “electro-osmosis of the second kind” was
introduced by Dukhin for the nonlinear electrophoresis of ion-selective, conducting col-
loidal particles [17], and Ben and Chang have recently studied it in microfluidics [18].
The mathematical analysis of second-kind electro-osmosis using matched asymptotic
expansions, similar to the approach taken here, was first developed by Rubinstein
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and Zaltzman for related phenomena at electrodialysis membranes [19, 20]. In earlier
studies, the space-charge layer was also invoked by Bruinsma and Alexander [21] to
predict hydrodynamic instability during electrodeposition and by Chazalviel [22] in a
controversial theory of fractal electrochemical growth.

As in our companion paper on sublimiting currents [9], here we consider (typically
solid or gel) thin films, e.g., arising in microbatteries, which approach the classical
limiting current without hydrodynamic instability. At micron or smaller length scales,
the space-charge layer need not be “thin” compared to the film thickness, so we also
analyze currents well above the classical limiting current, apparently for the first
time. In both regimes, close to and far above the classical limiting current, we derive
matched asymptotic expansions for the concentration profiles and potential, which
we compare against numerical solutions. In addition to our focus on superlimiting
currents and small systems, a notable difference with the literature on second-kind
electro-osmosis is our use of nonlinear boundary conditions for Faradaic electron-
transfer reactions, assuming Butler–Volmer kinetics and a compact Stern layer. We
also analyze the current-voltage relation, thus extending our analogous results for thin
films below the limiting current [9].

1. Statement of problem. Before delving into the analysis (and to make the
paper self-contained), we review governing equations and boundary conditions. We
shall focus solely on the dimensionless formulation of the problem, derived and dis-
cussed in the companion paper [9].

The transport of cations and anions is described by the steady Nernst–Planck
equations

d2c+
dx2

+
d

dx

(
c+

dφ

dx

)
= 0,(1)

d2c−
dx2

− d

dx

(
c−

dφ

dx

)
= 0,(2)

while Poisson’s equation relates the electric potential to the charge density,

−ε2
d2φ

dx2
=

1

2
(c+ − c−) .(3)

Here ε is a small dimensionless parameter equal to the ratio of the Debye screening
length to the electrode separation (or film thickness). Note that this formulation
assumes constant material properties, such as diffusivity, mobility, and dielectric co-
efficient, and neglects any variations which may occur at large electric fields. The
factor of 1/2 multiplying the charge density c+−c− is present merely for convenience.
The domain for the system of (1)–(3) is 0 < x < 1.

The two Nernst–Planck equations are easily integrated under the physical con-
straint that the boundaries are impermeable to anions (i.e., zero flux of anions at
x = 0) and taking the nondimensional current density at the electrodes to be 4j:

dc+
dx

+ c+
dφ

dx
= 4j,(4)

dc−
dx

− c−
dφ

dx
= 0.(5)

Then by introducing the average ion concentration and (half) the charge density,

c =
1

2
(c+ + c−) and ρ =

1

2
(c+ − c−) ,(6)
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we can derive a more symmetric form for the coupled PNP equations:

dc

dx
+ ρ

dφ

dx
= 2j,(7)

dρ

dx
+ c

dφ

dx
= 2j,(8)

−ε2
d2φ

dx2
= ρ.(9)

For this system of one second-order and two first-order differential equations, we
require four boundary conditions and one integral constraint:

φ(0) − δε
dφ

dx
(0) = 0,(10)

φ(1) + δε
dφ

dx
(1) = v,(11)

kc [c(0) + ρ(0)] eαcφ(0) − jre
−αaφ(0) = j,(12)

−kc [c(1) + ρ(1)] eαc(φ(1)−v) + jre
−αa(φ(1)−v) = j,(13) ∫ 1

0

[c(x) − ρ(x)] dx = 1.(14)

These conditions, which are often simplified or omitted in electrochemical modeling,
are central to our analysis. A detailed discussion can be found in the companion
paper [9], so here we simply give an overview.

The first two boundary conditions, (10)–(11), account for the intrinsic capacitance
of the compact part of the electrode-electrolyte interface, which is taken to be linear
(the “Stern model”). The compact-layer charge could contain solvated ions at the
point of closest approach to the electrode, as well as adsorbed ions on the surface.
The capacitance also accounts for the dielectric polarization of the solvation layer
and/or impurities or coatings on the surface. In these boundary conditions, δ is a
dimensionless parameter which measures the strength of the surface capacitance, and
v is the total dimensionless voltage drop across the cell.

The next two boundary conditions, (12)–(13), are Butler–Volmer rate equations,
which represent the kinetics of Faradaic electron-transfer reactions at each electrode,
with an Arrhenius dependence on the compact-layer voltage. In these equations,
kc and jr are dimensionless reaction-rate constants and αc and αa are transfer coef-
ficients for the electrode reaction. It is worth noting that αc and αa do not vary too
much from system to system; typically they have values between 0 and 1, and often
both take on values near 1/2.

Finally, the integral constraint, (14), reflects the fact that the total number of an-
ions is fixed, assuming that anions are not allowed to leave the electrolyte by Faradaic
processes or specific adsorption. When solving time-dependent problems with the
same mathematical model [23, 24], the constraint is not needed, since the total num-
ber of anions is set by the initial condition. Here, we solve for the steady state at
different voltages (and currents), assuming the same average concentration of anions
to allow a meaningful comparison for the same cell.

