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ABSTRACT

Using a recently proposed mathematical model for intercalation dynamics in phase-separating materials (Singh, G. K.; Ceder, G.; Bazant, M. Z.
Electrochimica Acta 2008, 53, 7599.), we show that the spinodal and miscibility gaps generally shrink as the host particle size decreases to
the nanoscale. Our work is motivated by recent experiments on the high-rate Li-ion battery material LiFePO4; this serves as the basis for our
examples, but our analysis and conclusions apply to any intercalation material. We describe two general mechanisms for the suppression of
phase separation in nanoparticles, (i) a classical bulk effect, predicted by the Cahn-Hilliard equation in which the diffuse phase boundary
becomes confined by the particle geometry; and (ii) a novel surface effect, predicted by chemical-potential-dependent reaction kinetics, in
which insertion/extraction reactions stabilize composition gradients near surfaces in equilibrium with the local environment. Composition-
dependent surface energy and (especially) elastic strain can contribute to these effects but are not required to predict decreased spinodal and
miscibility gaps at the nanoscale.

Intercalation phenomena occur in many chemical and
biological systems, such as graphite intercalation com-
pounds,1 DNA molecules,2 solid-oxide fuel cell electrolytes,3

and Li-ion battery electrodes.4 The intercalation of a chemical
species in a host compound involves the nonlinear coupling
of surface insertion/extraction reaction kinetics with bulk
transport phenomena. It can therefore occur by fundamentally
different mechanisms in nanoparticles and molecules com-
pared to macroscopic materials due to the large surface-to-
volume ratio. Intercalation dynamics can also be further
complicated by phase separation kinetics within the host
material. This poses a challenge for theorists, since phase
transformation models have mainly been developed for
periodic or infinite systems in isolation,5 rather than nano-
particles driven out of equilibrium by surface reactions.

In this paper, we ask the basic question, “Is nano
different?”, for intercalation phenomena in phase-separating
materials. Our analysis is based on a general mathematical
model for intercalation dynamics recently proposed by Singh,
Ceder, and Bazant (SCB).6 The SCB model is based on
the classical Cahn-Hilliard equation7 with a novel boundary
condition for insertion/extraction kinetics based on local
chemical potential differences, including concentration-
gradient contributions. For strongly anisotropic nanocrystals,
the SCB model predicts a new mode of intercalation
dynamics via reaction-limited nonlinear waves that propagate
along the active surface, filling the host crystal layer by layer.

Here, we apply the model to the thermodynamics of
nanoparticle intercalation and analyze the size dependence
of the miscibility gap (metastable uniform compositions) and
the spinodal region (linearly unstable uniform compositions)
of the phase diagram.

Our work is motivated by Li-ion battery technology, which
increasingly involves phase-separating nanoparticles in re-
versible electrodes. The best known example is LiFePO4, a
promising high-rate cathode material8 that exhibits strong
bulk phase separation.8-10 Experiments have shown that using
very fine nanoparticles (<100 nm) can improve power
density11,12 and (with surface modifications) achieve “ul-
trafast” discharging of a significant portion of the theoretical
capacity.13 Experiments also provide compelling evi-
dence10,14-16 for the layer-by-layer intercalation waves (or
“domino cascade”15) predicted by the SCB theory,6,17 in
contrast to traditional assumption of diffusion limitation in
battery modeling.18,19

There is experimental evidence that the equilibrium
thermodynamics of LiFePO4 is different in nanoparticles.
Recently, Meethong et al. have observed that, as the crystal
size decreases, the miscibility gap between the lithium-rich
and lithium-poor phases in the material shrinks significantly20

(i.e., the tendency for phase separation is reduced). A
suggested explanation is that smaller particles experience
relatively larger surface effects, which has been supported
by calculations with a phase-field model.21 However, it has
also been seen experimentally that carbon coating can reduce
these surface effects and prevent the surface-induced reduc-
tion of the miscibility gap.22
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We will show that the SCB model predicts that the
spinodal and miscibility gaps both decrease as the particle
size decreases, even in the absence of the above-mentioned
surface effects. The analysis reveals two fundamental mech-
anisms, (i) nanoconfinement of the interphase boundary, and
(ii) stabilization of the concentration gradients near the
surface by insertion/extraction reactions. These effects are
independent of surface energy models and indeed are valid
for any phase-separating intercalation system.

