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The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in
many applications, such as electrical energy storage by supercapacitors, water desalination and purification by
capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we
present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous
electrodes !without Faradaic reactions or specific adsorption of ions" valid in the limit of thin double layers
!compared to typical pore dimensions". We illustrate the theory for the case of a dilute, symmetric, binary
electrolyte using the Gouy-Chapman-Stern !GCS" model of the double layer, for which simple formulae are
available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full
GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced
models for two limiting regimes with different time scales: !i" in the “supercapacitor regime” of small voltages
and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation
for the electrostatic potential, scaled to the RC time of a single pore, and !ii" in the “desalination regime” of
large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear
diffusion equations for the pore-averaged potential and salt concentration.
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I. INTRODUCTION

Porous electrodes in contact with aqueous solutions #1–4$
are found in many technological applications, such as the
storage of electrical energy in !electrostatic double-layer" su-
percapacitors #5–13$, capacitive deionization !CDI" for water
desalination #2,14–23$, and the reverse process of CDI,
namely, the capacitive extraction of energy from the salinity
difference between different aqueous streams, for instance,
river and sea water #24$. In all of these cases, the porous
electrodes can be assumed to be ideally polarizable, i.e.,
blocking to Faradaic electron-transfer reactions !in contrast
to porous electrodes used in batteries and fuel cells". Over
the past five years, the nonlinear dynamics of capacitive
charging for locally flat, ideally polarizable electrodes and
metallic particles have been extensively studied #25–28$, but
the different geometry of porous electrodes has not been yet
analyzed in comparable detail. In this paper, we develop a
unified mean-field theory for the nonlinear charging dynam-
ics of ideally polarizable, porous electrodes and apply it to
the model problem sketched in Fig. 1.

Supercapacitors store electrical energy by the physical ad-
sorption of counterions in the electrostatic double layers
within high-surface-area porous electrodes #5–13$. Assuming
long electrode pores with thin double layers, ion transport
can be approximated by a linear “RC” transmission line
#7,29$, where the neutral solution in the pore acts like a core
resistance and the double layer like a coaxial capacitance,
enclosed in a coaxial electron-conducting sheath, as shown
in Fig. 2!a". This equivalent-circuit model is still widely used
to describe the linear response of supercapacitor electrodes,
also for more complicated internal geometries #30,31$. The
possibility of nonlinear response due to large applied volt-
ages and/or narrow pores !thick double layers", leading to

local depletion of ions, has received much less attention.
CDI is a desalination !ion-removal" process in which an

aqueous solution flows through the space in between two
porous electrodes #2,14–23$. Upon applying a voltage differ-
ence between the two electrodes, cations are transported to
the electrode of negative bias, and anions to the other. These
ions are stored as counterions within the structure of the
porous electrodes. Simultaneous with counterion adsorption,
coions are expelled from the electrodes, but coion outflow is
always less than counterion adsorption. As a consequence of
the resulting net ion removal, the product solution becomes
partially depleted in ions, as shown in Fig. 2!b". In this way,
for instance, potable water !approximately !8 mM ionic
strength" can be produced from brackish water !"15 mM".
When the equilibrium ion adsorption capacity of the elec-
trodes has been reached, the voltage difference can be re-
duced, ions are released, and a flow concentrated in salt is
produced, after which the deionization cycle can be repeated.
Transmission line models have also been applied to CDI at
low voltages #2$, but for practical desalination systems, it is
crucial to predict the nonlinear response of porous elec-
trodes, significantly altering the bulk ionic strength.