It is important to understand that the need for an extra constraint reflects that
the current-voltage relationship, j(v), or “polarographic curve,” is not given a priori.
As usual in one-dimensional problems [9], it is easier to assume galvanostatic forcing
at fixed current, j, and then solve for the cell voltage, v(j), by applying the boundary
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condition (11), rather than the more common case of potentiostatic forcing at fixed
voltage, v. For this reason, we take the former approach in our analysis. For steady-
state problems, the two kinds of forcing are equivalent and yield the same (invertible)
polarographic curve, j(v) or v(j).

For some of our analysis, it will be convenient to further simplify the problem by
introducing the dimensionless electric field, E ≡ −dφ

dx . This transformation is useful
because three of the five independent constraints can be expressed in terms of these
variables, without explicit dependence on φ(x), namely, the two Butler–Volmer rate
equations,

kc (c(0) + ρ(0)) e−αcδεE(0) − jre
αaδεE(0) = j,(15)

−kc (c(1) + ρ(1)) eαcδεE(1) + jre
−αaδεE(1) = j,(16)

and the integral constraint on the total number of anions, (14). The potential is
recovered by integrating the electric field and applying the Stern boundary conditions
(10) and (11).

2. Unified analysis at all currents.

2.1. Master equation for the electrostatic potential. We begin our analysis
by reducing the governing equations, (7) through (9), to a single master equation for
the electrostatic potential. Substituting (9) into (7) and integrating, we obtain an
expression for the average concentration:

c(x) = c
¯
o + 2jx +

ε2

2

(
dφ

dx

)2

.(17)

Then by applying the integral constraint, (14), we find that the integration constant,
c
¯
o, is given by

c
¯
o = (1 − j) − ε2

[(
dφ

dx

)∣∣∣∣
x=1

−
(
dφ

dx

)∣∣∣∣
x=0

+
1

2

∫ 1

0

(
dφ

dx

)2

dx

]
.(18)

Note that when the electric field is O(1), (17) and (18) reduce to the leading-order
concentration in the bulk when j is sufficiently below the limiting current [9]. We can
now eliminate ρ and c from (8) to arrive at a single master equation for φ,

ε2

[
−d3φ

dx3
+

1

2

(
dφ

dx

)3
]

+ (c
¯
o + 2jx)

dφ

dx
= 2j,(19)

or, equivalently, for the electric field E,

ε2
[
d2E

dx2
− 1

2
E3

]
− (c

¯
o + 2jx)E = 2j.(20)

Once this equation is solved, the concentration, c, and charge density, ρ, are computed
using (17) and Poisson’s equation, (9).

The master equation has been derived in various equivalent forms since the 1960s.
Grafov and Chernenko [25] first combined (4), (5), and (9) to obtain a single non-
linear differential equation for the anion concentration, c−, whose general solution
they expressed in terms of Painlevé’s transcendents. The master equation for the



1490 KEVIN T. CHU AND MARTIN Z. BAZANT

electric field, (20), was first derived by Smyrl and Newman [15] in the special case
of the classical limiting current, where j = 1 and c

¯
o = 0, where they discovered a

nonequilibrium double layer of width ε2/3, which is apparent from the form of the
master equation. We shall study the general electric-field and potential equations
for an arbitrary current, j, focusing on boundary-layer structure in the limiting and
superlimiting regimes.

2.2. Efficient numerical solution. To solve the master equation for the elec-
tric field with the boundary conditions and integral constraint, we use the Newton–
Kantorovich method [26]. Specifically, we use a Chebyshev pseudospectral discretiza-
tion to solve the linearized boundary-value problem at each iteration [26, 27]. Our
decision to use this method is motivated by its natural ability to resolve boundary
layers and its efficient use of grid points. We are able to get accurate results for many
parameter regimes very quickly (typically less than a few minutes on a workstation)
with only a few hundred grid points, which would not be possible at large currents
and/or thin double layers using a naive finite-difference scheme. It is important to
stress that the boundary conditions and the integral constraint are explicitly included
as part of the Newton–Kantorovich iteration. Therefore, the linear boundary-value
problem solved in each iteration is actually an integrodifferential equation with bound-
ary conditions that are integroalgebraic equations.

To ensure convergence at high currents, we use continuation in the current density
parameter, j, and start with a sufficiently low initial j that the bulk electroneutral
solution is a reasonable initial guess; often, initial j values relatively high compared to
the diffusion-limited current are acceptable. After a small increase in current, we check
that the iteration converges to a correspondingly small perturbation of the previous
solution. Analogous continuation in the δ parameter is also sometimes necessary to
compute solutions at high δ values.

The results of the numerical method are presented in the figures below and in [9]
to test our analytical approximations obtained by asymptotic analysis.

2.3. Recovery of classical results below the limiting current, j � 1 −
O(ε2/3). In the low-current regime, the master equation admits the two distinguished
limits around x = 0 that arise in the classical analysis: x = O(1) and x = O(ε). When
x = O(1), we find the usual bulk electric field from (19) and the bulk concentration
from (17). When x = O(ε), the master equation can be rescaled using x = εy to
obtain

−d3φ

dy3
+

1

2

(
dφ

dy

)3

+ c
¯
o
dφ

dy
+ 2jyε

dφ

dy
= 2jε,(21)

which is equivalent to the classical theory at leading order [9]. In particular, the
Gouy–Chapman structure of the double layer can be derived directly from the Smyrl–
Newman equation in this limit [23].

