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Abstract. A general continuum model has recently been proposed for the dynamics of ion
intercalation in a single crystal of rechargeable-battery electrode materials [1]. When applied to
strongly phase-separating, highly anisotropic materials such as LiFePO,, phase-transformation
waves are predicted between the lithiated and unlithiated portions of a crystal. In this paper, we
extend the analysis of the wave dynamics, and we describe a new mechanism for current capacity
fade through the interactions of these waves with defects in the material.

Introduction

LiFePO, is a promising cathode material for safe, high-power Li-ion rechargeable batteries [2].
Until recently, the only theory available to describe intercalation dynamics in this material was the
isotropic “shrinking core” model [3]. However, first-principles simulations [4] and experiments [5]
for LiFePO4 point to qualitatively different behavior. The shrinking-core model assumes a
spherical, bulk phase boundary shrinking in the direction of lithium flux, but in FePO4 lithium
diffusion is limited to one-dimensional channels, which are successively filled or emptied as the
LiFePO4 /FePO; interface moves in a direction perpendicular to the flux and spanning the crystal.

A more general continuum model has recently been developed [1]. It is based on basic
thermodynamic and kinetic properties of intercalation materials, such as energy costs for partial
lithiation, anisotropic nonlinear bulk diffusion, and composition-dependent surface reactions. In
certain parameter ranges applicable to LiFePO,, the governing equation has wave-like solutions for
the phase interface, which are consistent with experimental observations.

In this paper, we will expand on the wave dynamics predicted by this model for phase
transformations in the appropriate regime for LiFePO,. In particular, whereas Ref. [1] focused on
developing the general model and describing flat wave-fronts propagating in an ideal crystal, we
will study several phenomena which occur in more realistic, three-dimensional crystals. We will
also show that this model reveals a new mechanism for power loss in battery materials resulting
from interactions between the phase-transformation waves and material defects.

The Mathematical Model

We begin by briefly summarizing the general model for single-crystal Li-intercalation phase
transformation [1]. Denote by c¢ the dimensionless, normalized Li concentration, where the
unlithiated phase is characterized by ¢=0 and the lithiated phase by c=1. The free energy F of a
crystal is approximated by the general Cahn-Hilliard form, where ¢ act as a phase field [6]

F = [[[l7(e)+ (Vo) K(Ve)| av (1)
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Here f(c)---the homogeneous free energy density---is the free energy density of a crystal with
uniform concentration ¢, which takes the regular solution form [6],

f(c)=ac(l-c)+ pk;Tlclog(c)+(1-c)log(1-c)] (2)
where a is the average energy density of the interaction between Li ions, p the number of
intercalation sites per unit volume, kz Boltzmann's constant, and 7 the temperature. The first term is
an enthalpic contribution, which promotes phase separation, and the second term is an entropic
contribution, which promotes mixing. The second term in Eq. (1)---the gradient penalty---broadens
a phase interface and determines its structure. In general, K is a symmetric, positive definite tensor,
which must reflect the underlying symmetry of the crystal.

The bulk chemical potential of Li the variational derivative of F with respect to the concentration

u=a(l-2¢)+ pkBTlog(ij ~V-(KVc) 3)

Note that u is actually p times the chemical potential, or the chemical potential per unit volume;
since p is assumed to be constant. We continue to call this x the chemical potential. As usual,
gradients in the chemical potential act as thermodynamic driving forces for Li diffusion, yielding the
Li flux j=—cBVu (B is the mobility tensor which, in general, is highly anisotropic and

concentration-dependent). This must satisfy local conservation, i.e. pa% .+ V-j=0.

To describe Li transfer with the surrounding electrolyte, Ref. [1] proposes Arrhenius kinetics
driven by chemical potential differences, which (unlike the standard Butler-Volmer approach)
depend on ¢ and its gradient at the surface via (3). In particular, the rate of Li insertion at the
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surface of the crystal is given by R, =k, c exp[(ﬂ e H %k T} , where k;,, is the insertion rate
B

coefficient, ¢, is the Li concentration in the electrolyte, and g, is the Li (ion) chemical potential in

the electrolyte. Similarly, the rate of Li extraction is given by R, :kmcexp[(ﬂ —H % i T}’
B

where k.., is the extraction rate coefficient. Defining the net insertion rate by R=R;,;-R.,, then yields
the boundary condition h-j=-p R for the conservation equation; here n is the outward unit

normal at the boundary and p; is the number of intercalation sites per unit area on the surface.