Model. We employ the general SCB model for intercala-
tion dynamics, based on the Cahn-Hilliard equation with
chemical-potential-dependent surface reactions, without any
simplifying assumptions.6 In particular, we do not specialize
to surface-reaction-limited or bulk-transport-limited regimes
or perform any depth averaging for strongly anisotropic
crystals.6,17 Our field of interest is c(x, t), the local concentra-
tion of the intercalated diffusing species (e.g., Li in LiFePO4).
Let F be the density of intercalation sites per unit volume in
the system (e.g., occupied by Li ions or vacancies), assumed
to be constant and independent of position and local
concentration. We take c to be normalized by F, so it is
nondimensional and only takes values between 0 and 1 (e.g.,
in the local compound LicFePO4).

We assume that the free energy of mixing in our model
system is well approximated by the Cahn-Hilliard
functional5,7,23

The function ghom(c) is the free energy per molecule of a
homogeneous system of uniform concentration c, which is
nonconvex in systems exhibiting phase separation. The
gradient penalty tensor K is assumed to be a constant
independent of x and c. Then the diffusional chemical
potential (in energy per molecule) is the variational derivative
of Gmix

The mass flux (in molecules per unit area per unit time)
is given by the linear constitutive relation24

where M is a mobility tensor (denoted B by SCB6). Finally,
the dynamics are governed by the mass conservation equation

For illustration purposes, we employ the regular solution
model for the homogeneous free energy25

The two terms give the enthalpy and entropy of mixing,
respectively. When numerical values are needed, we will use
a/kBT ) 5, which is in rough agreement at room temperature
with measurements on LiFePO4.26 Of course, other models
are possible, but for the intercalation of a single species in
a crystal with bounded compositions 0 < c < 1, the
homogeneous chemical potential µhom(c) ) ghom′ (c) must
diverge in the limits c f 0+ and c f 1- due to entropic
contributions from particles and vacancies. (This constraint
is violated, for example, by the quartic ghom(c) from Landau’s
theory of phase transitions, suggested in a recent paper on
LiFePO4

16 following SCB.)
Note that K/kBT has units of length-squared. Since it is

assumed that K is positive-definite, we may denote its
eigenvalues by kBTλi

2 for real, positive lengths λi. In
particular, when K is diagonal, we define λi ≡ (Kii/kBT)1/2.
When the system is phase-separated into high-c and low-c
regions, these λi are the length scales for the interphasial
widths in the different eigendirections.5,23 More precisely,
setting µ ) 0 in eq 2 implies that the interphasial width in
the ith direction scales like Lint ∼ λi[(kBT)/a]1/2, since a is the
energy scale for the homogeneous free-energy increase per
particle in the diffuse interface. A thin phase interface
(compared to the particle size L) thus carries an effective
tension γi ∼ LintaF ∼ λiF(akBT)1/2, proportional to λi. In
LiFePO4, experimental evidence10 suggests that one of these
widths is about 4 nm (though the λi in the other two directions
might be large, comparable to the particle size, as phase-
separation in these directions is not believed to occur). These
are therefore the natural length scales for measuring the size
of phase-separating nanocrystals.