The anode boundary layer comes from a similar O(ε) scaling around x = 1. Note
that in the j � 1 − ε2/3 regime, the scaling x = O(ε2/3) is not a distinguished limit
because the c

¯
o(

dφ
dx ) term would dominate all other terms in (19).

3. Nested boundary layers at the limiting current, j = 1 − O(ε2/3). In
this section, we show that a nontrivial nested boundary-layer structure emerges at
the classical limiting current when general boundary conditions are considered.
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Fig. 2. Numerical solutions for the dimensionless electric field E(x) at current densities of
j = 0.9 and j = 1.0 demonstrating the expansion of the diffuse layer at the limiting current (kc = 1,
jr = 2, δ = 0.1, and ε = 0.0001). For reference, the vertical line shows where x = ε2/3.

3.1. Expansion of the double layer out of equilibrium. As discussed in the
companion paper [9], the classical analysis breaks down as the current approaches the
diffusion-limited current, j → 1. One sign of the problem is that the charge density
at j = 1 grows near the cathode (x → 0),

ρ = ε2
d2φ

dx2
∼ ε2

x2
.(22)

The classical assumption of charged boundary layers of O(ε) width, therefore, fails
because the charge density, ρ = O(1), would be much larger than the salt concentra-
tion, c ∼ 2x = O(ε), at x = O(ε), which violates bulk electroneutrality. This paradox,
noted by Levich [14], was resolved by Smyrl and Newman [15], who realized that the
structure of the double layer must change near the classical limiting current. In par-
ticular, the width of the diffuse part expands to x = O(ε2/3), beyond which the bulk
charge density remains small, ρ = O(ε2/3), as shown in Figure 2. Here, we revisit this
problem with more general boundary conditions and also consider currents above the
classical limiting current.

Mathematically, the classical asymptotics fails because a new distinguished limit
for the master equation appears as j → 1. Rescaling the master equation using
x = ε2/3z gives us

−d3φ

dz3
+

1

2

(
dφ

dz

)3

+
c
¯
o

ε2/3
dφ

dz
+ 2jz

dφ

dz
= 2j,(23)

which implies that we have a meaningful distinguished limit if c
¯
o = O(ε2/3) or, equiv-

alently, j = 1 − O(ε2/3). In this regime, the double layer is no longer in Poisson–
Boltzmann equilibrium at leading order, and the potential satisfies the more general
equation, (23), for z = O(1) or x = O(ε2/3).

Unfortunately, at this scale, all terms in (23) are O(1), so we are forced to solve
the full equation. Although general solutions can be expressed in terms of Painlevé’s
transcendents [8, 18, 25], these are not convenient for applying our nonlinear boundary
conditions or obtaining physical insight. Even when c

¯
o = o(ε2/3), we are left with a
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complicated differential equation which does not admit a simple analytical solution.
However, in the case c

¯
o = o(ε2/3), it is possible to study the asymptotic behavior

of the solution in the limits z → 0 and z → ∞ by considering the behavior of the
neighboring asymptotic layers.

3.2. Nested boundary layers when |1 − j| = o(ε2/3). The appearance of

the new distinguished limit for j = 1 − O(ε2/3) does not destroy the ones that exist
in the classical analysis. In particular, the O(ε) boundary layer at x = 0 does not
vanish. This inner layer was overlooked by Smyrl and Newman because they assumed
a fixed surface charge density given by the equilibrium zeta potential [15], rather
than more realistic boundary conditions allowing for surface charge variations and
electrochemical reactions.

In the general case, a set of nested boundary layers must exist when the current
is near (or above) the classical limiting current. For convenience, we shall refer to
the x = O(ε2/3) and the x = O(ε) regions as the “Smyrl–Newman” and “inner
diffuse” layers, respectively. It is important to realize that, without the inner layer,
it would be impossible to satisfy any reasonable boundary conditions describing the
electrochemical reactions which support the current. In the Smyrl–Newman layer,
the concentration of the active species (here, cations) nearly vanishes at the limiting
current, since c

¯
0 = O(ε2/3), but this would imply a very small reaction rate density.

The paradox of the original Smyrl–Newman solution (which ignores reactions) is that
there are very few ions available at the cathode, and yet there is a very large reaction
rate and current. The resolution involves an inner layer where the cation concentration
increases to O(1).