To describe ion transport in an electrode by a mean-field
theory we must consider the two interpenetrating phases, first
the electron-conducting electrode matrix, and second the
aqueous phase which fills the pores in between the electrode
matrix. At the interface of these two phases, the electrode
internal matrix-solution surface, the electron charge is locally
compensated by an excess ion charge, i.e., a double layer is
formed. The difference in voltage between the conducting
matrix, #1 !$1 in Newman’s terminology #1–4$", and that of
the aqueous solution in the pores, # !$2", is given by the
electrostatic potential difference across this interfacial double
layer.
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To keep the mathematical model tractable, we consider
dilute solution theory, e.g., without applying corrections for
ion crowding or dielectric saturation #32,33$. In particular,
for a dilute, binary electrolyte, we adopt the Gouy-Chapman-
Stern !GCS" model in which the double layer is described by
a combination of a charge-free Stern layer of constant capac-
ity !other names for the Stern layer are: inner, compact, or
Helmholtz layer", and a diffuse layer. The potential differ-
ence #1−# equals the potential difference across the Stern
layer, %#S, plus the potential difference across the diffuse
part of the double layer, %#D. The electrical resistance in the
conducting matrix is typically much smaller than the ionic
resistance in the pores, and therefore we can assume a con-
stant voltage within the conducting matrix. After applying an
electrode potential #1 !relative to a counter electrode, which
can also be porous", the potential within the aqueous solution
phase within the pores of the electrode, #, initially remains
equal to that in the electrode matrix, #1, because double
layers have not yet formed, while the applied potential dif-
ference between the two electrodes drops across the aqueous
solution in between the two electrodes. The electric field
between the electrodes then induces a selective flow of ions
into and out of the electrodes, which leads to charge forma-
tion at the internal matrix/solution interface. After sufficient
time and for a purely capacitive process without electro-
chemical charge transfer !i.e., when equilibrium is reached",
the applied voltage difference will be fully transferred to the
double layers at the matrix/solution interfaces, and the poten-
tial in the pores # approaches a constant, equilibrium value
equal to that of the bulk solution.

In the present work, a unified mean-field theory is pre-
sented to describe ion transport and storage in a porous elec-

trode. For simplicity, only one electrode is considered, and
calculation results are presented for a prescribed voltage dif-
ference between electrode and a point in the bulk solution,
far from the electrode, where the salt concentration is held
fixed. Of course, in some of the applications, such as in CDI,
the goal is to strongly modify the bulk salt concentration, but
here we focus on modeling the dynamics of ions within the
porous electrode, which in a later stage can be combined
with more complicated models of the bulk solution, e.g.,
allowing for fluid flow and other geometries. As noted above,
we also neglect Faradaic charge-transfer reactions and non-
electrostatic !specific" ion adsorption. Instead, only physical
adsorption in the diffuse part of the double layer is consid-
ered to compensate the electron charge. Because Faradaic
reactions are not included, the present calculation describes a
purely capacitive process, where the steady state is charac-
terized by zero current and vanishing ionic fluxes.

It is important to note that ion adsorption by the matrix/
solution interface !according to a diffuse double-layer
model" is not fully described by the differential capacity,
i.e., the differential relation between the interfacial voltage
#1−# and the local charge density q, since this neglects the
adsorption of salt. If only counterions are considered to ad-
sorb !as in the Helmholtz model for the double layer", then
the charge density and salt adsorption are equal, and
the electron density is exactly compensated by the counter-
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FIG. 1. Sketch of the model problem. At t=0, a voltage #1 is
applied to an ideally polarizable, porous electrode of thickness Le,
relative to a bulk electrolytic solution, from which it is separated by
a stagnant diffusion layer of thickness Lsdl. The characteristic pore
thickness hp !defined as the ratio of the pore volume to the pore
area" is much larger than the Debye screening length, &D, so the
pore space is mostly filled with quasi-neutral electrolyte, exchang-
ing ions with a charged, thin double-layer “skin” on the electrode
matrix. The volume-averaged potential #!x , t" and neutral salt con-
centration c!x , t" in the pore space vary as counterions enter, and
coions leave, the thin double layers, thus changing the mean surface
charge density q!x , t" and total excess salt density w!x , t". The di-
mensionless coordinate x used in Figs. 3 and 4 is also indicated.