Our system of equations is closed by the following
boundary conditions on the surface of the nanoparticle

where n̂ is an outward unit normal vector. Equation 6 is the
so-called variational boundary condition, which is natural
for systems without surface energies or surface diffusion. A
full discussion of its use in time-dependent problems is
beyond the scope of this paper; a simple explanation is that,
by the flux law (eq 3), discontinuities in the chemical
potential are instantly smoothed away, and eq 6 enforces
this continuity at the boundary of the system.27 Equation 7
is a general flux condition enforcing mass conservation,
where Fs is the surface density of intercalation sites, and R
is the net local rate of intercalant influx (insertion) across
the boundary. In the classical Cahn-Hilliard (CH) model,
no mass flux across the boundary is allowed, and thus R )
0. For intercalation systems,6,17 we allow for a nonzero
reaction rate R depending on the local values of c and µ and
refer to this general set of equations as the Cahn-Hilliard
with reactions (CHR) system.

For the current work (and indeed, for many of the
conclusions reached by SCB6), the particular form of R is
unimportant. According to statistical transition-state theory

Gmix[c] ) ∫V [ghom(c) + 1
2

(∇c) · K(∇c)]FdV (1)

µ(x, t) )
∂ghom(c)

∂c
- ∇ · (K∇c) (2)

J(x, t) ) -FcM∇µ (3)

∂(Fc)
∂t

+ ∇ · J ) 0 (4)

ghom(c) ) ac(1 - c) + kBT[c log c + (1 - c)log(1 - c)]
(5)

n̂ · (K∇c) ) 0 (6)

n̂ · J ) -FsR (7)
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in a concentrated solution, the net insertion rate is given by
the difference of insertion and extraction rates, each having
Arrhenius dependence on an (excess) chemical potential
barrier. In order to satisfy de Donder’s equation,25 it must
have the general form

where Rins is the rate for the insertion reaction. For
thermodynamic consistency, this µ must be the same as the
diffusional chemical potential used in the bulk equations,
and µe is the external chemical potential of the intercalants
in a reservoir phase outside of the particle (e.g., Li+ in the
electrolyte and e- in the metallic current collector of a Li-
ion battery electrode); note that we are again assuming that
the particle surface is energetically identical to the bulk. If
the reaction rates were controlled by electrostatic potential
differences, for example, then Rins could include transfer
coefficients and the interfacial voltage drop, and the familiar
Butler-Volmer model for charge-transfer reactions28 would
be recovered in the limit of a dilute solution. Following
SCB,6 we do not make any dilute solution approximation
and keep the full CH expression for µ (eq 2), including the
second derivative term, while assuming a uniform external
environment at constant µe. Although different models are
possible for the chemical potential of the transition state,
we make the simple approximation of a constant insertion
rate Rins, consistent with particles impinging on the surface
at constant frequency from the external reservoir. In that case,
the composition dependence of R enters only via the
extraction rate.

The CH Miscibility Gap. Outside of the spinodal range,
systems with uniform concentration fields are linearly stable.
However, if there exists a phase-separated solution with the
same overall amount of our material but with a lower free
energy, then the uniform system will only be metastable.
We will demonstrate that the miscibility range, the set of
overall concentrations for which phase separation is energeti-
cally favorable, shrinks as the particle size decreases.

Unlike the spinodal, the miscibility gap cannot be studied
analytically. Instead, we must solve our original set of eqs
2-4 numerically, looking for phase-separated systems with
lower free energies than the uniform system with the same
overall concentration. We focus only on one-dimensional
systems, or equivalently three-dimensional systems whose
phase boundary is perpendicular to one of the eigendirections
and whose concentration field is uniform in the other two
directions. Note that there is experimental10 and theoretical15

evidence that this is an accurate picture for the concentration
field in LiFePO4. We will henceforth drop the subscripts on
λ and call L the length of the system.