In the context of our model of electrochemical reactions, we can also understand
the nested boundary layers on mathematical grounds. Consider the reaction boundary
condition at the cathode, (12). To estimate the c and ρ at the electrode surface, we
rescale (17) and Poisson’s equation using x = ε2/3z to obtain

c = c
¯
o + 2jε2/3z +

ε2/3

2

(
dφ

dz

)2

,(24)

ρ = −ε2/3
d2φ

dz2
,(25)

which means that the concentration and charge density are both O(ε2/3) since c
¯
o =

o(ε2/3) when |1 − j| = o(ε2/3). Then, from the Stern boundary condition, we have

φ(0) = −δεĒ = −δε1/3È = O(δε1/3). Plugging these estimates into the reaction
boundary condition, we find

kcO(ε2/3)eαcδε
1/3È(0) = j + jre

−αaδε
1/3È(0) = O(1).(26)

This equation cannot be satisfied in the limit ε → 0 with δ ≥ 0 fixed, which implies
the existence of the inner diffuse layer. In the Gouy–Chapman model without any
compact layer (δ = 0), (26) reduces to a contradiction, O(ε2/3) = j = constant, and
thus implies the existence of the inner diffuse layer. In the Stern model (δ > 0), it
can only be satisfied for very large values, δ = O(|log ε2/3|/ε1/3), but, since δ is fixed,
the nested inner layer must appear as ε → 0. However, this calculation predicts that
the magnitude of the concentration at the cathode (within the inner layer) decreases
with increasing δ, which is clearly seen in the numerical solutions of Figure 3.

To analyze (23), it is convenient to focus on the electric field rather than the
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Fig. 3. Numerical solutions (solid lines) for the dimensionless electric field E(x) and concen-
tration c(x) at the classical diffusion-limited current (j = 1) compared with leading-order asymptotic
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approximate value for B given by (36), while the dot-dashed curve uses a B value calculated by
numerically solving (33). For reference, the vertical lines show where x = ε and x = ε2/3. The thin
anode diffuse-layer field is not shown.

potential. In terms of the scaled electric field, È(z) ≡ −dφ
dz = ε2/3E(x), (23) becomes

d2È

dz2
− 1

2
È3 − 2j(zÈ + 1) =

c
¯
o

ε2/3
È,(27)

which we shall refer to as the “Smyrl–Newman equation.” From (71) in [9], we know
that the first few terms in the expansion for the bulk electric field at the limiting
current are

−Ē(x) =
1

x
+

3ε2

4x4
+

111ε4

16x7
+

6045ε6

32x10
+ · · ·

=
1

ε2/3

(
1

z
+

3

4z4
+

111

16z7
+

6045

32z10
+ · · ·

)
.

(28)
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Since the second series is asymptotic for z � 1, the expansion in the bulk is valid for
x � ε2/3. In order to match the solution in the Smyrl–Newman layer to the bulk,
we expect the asymptotic solution to (27) as z → ∞ to be given by the expression in
parentheses in (28). We could also have arrived at this result by directly substituting
an asymptotic expansion in 1/z and matching coefficients. As we can see in Figure 3
the leading-order term in (28) is a good approximation to the exact solution in the
bulk and is matched by the solution in the Smyrl–Newman layer as it extends into
the bulk.

We now turn our attention towards the “inner diffuse” layer, which gives us the
asymptotic behavior of the Smyrl–Newman equation in the limit z → 0. Introducing
the scaled variables y = x/ε = z/ε1/3 and Ĕ = εĒ = ε1/3È, (27) becomes

d2Ĕ

dy2
− 1

2
Ĕ3 − 2jε(yĔ + 1) = c

¯
oĔ.(29)

Near the limiting current (i.e., c
¯
o = O(ε2/3)), Ĕ satisfies d2Ĕ

dy2 = 1
2 Ĕ

3 at leading order

with the boundary condition Ĕ → 0 as y → ∞ from the matching condition that È
remains bounded as z → 0. Integrating this equation twice with the observation that
dĔ
dy > 0 gives us

Ĕ(y) ∼ − 2

y + b
,(30)

where b is a constant determined by applying the Butler–Volmer reaction boundary
condition at the cathode. We can estimate c̆(y) and ρ̆(y) by substituting (30) into
(17) and Poisson’s equation to find

c̆(y) = c
¯
o + 2jx +

ε2

2
Ē(x)2 = c

¯
o + 2jεy +

1

2
Ĕ(y)2 =

2

(y + b)2
+ O(ε),(31)

ρ̆(y) = ε2
dĒ

dx
=

dĔ

dy
=

2

(y + b)2
+ O(ε).(32)

Therefore, b satisfies the following transcendental equation at leading order:

kc
4

b2
e2αcδ/b = j + jre

−2αaδ/b.(33)

While this equation does not admit a simple closed-form solution, we can compute
approximate solutions in the limits of small and large δ values. In the small δ limit,
we can linearize (33) and expand b in a power series in δ to obtain

b ∼ 2

√
kc

j + jr
+ δ

(
αc +

αajr
j + jr

)
+ O(δ2).(34)

At the other extreme, for δ � 1, (33) can be approximated by

kc
4

b2
e2αcδ/b ≈ j.(35)

Then, using fixed-point iteration on the approximate equation, we find that

b ∼ 2αcδ

log κ− 2 log log κ + O (log log log δ2)
,(36)
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where κ ≡ jα2
cδ

2/kc. Figure 3 shows that the leading-order approximation (30) is very
good in the inner diffuse layer as long as an accurate estimate for b is used. While
the small δ approximation for b is amazingly good (the asymptotic and numerical
solutions are nearly indistinguishable), the large δ estimate for b is not as good but
is only off by an O(1) multiplicative factor.