(a) supercapacitor regime

porous electrodequasi-neutral solution

(b) desalination regime

FIG. 2. Sketch of the response of the blocking porous-electrode
system in Fig. 1 to a suddenly applied voltage. !a" In the !“weakly
nonlinear” #25$" “supercapacitor regime” of small voltages, or early
times, the porous electrode charges both by adsorbing counterions
and by expelling coions from the diffuse part of the double layers;
meanwhile, the quasi-neutral solution phase maintains a nearly con-
stant salt concentration everywhere, both inside the pores and in the
external solution. !b" In the !“strongly nonlinear” #25$" “desalina-
tion regime” of large voltages and long times, the coions are mostly
expelled from the double layers, as counterions adsorb at high con-
centration; as a result, the quasi-neutral solution becomes depleted
of salt, both inside the pores and in the outside solution.
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ion density. This is not the case, however, if coions are also
present in the diffuse part of the double layer !as in the
Gouy-Chapman model", since the electron charge −q is com-
pensated by both the accumulation of counterions and the
expulsion of coions. In fact, for small potentials across the
diffuse layer !the Debye-Hückel limit", both contributions
become equal, i.e., for each pair of electrons stored, one
cation is adsorbed and one anion desorbed. Only for very
high potentials is the limit slowly approached that counterion
adsorption fully compensates the electron charge. This effect
can be quantified by making use of the charge efficiency, ',
which is the ratio of net salt adsorption w over charge, q,
which in the GCS model varies from zero at low voltage to
unity at high voltage. Recently, it was shown that data for
charge efficiency, based on equilibrium data for salt adsorp-
tion and charge of porous electrodes as function of voltage
and salt concentration, could be very well explained by the
GCS model, providing support for the validity of this model
to describe the structure of the double layer in porous
electrodes #23$.

The transport equations we present are similar to those
developed several decades ago by Newman and collaborators
#1–4$ to describe ion transport in porous electrodes. Since
then, however, it seems that the problem of ion transport
within the pores of an electrode, coupled to transient charg-
ing of the double layers at the internal electrode surface, has
not yet been satisfactorily solved, at least not in the context
of mean-field porous-electrode theory. The analysis of New-
man and Tiedemann #3$ requires solution of their expression
for the differential of surface concentration. However, as
they write, “This formidable equation indicates all the differ-
ential coefficients which must be known for an exact treat-
ment of transient processes involving double layer charging.
The general case involving double-layer charging and all the
differential coefficients becomes too complicated to pursue
profitably at this point.” Since that time, a complete math-
ematical theory of capacitive charging and desalination by
porous electrodes has not yet been developed.

The time is ripe to tackle this outstanding theoretical chal-
lenge, since there has been much recent progress on analo-
gous problems of nonlinear electrochemical relaxation
around smooth !locally flat" polarizable surfaces. Bazant,
Thornton, and Ajdari #25$ !BTA" first analyzed the transient
nonlinear response to a suddenly applied voltage step across
parallel-plate electrodes !using matched asymptotic expan-
sions in the limit of thin double layers" and identified two
distinct dynamical regimes: !i" the “weakly nonlinear” re-
gime of small applied voltages or early times, when the sys-
tem behaves like an RC circuit, with the quasi-neutral bulk
resistance in series with the double-layer capacitors, and !ii"
the “strongly nonlinear” regime of large applied voltages and
long times, when ion adsorption by the double layers de-
pletes the local salt concentration and slaves the charging
process to the slow arrival of additional ions by bulk diffu-
sion. A central aspect of this work #25$ was to quantify, ap-
parently for the first time, the coupled, nonlinear effects of
capacitive charging and neutral salt adsorption by thin
double layers !their Eqs. 137–139, corresponding to the GCS
model, derived by asymptotic flux matching". The BTA
analysis has since been extended by many authors, e.g., to

polarizable particles in step electric fields #26$ !also taking
into account tangential ion transport through the double lay-
ers #34$", electrolytes in large ac voltages #27,28$ !account-
ing for the imposed time scale and the transient formation of
extended space charge #35$", and ac electro-osmotic flows
#32,36$ !which couple ionic relaxation to fluid motion #37$".
In all of these situations, the same two dynamical regimes
can be identified, separated by a transition voltage !around
10 kT /e" where counterion adsorption by the double layers
begins to dominate capacitive charging.

In this paper, we extend this work to the fundamentally
different geometry of porous electrodes, motivated by appli-
cations in energy storage and desalination, which were not
even mentioned by BTA or subsequent authors !whose focus
was on micro-electrodes and colloids". We identify two
analogous dynamical regimes, in which a porous electrode
behaves either as a supercapacitor !weakly nonlinear re-
sponse" or as a desalination system !strongly nonlinear re-
sponse". A key quantity controlling this dynamical transition
is the charge efficiency !w /q in the notation of BTA", as
coion expulsion at low voltages is replaced by additional
counterion adsorption at high voltages. We illustrate these
basic principles by numerical simulations of CDI using the
full, nonlinear mean-field theory and by analyzing reduced
model equations for the limiting regimes.