The last step of the analysis in [1] is to specialize to the surface-reaction-limited (SRL) regime
appropriate for LiFePOy4. Define the Damkohler number Day to be the ratio of the timescale ¢ for

diffusion in the x-direction to the timescale #* for the surface reaction rates, and similarly define
Day and Da,. Motivated by ab initio calculations [4] predicting that x- and z-diffusion is very slow
relative to y-diffusion, as well as by experiments [5] which suggest that the phase-boundary
dynamics are limited by reaction rates, we make the assumption that Day,Da,>>1>>Da,. In this
regime, Li is confined to 1D channels of fast diffusion. For each such channel, we define the
average Li concentration

c(x,z,t)= jc(x,y,z, t)dy 4)

L, (x,2)

where L, is the length of the channel. Then depth-averaging the conservation equation and using the
above boundary condition leads to the equation governing SRL dynamics
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Wave Solutions

As argued mathematically in [1], there is a range of physical parameters over which Eq. 5 admits
wave solutions. In this section, we briefly expand on the previous discussion.

First, note that the numerical solutions in [1] behave very much as expected on more physical
grounds [5]: despite the fact that Li only really moves in the y-direction, the phase boundary moves
in the x-direction because net Li insertion only takes place at the phase interface. This may be
understood in terms of the chemical potentials from Eq. 3 (see Fig. 1). In the fully-lithiated part of
the crystal behind a lithiation wave, the internal and external chemical potentials are the same (at
least when the insertion and extraction rates are equal), so there is no net insertion. In the nearly
unlithiated part of the crystal ahead of a lithiation wave, the internal chemical potential for insertion
of single Li ions is high due to the lack of lithiated nuclei; however, the concentration is very low,
so we again get a steady state. At the phase boundary, the gradient penalty term becomes important
and sharply reduces the chemical potential, thus promoting net insertion.
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Figure 1. This is a 1D numerical simulation of Li insertion waves in the SRL regime (uniformity in
the z-direction is assumed). The solid black line gives the Li concentration in the crystal, the dotted
red line gives the external chemical potential (assumed to be uniform), and the dashed blue line
gives the Li chemical potential in the crystal. The two insertion waves are spreading outward. In
terms of the parameters from [1], we are using @ =5, 7, =0.5,x =1.

Second, note that in the one-dimensional simulations studied in [1], the gradient penalty tensor
becomes a scalar. In two dimensions, however, this is not the case, and we must consider what
impact its anisotropy may have on the wave dynamics. In an orthorhombic crystal, the gradient
penalty tensor must be diagonal. We will further assume that it is constant, and write

2 0 0
2
K=pk, 710 4, 0 (6)
0 0 A
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where the As are length scales characterizing gradient penalties for their respective directions (in the
SRL regime, 4, is ignored).

In LiFePO,, there is relatively weak bonding between bc layers [5]. We therefore expect that
concentration gradients in the x-direction will not be as heavily penalized as gradients in the z-
direction, i.e. that A, > A,. As shown in [1], the wave velocity in a given direction is directly
proportional to the corresponding 4. We therefore expect that lithiation waves will spread much
faster in the z-direction than in the x-direction. Thus the fact that phase boundaries seen
experimentally [5] tend to be aligned along hc-planes might have a purely dynamical explanation:
even if nucleation is localized, lithiation proceeds so quickly in the z-direction that the wavefront
soon spreads across the entire crystal. See Fig. 3 for numerical evidence.

Finally, as mentioned in [1], the wave solutions appear to be very stable numerically. A formal
linear stability analysis [7], in fact, reveals that perturbations of wavelength much smaller than A,
decay exponentially quickly. We will see in the next section that this has important physical
consequences.