We begin by fixing a single crystal size. For each value
of the average concentration, we choose a corresponding
initial condition, and we solve the Cahn-Hilliard equation
(using a semidiscrete finite volume method and the no-flux
boundary condition). The system is stepped forward in time

until the free energy reaches a minimum. The resulting free
energies of mixing for three different crystal sizes and a range
of average concentrations are plotted in Figure 1a. Note that
the curves do not extend across the entire x-axis. This is
because for sufficiently extreme average concentrations no
initial conditions can be found that lead to a phase-separated
steady state. This suggests that such states do not exist or
that if they do exist they are not local minimizers of Gmix.
The phase-separated energy curves do extend slightly past the
uniform curve, allowing us to estimate the end points of the
miscibility gap. The results suggest that the miscibility gap
shrinks as the crystal size decreases.

To validate this hypothesis, we performed a more
exhaustive search for phase-separated, steady-state solu-
tions near the apparent miscibility end points. This was
done using the shooting method for boundary value
problems to compute concentration fields satisfying eq 2
with µ ) constant. The resulting field that extremized the
average concentration while still having a smaller free energy
of mixing than the corresponding constant field was con-
sidered to be the boundary of the miscibility region. The

R ) Rins[1 - exp(µ - µe

kBT )] (8)

Figure 1. The free energies in the first plot are given per
intercalation site so that they are comparable across different crystal
sizes. The dotted line indicates the free energy of mixing per site
for a uniform system of the given concentration.

Nano Lett., Vol. xx, No. x, XXXX C
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calculated miscibility gap widths over a range of crystal sizes
are plotted in Figure 1b; they clearly support a shrinking
miscibility gap.

There is a simple physical explanation for this behavior.
As discussed above, the interphase region will normally have
a width on the order of λ. The average concentration can
only be close to 0 or 1 if this interphase region is close to a
system boundary. At this point, the average concentration
can only become more extreme if the interphase region is
compressed or disappears. If it disappears, then we are left
with a uniform system, and the average concentration is
outside of the miscibility gap. The other alternative, though,
is expensive energetically due to the gradient penalty term
in eq 1. Thus low-energy, phase-separated systems are
limited geometrically to those concentrations in which the
interphase region is (relatively) uncompressed between the
crystal boundaries. As the crystal size decreases, the limits
imposed on the average concentration by the incompress-
ibility of the interphase region becomes more and more
severe, and thus the miscibility gap must shrink.

The CHR Spinodal Gap. The spinodal gap is the set of
concentrations for which an initially uniform system will
spontaneously decompose through the exponential growth
of infinitesimal fluctuations. Thus, perturbation theory is the
relevant mathematical tool, and we look for solutions to the
CHR system of the form

where c0 is a constant and ε is a small parameter. If c0 is
truly a static solution to the CHR equations, then by eq 8 µe

must equal µ0 ) ∂ghom(c0)/∂c at all points on the boundary
of V. The first-order system derived by linearizing about c0

is then

with the boundary conditions

This is a fourth-order, linear system with constant coef-
ficients. Note that the exact same set of equations would
result even had we taken K and M to be functions of c; the
tensors above would only need to be replaced by the (still
constant) values K(c0) and M(c0).

If we have an infinite system with no boundaries, then
the Fourier ansatz eik·xest solves the above system if and only
if it satisfies the dispersion relation

Since M and K must be positive-semidefinite, s will be
nonpositive whenever ∂2ghom(c0)/∂c2 g 0. However, if
∂2ghom(c0)/∂c2 < 0, then the c0 will be unstable to long-
wavelength perturbations. In particular, for the regular
solution model (eq 5) the criterion for linear stability
becomes

Thus a high enthalpy of mixing will promote instability
of uniform systems with moderate concentrations.

If instead the system geometry is finite, then the boundary
conditions will constrain the set of allowable wave vectors
k. We again focus on one-dimensional systems for simplicity.
Then if the system occupies the line segment from 0 to L,
the general solution of the perturbed equations for the CH
system (Rins ) 0) is a sum of terms of the form

for any integer n. The dispersion relation (eq 10) still holds,
but the wavenumber must equal nπ/L for integer values of
n in order to satisfy the boundary conditions. In other words,
we can no longer perturb the system with arbitrarily long
wavelengths. The stability criterion is ∂2ghom(c0)/∂c2 > -π2λ2/
L2.