II. THEORY

We begin by presenting the mathematical framework
which describes the nonlinear dynamics of ion transport
within a porous electrode and the adjacent solution phase,
without any ad hoc assumptions of local steady state in ei-
ther region. The key assumption is that the double-layer
“skin,” containing the diffuse ionic charge that screens the
surface charge, is thin compared to the typical pore size in
the electrode #3,25,26,38–42$. This classical approximation
can be justified by matched asymptotic expansions !i.e.,
boundary layer theory", even in time-dependent problems
with curved surfaces #25,34$, and allows the use of models
for locally flat, nonoverlapping double layers. It is important
to stress that the approximation remains accurate for double
layers of finite thickness, even approaching the pore thick-
ness, since all double-layer variables !ionic concentrations
and potentials" are defined as excess quantities #34$, relative
to the corresponding bulk variables extrapolated to the sur-
face. As such, the growth of the double layers, containing
excess salt and ionic charge, does not reduce the quasi-
neutral pore volume.

In many cases, the thin double-layer approximation also
justifies the neglect of tangential surface transport through
the double layers compared to bulk transport within the
quasi-neutral pores, as long as the surface conductance re-
mains much smaller than the bulk conductance !small
Dukhin number" #26,34$. This condition can become violated
in the “strongly nonlinear” regime #25$, when the pore salt
concentration significantly decreases, and more general “sur-
face conservation laws” must be used as effective boundary
conditions on the quasi-neutral solution within a pore
#26,34$. Here, as a first approximation for nonlinear dynam-
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ics, we follow all prior work on porous electrodes and ne-
glect tangential surface conduction within the pores. Com-
pared to smooth electrodes and particles, effects of surface
conduction may be reduced in typical porous microstruc-
tures, due to random surface orientations, and it may be pos-
sible to account for such effects heuristically in the effective
transport properties of the porous electrode.

Our approach is based on Newman’s macroscopic porous-
electrode theory #1–4$, and we make the same classical and
widely used assumptions. !See Appendix A for a formal deri-
vation from microscopic transport equations within the
pores." The local salt concentration and electrostatic potential
of the quasi-neutral solution within the pores are assumed to
vary slowly enough to permit volume averaging to yield
smooth macroscopic variables. The exchange of ions with
the double layers on the pore surfaces is modeled as a slowly
varying volumetric source/sink term in the macroscopic,
volume-averaged transport equations. The porous electrode
is thus treated as a homogeneous mixture of charged double
layers and quasi-neutral solution, regardless of the geometri-
cal structure of the pores.

When ions are transported from solution into a porous
electrode under the influence of an applied electrical poten-
tial difference, ion concentration and potential gradients will
also develop in the bulk solution outside the electrode. To
approximate and simplify the description of ion transport in
solution, we make the standard engineering approximation of
a mass transfer film adjacent to the electrode #43$. This layer
goes under many names such as the Nernst layer,
concentration-polarization layer, unstirred layer, convection-
diffusion layer, or just diffusion layer, and is a well-known
concept in electrochemical process modeling and in the field
of charged !electrodialysis" membranes. Here, we will de-
note it as the “stagnant diffusion layer” !SDL" and consider it
to have a constant thickness, which is applicable to a process
in which there is a certain extent of convective mixing,
which limits the diffusive spreading of the diffusion layer
into the bulk solution.

The assumptions above suffice to develop a complete
model for any electrolytic solution. Here, we illustrate the
basic principles for the canonical case of a symmetric binary
z :z electrolyte with equal free solution diffusivity for cations
and anions, D. Within the pores of the electrodes the diffu-
sivity, De, will typically be lower than in solution, but again
we take the same value for an- and cation. This is an effec-
tive axial diffusivity which includes effects of pore tortuosity
and pore wall friction. With only two ions present, quasi-
neutrality implies equal concentrations c+=c−=c, where
c!x , t" is the neutral salt concentration. Neglecting various
nonideal concentrated-solution effects #4,32,33$, the Nernst-
Planck !NP" equation for a dilute solution expresses the flux
of ionic species i as a sum of contributions from diffusion
and electromigration. In dimensionless form, the NP equa-
tion for the pore phase within the electrode can be written as

ji = − 1
2 !!ci + zici ! #" , !1"

where ci is a dimensionless ion concentration, ci=Ci /C(,
where C( is a reference ionic strength, e.g., that of the bulk
solution on the outside of the SDL, x is the dimensionless

position, x=X /Le with Le the thickness of the electrode, and
# is the dimensionless electrostatic potential in the pores,
which becomes dimensional after multiplication with the
thermal voltage, VT=kBT /ze. In Eq. !1", the dimensionless
ion flux ji=Ji /Jlim is scaled to the diffusion-limited current
Jlim=2DeC( /Le. Note that we define concentrations, cur-
rents, etc., within the electrode based on the space accessible
to the ions, and not on the macroscopic space containing also
the matrix phase. Eq. !1" is the basis for the further theory,
with j++ j− the net salt flow into/out of the electrode, and
with j+− j− equal to the axial current, ie.