Wave-Defect Interactions

One of the most important goals of a mathematical analysis of battery materials is the understanding
of battery failure. When studying intercalation dynamics, then, it is natural to ask how the lithiation
waves might be disrupted by imperfections in the crystal or in the interface with the electrolyte. In
this section, we will focus on localized defects, which we define to mean any physical change in the
system, which slows or prevents the filling of a small group of 1-dimensional Li channels. For
instance: surface impurities could completely block Li transport into or out of several nearby
channels; Fe atoms might occupy some fraction of the Li sites [8], thus reducing the Li capacity of a
channel; or imperfect bonding to an electronically conductive phase in the electrolyte might
dramatically slow intercalation.
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Figure 2. The instantaneous Li flux for the three simulations plotted in Fig. 3

From a dynamical point of view, the exact mechanism leading to localized defects is
unimportant. When a lithiation wave approaches such a defect, it obviously must bend around it in
order to proceed. However, this bending is energetically costly because of the gradient penalty term
in Eq. 1: not only does the bend introduce new gradients, but it makes the phase boundary---along
which there are already sharp gradients---longer. This will slow the progression of the phase
boundary until the defect has been passed, thus reducing the Li flux that the crystal can support.

The problem becomes even more pronounced when K is highly anisotropic since such systems
would more heavily penalize an increase in the phase boundary. Moreover, in such cases the wave-
defect interaction becomes non-local in the sense that a defect of size A, affects the wave out to a
distance of /1, > A, away. For LiFePO,4, where we expect A, to be large (see above) and 4, to be on
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the atomic scale (see [1]), this means that an atomic-scale defect can impact the phase-
transformation dynamics over the entire crystal.

z/7\,Z

Figure 3. 2D simulations of lithiation dynamics. The top row shows results for a perfect (i.e.
defect-free) crystal; the middle row shows results for a crystal with two defects and an isotropic
gradient penalty tensor (so 4. = A,); and the third row shows results for a crystal with the same two
defects as in the second case, but with an anisotropic K (4, = 5 4;). All cases are identically
nucleated by two flat, incoming waves, and are pictured at the same two time steps.

These ideas are illustrated in Fig. 3. First, note that the waves in the anisotropic crystal are much
flatter than those in the isotropic one, supporting the arguments made earlier based on differential
wave velocities. More significantly, by the second time step, the waves have made the most
forward progress in the perfect crystal and the least forward progress in the anisotropic, defective
crystal. This is reflected in Figure 2 by a sharp reduction in current while the wave interacts with
the defect. To make the impact of the defect in our anisotropic case more quantitative, a 2%
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reduction in the Li capacity in this part of the crystal has created up to a 50% drop in the Li flux
over the entire crystal.

Note that at late times, a “hole” is left in the concentration field around the defects with
approximate dimensions of A x A . These can cause a crystal to suffer an even more dramatic

performance degradation if there are several nearby defects. As mentioned above and discussed
more rigorously in [7], the lithiation waves are stable to small-wavelength perturbations. Thus if
two defects are sufficiently close, the wave can not “squeeze through” the gap between their
respective holes, and they effectively become one long defect. Moreover, an array of defects with
period 4, can effectively block a wave, preventing the other side of the crystal from being lithiated
until a new wave is nucleated.

Conclusion

We have extended the study of phase-transformation waves in LiFePO, initiated in [1]. In
particular, we have explained how such waves propagate in more physical terms; we have shown
how anisotropy in the gradient penalty tensor can predict the alignment of the phase boundary seen
in experiments; and we have given preliminary results on a formal linear stability analysis.

More significantly, we have shown how the model predicts a new failure mechanism for LiFePOy:
because the phase-transformation waves resist bending, they can be slowed down (or even stopped
altogether) by defects in the crystal or in the nearby electrolyte. Thus even small drops in the
overall Li capacity of a crystal can lead to large reductions in the power capacity. This is a result
which cannot have been predicted by the shrinking core model, and once fully explored could
impact the design and development of new battery systems.
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