Before moving on, it is worth noting that the asymptotic behavior of the con-
centration and charge density in the Smyrl–Newman layer as z → 0 and z → ∞
suggests that the charge density is low throughout the entire Smyrl–Newman layer.
Figure 3 shows how the Smyrl–Newman layer acts as a transition layer, allowing the
bulk concentration to become small near the cathode while still ensuring a sufficiently
high cation concentration at the cathode surface to satisfy the reaction boundary
conditions. The transitional nature of the Smyrl–Newman layer becomes even more
pronounced for smaller values of ε.

4. Bulk space charge above the limiting current, 1 + O(ε2/3) � j �
O(1/ε). As current exceeds the classical limiting value, the overlap region between
the inner diffuse and Smyrl–Newman layers grows to become a layer having O(1)
width. Following other authors [16, 22], we shall refer to this new layer as the “space-
charge” layer because, as we shall see, it has a nonnegligible charge density compared
to the rest of the bulk. Therefore, in this current regime, the central region of the
electrochemical cell is split into two pieces having O(1) width separated by an o(1)
transition layer.

In the bulk, the solution remains unchanged except that c
¯
o cannot be approxi-

mated by 1 − j; the contribution from the integral term is no longer negligible. The
need for this correction arises from the high electric fields required to drive current
through the electrically charged space-charge layer. With this minor modification, we
find that the bulk solution is

c̄(x) = c
¯
o + 2jx,

Ē(x) =
1

xo − x
,(37)

where xo ≡ −c
¯
o/2j is the point where the bulk concentration vanishes (see Figure 4).

Between the two O(1) layers, there is a small transition layer. Rescaling the
master equation using the change of variables z = (x−xo)/ε

2/3 and É(z) = ε2/3Ē(x),
we again obtain the Smyrl–Newman equation, (27), with right-hand side equal to
zero. As before, we find that the solution in the transition layer approaches −1/z
as z → ∞. In the other direction as z → −∞, we will find that the appropriate
boundary condition is É → −2

√
j|z| to match the electric field in space-charge layer.

4.1. Structure of the space-charge layer. Physically, we could argue that
the concentration of ions in the space-charge layer is very small (i.e., zero at leading
order) because the layer is essentially the result of stretching the ionic content of
the overlap between the inner diffuse and Smyrl–Newman layers, which is small to
begin with, over an O(1) region. This physical intuition is confirmed by the numerical
solutions shown in Figures 4, 5, and 6. Therefore, using (17), we obtain the leading-
order solution for the electric field

Ẽ ∼ −2
√
j (xo − x)

ε
.(38)

Note that the magnitude of the field is exactly what is required to make the integral
term in c

¯
o an O(1) contribution. From this formula, it is easy to compute the charge
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Fig. 4. Numerical solutions (solid lines) for the dimensionless electric field E(x), average con-
centration c(x), and charge density ρ(x) above the diffusion-limited current (j = 1.5) compared with
leading-order asymptotic approximations (dashed lines) for kc = 1, jr = 2, ε = 0.01, and δ = 0.1, 10.
The leading-order bulk approximations are given by (37). In the space-charge layer, the leading-order
electric field is given by (38), and leading-order concentration is 0. Finally, (58) and (59) are the
diffuse-layer asymptotic approximations for the electric field and concentration, respectively. For
reference, the vertical lines show where x = ε and x = xo.

density in the space-charge layer:

ρ̃ = ε2
dẼ

dx
∼ ε

√
j

xo − x
,(39)

which is an order of magnitude larger than the O(ε2) charge density in the bulk. The
O(ε) charge density also implies that the concentration must be at least O(ε) because
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Fig. 5. Numerical solutions for the dimensionless cation and anion concentrations above the
diffusion-limited current (j = 1.5) for kc = 1, jr = 2, ε = 0.01, and δ = 0.1, 10. For reference, the
vertical lines show where x = ε and x = xo.

the anion concentration, c− ρ, is positive.
With the electric field given by (38), we can determine the values of xo and c

¯
o

by solving the system of equations given by the definition of xo and c
¯
o. Using (18)

to calculate c
¯
o and noticing that the leading-order contribution to the integral comes

from the space-charge layer, we obtain

c
¯
o ∼ 1 − j

(
1 + x2

o

)
.(40)

Combining this result with xo = −c
¯
o/2j, we find that

xo ∼ 1 − j−1/2, c
¯
o ∼ 2(j1/2 − j),(41)

which can be substituted into (37) and (38) to yield the leading-order solutions in
the bulk and space-charge layers. It should be noted that the expression for xo is
consistent with the estimate for the width found by Bruinsma and Alexander [21] and
Chazaviel [22] in the limits j−1 � 1 and small space-charge layer (xo � 1), although
our analysis also applies to much larger voltages.

The results obtained via physical arguments in the previous few paragraphs moti-
vate an asymptotic series expansion for E whose leading-order term is O(1/ε). More-
over, because we want to be able to balance the current density at second order, we
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Fig. 6. Numerical solutions (solid lines) for the dimensionless electric field E(x), average con-
centration c(x), and charge density ρ(x) far above the diffusion-limited current (j = 10.0) compared
with leading-order asymptotic approximations (dashed lines) for kc = 1, jr = 2, ε = 0.01, and
δ = 0.1. Each field is shown twice: (1) with x on log scale to focus on the cathode region and
(2) with x on a linear scale to emphasize the interior of the cell. Note that jε = 0.1, so the asymp-
totic approximations are not as good as at lower current densities. For reference, the vertical lines
show where x = ε and x = xo.

choose the second-order term to be O(j). Thus, we have

Ẽ =
1

ε
E−1 + E0j + · · · .(42)

Note that in this asymptotic series, the first term dominates the second term only
as long as j � 1/ε, so the following analysis holds exclusively for current densities
far below O(1/ε). Figure 6 illustrates the breakdown of the leading-order asymptotic
solutions at very high current densities. While the qualitative features of the asymp-
totic approximation are correct (e.g., the shape of E(x) in the diffuse layer and the
slope of c(x) in the bulk), the quality of the approximation is clearly less than at lower
values of j.