The salt balance in the electrode pores is equivalent to
Fick’s second law extended to include the local rate of salt
adsorption, jsalt !=Jsalt /Jlim·Le /&D

0 ", from the pore solution
into the double layer at the matrix/solution interface,

"c

"t
= !2c − )jsalt, !2"

where c=c+=c− is the dimensionless salt concentration, t is a
dimensionless time, obtained by rescaling the dimensional
time * with td=Le

2 /De. The parameter ) is the ratio of Debye
screening length &D

0 over the characteristic pore thickness,
hp, i.e., )=&D

0 /hp. The Debye length &D
0 =+−1, which sets the

thickness of the diffuse part of the double layer, is related to
C( !in mM" according to +2=8,&BNavC(, where &B is the
Bjerrum length, &B=e2 / !4,-kT" at which the bare Coulomb
energy of a pair of ions is balanced by thermal energy !&B
=0.72 nm in water at room temperature". The pore thickness
hp is defined as the ratio of the pore volume to the pore
surface area, and is given by hp= p /a, where p is the porosity
of the electrode and a is a dimensional surface density in
area per total electrode volume, which has units of inverse
length. For a perfectly cylindrical pore, hp is half of the pore
radius. Eq. !2" describes the variation in concentration c with
depth x in the electrode !axial direction" due to transient
diffusion and volume-averaged salt removal jsalt from the
pore phase into the diffuse double layers on the electrode
surface.

Coupled to Eq. !2", we must solve in the pore phase of the
electrode a differential Ohm’s law for the current carried by
the ions, ie, namely,

ie = − c ! # . !3"

Within the electrode the current carried by the ions, ie, is
not constant but will decrease with depth within the electrode
!to reach zero at the backside of the electrode", at each point
compensated by the electron current in the matrix !which
increases from zero at the SDL/electrode interface to a maxi-
mum at the backside of the electrode", such that the total
current remains the same at each position. How the ion cur-
rent ie in the electrode decreases with depth because charge
is transferred to the double layers at the solution/matrix in-
terface, is described by a local charge balance, given by

! · ie = − ) jcharge, !4"

where jcharge=Jcharge /Jlim·Le /&D
0 describes the charge-transfer

flux from the pore solution into the interface. This finalizes
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the macroscopic description of transport within the pores of
the electrodes.

Next, we describe the double-layer model, which is
solved at each position x within the electrode and which
locally describes the potential difference between matrix
phase and solution, #1−#, which is equal to the sum of
potentials across the Stern and diffuse parts of the double-
layer model, thus

#1 − # = %#S + %#D. !5"

We base the description of charge formation at the matrix/
solution interface on the Gouy-Chapman-Stern model, which
combines a Stern layer of constant capacity, with a diffuse,
Gouy-Chapman, layer. The GCS model is based on the as-
sumption of ions as ideal point-charges in local thermody-
namic equilibrium within a planar, isolated interface. Three
equations suffice for the GCS model. The first is

q = −2 %c sinh
%#D

2
, !6"

where q is a dimensionless surface charge density !of the
excess charge in the diffuse layer; multiply q by 2&D

0 C( to
obtain a dimensional surface charge density" and %#D is the
potential difference over the diffuse layer. The second GCS
equation relates the voltage difference across the Stern layer
%#S to q as

q = −
%#S

.
, !7"

where .=&S /&D
0 and &S is an effective thickness of the Stern

layer #25,39,41,42$. Finally, the excess salt adsorption is
given by #20,25,26$

w = 4%c sinh2%#D

4
!8"

similar to Gouy’s formula for the surface charge density, Eq.
!6".