For the regular solution model (eq 10), the criterion for
linear stability becomes

The spinodal region is defined as the range (R, 1 - R) of
unstable c0 values. It is easily verified that R is a decreasing
function of L, that is, that the spinodal range is more narrow
for smaller crystals. Moreover, for sufficiently small values
of λ/L, the above inequality is satisfied for all values of c0,
in which case there is no spinodal region at all. These facts
are demonstrated in Figure 2. These results date back to
Cahn’s 1961 paper7 and are known in the phase-field
community. However, it seems that their relevance for
nanoparticle composites, as in Li-ion batteries, has not yet
been appreciated.

Moving beyond classical bulk models, we will now show
that nonzero boundary reactions can further reduce the
spinodal gap width. Even the linear perturbed system of
equations is no longer analytically tractable when Rins * 0,
and in particular the wave numbers are no longer simply

c(x, t) ) c0 + εc1(x, t)

µ1(x, t) )
∂

2ghom(c0)

∂c2
c1 - ∇ · (K∇c1) (9a)

J1(x, t) ) -Fc0M∇µ1 (9b)

∂(Fc1)

∂t
) -∇ · J1 (9c)

n̂ · (K∇c1) ) 0 (9d)

n̂ · J1 )
FsRins

kBT
µ1 (9e)

s ) -c0(k · Mk)(∂2ghom(c0)

∂c2
+ k · Kk) (10)

-2
a

kBT
+ 1

c0(1 - c0)
g 0

c1(x, t) ) A cos(nπ
L

x)est

-2
a

kBT
+ 1

c0(1 - c0)
> -π2λ2/L2

D Nano Lett., Vol. xx, No. x, XXXX

D
ow

nl
oa

de
d 

by
 M

IT
 o

n 
O

ct
ob

er
 1

5,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 O
ct

ob
er

 1
3,

 2
00

9 
| d

oi
: 1

0.
10

21
/n

l9
01

97
87



nπ/L. According to the dispersion relation (eq 10), every s
is associated with four wave numbers, and in general it takes
a linear combination of all four such functions to satisfy the
boundary conditions. For any given L, c0, and s, we may
compute the four corresponding wave numbers kj, and then
look for a set of coefficients Aj such that ∑j)1

4 Ajeikjxest solves
the perturbed PDE and boundary conditions (eq 9). Because
the system is linear and homogeneous, this can be reduced
to finding a solution to some matrix equation BA ) 0, which
has solutions if and only if the determinant of the matrix B
is 0. Note that solutions of the form xeikjxest, which arise from
double roots of the characteristic equation of the linearized
PDE, do not contribute to the spinodal curves since it can
be shown that for any L and Rins, there are at most finitely
many unstable c0 values that afford such solutions.

Therefore, for any given system size L and reaction rate
constant Rins, we must numerically solve for the range of
concentrations c0 that admit solutions to the perturbed
equations for at least one positive value of s. Results of such
computations are shown in Figure 2. Notice that increasing
the reaction rate constant reduces the spinodal gap. Moreover,
it was found numerically that increasing Rins tends to reduce
the growth rate constant s.

These effects cannot be explained solely in terms of
chemical potential perturbations near the boundary. Instead,
we must examine the nature of the allowable perturbations
for different reaction rates. For large values of Rins, any
nonzero µ1 at the boundaries causes large perturbations in
the reaction fluxes by eq 9e. In order for J1 to be dif-
ferentiable near the boundaries, we must also have large bulk
fluxes nearby. In general, this would require large concentra-
tion gradients, or equivalently short-wavelength perturba-
tions. But, as is clear from the dispersion relation (eq 10), it
is precisely the short-wavelength perturbations that are
rendered stable by the gradient penalty term (see ref 29 for
an interesting discussion of this point).