The key advantage of a more systematic asymptotic analysis is that we are able to
calculate the leading-order behavior of the space-charge layer concentration c̃, which
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is not possible with only knowledge of the leading-order behavior for the electric field.
Substituting (42) into the master equation (20), it is straightforward to obtain

Ẽ ∼ −2

ε

√
j (xo − x) − 1

2 (xo − x)
+ · · · .(43)

Using this expression in (17), we find the dominant contribution to c̃ is exactly the
same as ρ̃:

c̃ ∼ ε

√
j

xo − x
.(44)

Since c− = c − ρ, this result leads to an important physical conclusion: The space-
charge layer is essentially depleted of anions, c− = o(ε), as is clearly seen in Figures
4 and 5. This contradicts our macroscopic intuition about electrolytes, but, in very
thin films, complete anion deplection might occur. For example, in a microbattery
developed for on-chip power sources using the Li/SiO2/Si system, lithium ion conduc-
tion has recently been demonstrated in nanoscale films of silicon oxide, where there
should not be any counterions or excess electrons [6].

At leading order as ε → 0, the anion concentration, c−, can be set to zero in the
space-charge layer, leaving the following two governing equations:

dc+
dx

+ c+
dφ

dx
= 4j,(45)

−ε2
d2φ

dx2
=

1

2
c+.(46)

As with the binary electrolyte case, these equations can be reduced to a single equation
for the electric potential:

d3φ

dx3
+

d2φ

dx2

dφ

dx
= −2j

ε2
.(47)

Integrating this equation once, we obtain a Riccati equation for dφ
dx :

d2φ

dx2
+

1

2

(
dφ

dx

)2

= −2j

ε2
(x− xo) + h,(48)

where h is an integration constant. Using the transformations

u ≡ eφ/2, z ≡ −j1/3

ε2/3
(x− xo) +

ε4/3h

2j2/3
,(49)

we find that u satisfies Airy’s equation,

d2u

dz2
− zu = 0.(50)

Thus, the general solution for φ(x) is

φ(x) = 2 log

[
a1Ai

(
j1/3

ε2/3
(xo − x) + βh

)
+ a2Bi

(
j1/3

ε2/3
(xo − x) + βh

)]
,(51)

where a1 and a2 are constants determined by boundary conditions and β = ε4/3

2j2/3 .
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To simplify this expression, note that in the limit ε → 0, the potential drop
between x = xo and x = 0 is approximately

φ (xo) − φ(0) ∼ 2 log

⎡
⎣ a1Ai(0) + a2Bi(0)

a1Ai
(

xoj1/3

ε2/3

)
+ a2Bi

(
xoj1/3

ε2/3

)
⎤
⎦ .(52)

Now, using the large argument behavior of the Airy functions, we see that as ε → 0,
the argument of the logarithm approaches zero. Thus, we are lead to the conclusion
that the electric potential at x = xo is less than at x = 0. However, this is completely
inconsistent with our physical intuition and the numerical results, which show that
φ(xo) − φ(0) > 0. Therefore, it must be the case that a2 ≈ 0, so that

φ(x) = 2 log

[
a1Ai

(
j1/3

ε2/3
(xo − x) + βh

)]
(53)

and

E(x) =
2j1/3

ε2/3

Ai′
(

j1/3

ε2/3 (xo − x) + βh
)

Ai
(

j1/3

ε2/3 (xo − x) + βh
) .(54)

In principle, the integration constants h and a1 can be determined by matching to
the inner diffuse layer, x = O(ε) (described below), and the bulk transition layer,
|x0 − x| = O(ε2/3) (described above). Here, the main point is that the leading-
order approximation for the electric field when the region is depleted of anions is
exactly (38), which follows from the asymptotic form of Ai(z) and Ai′(z) as z → ∞
in (54). The equivalence of the single-ion equations and the full governing equations
at leading order mathematically confirms the physically interpretation of the space-
charge layer as a region of anion depletion.

4.2. Boundary layers above the limiting current. To complete our analysis
of the high-current regime, 1+O(ε2/3) � j � O(1/ε), we must consider the boundary
layers. At the anode, all fields are O(1), so we recover the usual Gouy–Chapman solu-
tion with the minor modification that c1 = 2

√
j, which is the value c̄ takes as x → 1.

The cathode structure, however, is much more interesting because it is depleted of
anions (see Figure 5). To our knowledge, this nonequilibrium inner boundary layer on
the space-charge region, related to the reaction boundary condition at the cathode,
has not been analyzed before.