More mathematically, suppose µ1 is nonzero at a boundary.
Then by eq 9e, J1 must be nonzero there, which by eq 9b
implies that µ1 must have a nonzero gradient. Combining
these two terms with our ansatz for c1 yields the requirement

We therefore see that when µ1 is nonzero at a boundary,
the wavenumber scales linearly with the reaction rate
constant. Again, large Rins would require large k, which are
increasingly stable.

As the reaction rate increases, then, unstable perturbations
satisfying eq 9 must have µ1 and ∇µ1 close to 0 near the
boundaries. However, this requires long-wavelength pertur-
bations, and we have already shown that these will become
increasingly stable as the crystal size shrinks. Thus fast
reaction rates will tend to stabilize small nanoparticles.

Note however that for systems larger than about 2.5λ, the
spinodal gap does not disappear even for infinitely fast
reactions. This implies that there must exist infinitesimal
perturbations to a uniform system which lead to phase
separation without ever changing the diffusional chemical
potential at the boundaries of the system. This has been
verified numerically by solving the full CHR system (eqs
2-8) in the limit Rinsf ∞. However, by limiting the spinodal
decomposition to only occur via this small class of perturba-
tions, higher reaction rates reduce the decomposition growth
rate and the spinodal gap width.

Though we have used a specific mathematical model to
derive these results, the conclusions are generally valid.
Regardless of the bulk model, a bounded system will only
allow a discrete spectrum for its first-order perturbations. The
smallest admissible wave numbers will scale like 1/L, and
the system will suffer linear instability for more narrow
ranges of concentrations as the system size shrinks. More-
over, fast reaction rates at the boundaries require short
wavelength perturbations, and such perturbations are ener-
getically unfavorable when there is a diffuse interface
between phases.

Other Effects. There are at least two important effects that
we have excluded from our analysis. First, we have
intentionally ignored any energetic interactions between the
multiphase crystal and its surrounding environment in order
to demonstrate that purely bulk effects and reaction rates
can cause shrinking spinodal and miscibility gaps. However,
simple models of such interactions could easily be accom-
modated. For example, if the free energy of the system were
to include a concentration-dependent surface tension between
the particle and its environment

then the variational boundary condition (eq 6) would need
to be replaced by30

Figure 2. Width of the spinodal gap as a function of crystal size.
The dotted line indicates the width of the spinodal region for an
infinite system. The other three curves are given for different values
of the nondimensionalized reaction rate constant R ≡ (Fs/Fλ)(Rins/
(D/λ2)), where D ) MkBT is the diffusion constant in the bulk.

|c0( FFs
)(kBTM)k| ∼ Rins

Gmix ) Gmix,bulk + ∫
∂V

γ(c)dA

Nano Lett., Vol. xx, No. x, XXXX E
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This would not significantly change the analysis, but the
impact of this change would obviously depend on the exact
form of the function γ(c).

Perhaps a more serious omission for LiFePO4 in particular
is elastic stress in the crystal due to lattice mismatches.
However, it has been demonstrated31 that these effects can
frequently be accommodated by simply decreasing the
enthalpy-of-mixing parameter a. Given our results above,
elastic stress would therefore enhance the shrinking spinodal
and miscibility gaps.

Conclusion. We have shown that intercalation phenom-
ena in phase-separating materials can be strongly depend-
ent on nanoparticle size, even in the absence of contri-
butions from surface energies and elastic strain. In
particular, the miscibility gap and spinodal gap both
decrease (and eventually disappear) as the particle size is
decreased to the scale of the diffuse interphase thickness.
Geometrical confinement enhances the relative cost of bulk
composition gradients, and insertion/extraction reactions
tend to stabilize the concentration gradients near the
surface. These conclusions have relevance for high-rate
Li-ion battery materials such as LiFePO4 but are in no
way restricted to this class of materials.
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