As in the space-charge layer, the leading-order governing equations in this layer
are those of a single ionic species with no counterions (45) and (46). Rescaling those
equations using x = εy, we obtain

dč+
dy

+ č+
dφ̌

dy
= 4jε ≈ 0,(55)

−d2φ̌

dy2
=

1

2
č+.(56)

From these equations, it is immediately clear that the cations have a Boltzmann
equilibrium profile at leading order: c+ ∝ e−φ(y). As in the analysis for the space-
charge layer, it is possible to find a general solution to (55) and (56). By combining
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these equations and integrating, we find that the potential in the cathode boundary
layer has the form

φ̌ ∼ log
[
sinh2(py + q)

]
+ r,(57)

where p, q, and r are integration constants. Therefore, the electric field and concen-
tration are

Ě(y) ∼ −2p coth(py + q),(58)

č(y) =
1

2
č+(y) ∼ 2p2

sinh2(py + q)
.(59)

Matching the electric fields in the diffuse and space-charge layers, we find that
p ∼

√
jxo. Note that because p = O(

√
j), the electric field in the diffuse charge

layer is O(
√
j/ε), which is the same order of magnitude as in the space-charge layer.

To solve for q, we use the expression for p in the cathode Stern and Butler–Volmer
boundary conditions, which leads to the following nonlinear equation:

4kcjxo

sinh2 q
exp

(
2αcδ

√
jxo coth q

)
− jr exp

(
−2αaδ

√
jxo coth q

)
= j.(60)

In the limit of small δ, we can use fixed-point iteration to obtain an approximate
solution,

q ∼ sinh−1

(
2

√
kcjxo exp

(
2αcδ

√
jxo coth qo

)
j + jr exp

(
−2αaδ

√
jxo coth qo

)
)
,(61)

where qo has the same form as q with (coth qo) set equal to 1. For δ � 1, the
leading-order equation is

4kcjxo

sinh2 q
exp

(
2αcδ

√
jxo coth q

)
∼ j,(62)

which implies that q � 1, so that the left-hand side can be small enough to balance
the current. Thus, by using coth q ≈ 1 and sinh q ≈ exp(q)/2, we find that q ∼
αcδ

√
jxo + 1

2 log(16kcxo). The agreement of these asymptotic approximations with
the numerical solutions in the diffuse charge layer is illustrated in Figure 4.

5. Polarographic curves. We are now in a position to compute the leading-
order behavior of the polarographic curve at and above the classical limiting current.
Recall that the formula for the cell voltage is given by

v = −δεE(0) +

∫ 1

0

−E(x)dx− δεE(1).(63)

The integral is the voltage drop through the interior of the cell, and the first and last
terms account for the potential drop across the Stern layers.

At the limiting current, j = 1, we can estimate the voltage drop across the cell by
using the bulk and diffuse-layer electric field to approximate the field in the Smyrl–
Newman transition layer to obtain

v ∼ −δεE(0) +

∫ ε2/3

0

−E(x)dx +

∫ 1

ε2/3

−E(x)dx− δεE(1)(64)

∼ 2
δ

b
+ 2 log

(
ε−1/3 + b

b

)
− 2

3
log ε.(65)

Notice that in the small δ limit, this expression reduces to v ∼ − 4
3 ln ε as ε → 0. The
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Fig. 7. Comparison of numerical polarographic curves (dashed lines) with leading-order asymp-
totic approximations (solid lines) given in (66) for several values of ε with δ = 1.0, kc = 1, and
jr = 2. For ε = 0.001, the numerical and asymptotic polarographic curves are indistinguishable on
this graph. For reference, the vertical dashed line shows the classical diffusion-limited current j = 1.

Table 1

Comparison of the asymptotic approximations (65) and (66) with numerically calculated values
for the cell voltage at various ε and δ values. These cell voltages were computed with kc = 1 and
jr = 2.

j = 1.0 j = 1.5
ε δ vexact vasym vexact vasym

1e-4 0.01 13.125 12.101 1297.799 1289.621
1e-4 1.00 13.222 12.374 1297.048 1291.101
1e-4 10.0 14.290 13.571 1305.318 1300.129
1e-3 0.01 10.165 9.146 140.207 132.790
1e-3 1.00 10.277 9.475 139.450 134.270
1e-3 10.0 11.552 10.890 147.717 143.299
1e-2 0.01 7.339 6.303 22.434 15.725
1e-2 1.00 7.479 6.729 21.624 17.206
1e-2 10.0 9.228 8.465 29.886 26.234
1e-1 0.01 4.922 3.649 9.479 2.637
1e-1 1.00 5.005 4.219 7.790 4.118
1e-1 10.0 7.995 6.327 16.088 13.146

dependence, v(j = 0) ∝ ln ε, is clear in the numerical polarographic curves shown
in Figure 7. (See also Figure 4 of the companion paper [9].) Table 1 compares this
approximation with the exact cell voltage for a few ε and δ values. For small ε values
(ε ≤ 0.01), the asymptotic approximations are fairly good (within 5% to 10%).

Above the limiting current, the space-charge layer makes the dominant contribu-
tion to the cell voltage. Using (37) and (38) in the formula for the cell voltage, we
find that

v ∼ 4
√
j

3ε

(
1 − j−1/2

)3/2

+ 2δ
(
j −

√
j
)1/2

coth q − 1

2
log j − 2/3 log ε.(66)

The first two terms in this expression estimate the voltage drop across the space-charge
and the cathode Stern layers, respectively. The last two terms are the subdominant
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contribution from the bulk where we have somewhat arbitrarily taken x = xo+ε2/3 as
the boundary between the bulk layer and the Smyrl–Newman transition layer. Notice
that we ignore the contribution from the cathode diffuse and Smyrl–Newman layers.
It is safe to neglect the diffuse layer because it is an O(1) contribution. However, the
Smyrl–Newman layer has a nonnegligible potential drop that we have to accept as
error since we do not have an analytic form for the solution in that region.

Figure 7 shows that the asymptotic polarographic curves are quite accurate for
sufficiently small ε values. In Table 1, we compare the results predicted by the asymp-
totic formula with numerical results for a few specific values of ε and δ. It is interesting
that the approximation is also better for large δ values (we explain this observation
in the next section). Also, while the log ε term is subdominant, it makes a significant
contribution to the cell voltage for ε values as small as 0.01.

As with the width of the space-charge layer, xo, our expression for the cell voltage,
(66), is consistent with the results of Bruinsma and Alexander [21] and Chazaviel [22]
near the limiting current, j → 1+, while remaining valid at much larger currents,
j = O(1/ε).

6. Effects of the Stern-layer capacitance. The inclusion of the Stern layer
in the boundary conditions allows us to explore the effects of the intrinsic surface
capacitance on the structure of the cell. From Figures 3 through 5, we can see that
smaller Stern-layer capacitances (i.e., larger δ values) decrease the concentration and
electric-field strength in the cathode diffuse layer. This behavior arises primarily from
the influence of the electric field on the chemical kinetics at the electrode surfaces.
When the capacitance of the Stern layer is low, small electric fields at the cathode
surface translate into large potential drops across the Stern layer, (10), which help
drive the deposition reaction, (12). As a result, neither the electric field nor the cation
concentration need to be very large at the cathode to support high-current densities.
These results confirm our physical intuition that it is only important to pay attention
to the diffuse layer when the Stern-layer potential drop is negligible (i.e., δ � 1).

At high currents, another important effect of the Stern-layer capacitance is that
the total cell voltage becomes dominated by the potential drop across the Stern layer
at large δ values (i.e., small capacitances). This behavior is clearly illustrated in
Figure 8. Notice that for currents below the classical diffusion-limited current, the
total cell voltage does not show a strong dependence on δ. However, for j > 1, the total
cell voltage increases with δ—the increase being driven by the strong δ dependence
of the Stern voltage.

7. Conclusion. In summary, we have studied the classical problem of direct
current in an electrochemical cell, focusing on the exotic regime of high-current den-
sities. A notable new feature of our study is the use of nonlinear Butler–Volmer and
Stern boundary conditions to model a thin film passing a Faradaic current, as in a
microbattery. We have derived leading-order approximations for the fields at and
above the classical, diffusion-limited current, paying special attention to the structure
of the cathodic boundary layer, which must be present to satisfy the reaction bound-
ary conditions. In our analysis of superlimiting current, we have shown that the key
feature of the bulk space-charge layer is the depletion of anions. Our exact solution
of the leading-order problem in the space-charge region, (51), could thus also have
relevance for Faradaic conduction through very thin insulating films.

Using the asymptotic approximations to the fields, we are able to derive a current-
voltage relation, (66), which compares well with numerical results, far beyond the
limiting current. Combined with the analogous formulae in the companion paper [9],
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Fig. 8. These graphs break the total cell voltage into contributions from the cell interior and the
Stern layer as a function of δ for ε = 0.01, kc = 2, and jr = 2. Note that at and above the classical
limiting current, the Stern-layer voltage dominates the total cell voltage for large values of δ.

which hold below the limiting current, we have essentially analyzed the full range of
the current-voltage relation. These results could be useful in interpreting experimental
data, e.g., on the internal resistance of thin-film microbatteries.

A general conclusion of this study is that boundary conditions strongly affect
the solution. For example, the Stern-layer capacitance, often ignored in theoretical
analysis, plays an important role in determining the qualitative structure of the cell
near the cathode, as well as the total cell voltage. The nonlinear boundary condi-
tions for Butler–Volmer reaction kinetics also profoundly affect charge distribution
and current-voltage relation, compared to the ubiquitous case of Dirichlet boundary
conditions. The latter rely on the assumption of surface equilibrium, which is of
questionable validity at very large currents.

We leave the reader with a word of caution. The results presented here are valid
mathematical solutions of standard model equations, but their physical relevance
should be met with some skepticism under extreme conditions, such as superlimiting
current. For example, the PNP equations are meant to describe infinitely dilute
solutions in relatively small electric fields [7, 28, 29]. Even for quasi-equilibrium
double layers, their validity is not so clear when the zeta potential greatly exceeds the
thermal voltage, because co-ion concentrations may exceed the physical limit required
by discreteness (accounting also for solvation shells) and counterion concentrations
may become small enough to violate the continuum assumption. Large electric fields
can cause the permittivity to vary, by some estimates up to a factor of ten, as solvent
dipoles become aligned. Including such effects, however, introduces further ad hoc
parameters into the model, which may be difficult to infer from experimental data.
Instead, we suggest using our analytical results (especially current-voltage relations)
to test the validity of the basic model equations in thin-film experiments.
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