To close the porous electrode model, we invoke mass con-
servation to relate the volume-averaged rate of charge re-
moval from the electrolyte phase, jcharge, to the charge den-
sity, −q, according to

"q

"t
= jcharge !9"

and relate jsalt to the adsorbed salt density, w, as

"w

"t
= jsalt. !10"

These are essentially volume-averaged forms of the BTA sur-
face conservation laws, as shown in Appendix A.

We have expressed the general theory in terms of multi-
dimensional gradient operators applicable to any macro-
scopic geometry. It is straightforward to integrate the equa-
tions over the electrode volume to obtain global conservation
laws for ions. In the case of our one-dimensional calculations
below, we can check the accuracy of our numerical methods
by verifying global charge conservation,

&
t1

t2
ie'x=0dt = ) (&

x=0

x=1

qdx)
t1

t2
!11"

obtained by integrating Eqs. !4" and !9" in space and time,
which equates the time-integrated ion current ie crossing the
SDL/electrode interface with the change in the total accumu-
lated charge in the double layers integrated over the elec-
trode. Similarly, by integrating Eqs. !2" and !10" in space and
time, we obtain the global salt balance,

− &
t1

t2* "c

"x
*

x=0
dt = (&

x=0

x=1

!)w + c"dx)
t1

t2
, !12"

which equates the time-integrated diffusive flux crossing the
SDL/electrode-interface to the total salt absorption by the
electrode. This concludes the porous-electrode model for
purely capacitive response in the absence of any electro-
chemical processes, such as Faradaic reactions, specific ad-
sorption of ions, or solid intercalation of ions.

In the SDL, the salt concentration c!x , t" is described by

"c

"t
= dsdl!

2c , !13"

where dsdl=D /De, the ratio in effective diffusivities between
solution !sdl" and electrode. The ion current, i, is constant
across the SDL and based on i= j+− j− and c=c+=c− follows
directly from Eq. !1" as

isdl = − dsdlc ! # . !14"

This completes the description of the SDL. Boundary
conditions at the SDL/electrode-interface are as follows. At
the interface, we have continuity in concentration csdl=ce and
potential, #sdl=#e. We will include the fact that the electrode
is not fully accessible to the aqueous solution and the ions,
i.e., the porosity, p, is lower than unity. Then, the ion current
i on either side is the same but for the porosity correction,
thus isdl= pie. Similarly we have continuity in salt flux, which
we implement as'dsdl

"c
"x 'sdl='p

"c
"x 'e. These are the four boundary

conditions that apply at the SDL/electrode-interface. At the
“backside” of the electrode, which is blocking for ions, we
have "c

"x =0 and ie=0.

III. ANALYSIS

A. Nonlinear PDEs for the Concentration and Potential

The system of Eqs. !1"–!10" is highly nonlinear and may
appear quite daunting at first, but many variables can be
eliminated to obtain a simple pair of partial differential equa-
tions !PDEs", e.g., for the volume-averaged salt concentra-
tion and electrostatic potential in the pores of the electrode.
If we neglect the Stern layer capacitance, then the two PDEs
can be expressed in an elegant dimensionless form

2 )
"

"t
(%c sinh+# − #1

2
,) = ! · !c ! #" , !15a"
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4 )
"

"t
(%c sinh2+# − #1

4
,) = !2c −

"c

"t
!15b"

in terms of only one dimensionless parameter,

) =
&D

0

hp
=

&D
0 a

p
. !16"

This familiar ratio measures the thinness of the double layers
#25,41$ by comparing the initial Debye screening length,
&D

0 =&D!c=1", to the characteristic pore thickness, hp= p /a.
The two nonlinear PDEs !15" can also be cast in terms of
different pairs of volume-averaged variables, such as the
concentrations of cations and anions, the double-layer charge
density and salt adsorption, etc.

Equation !15a" equates the volume-averaged Maxwell
displacement current density !charging the double layers" to
the divergence of the ionic current. Equation !15b" equates
the volume-averaged salt adsorption by the double layers to a
sink of diffusing salt in the quasi-neutral pore solution. As
noted above, the theory is based on the assumption of thin
double layers in the pores, )/1, and this leads to widely
separated time scales, since the small parameter ) multiples
one time derivative, and not the other. Mathematically, it is
clear from Eq. !15" that there are two different dynamical
regimes, with time scales t=O!) " and t=O!1", determined
by the possible dominant balances. Physically, these regimes
correspond to different modes of operation of the porous
electrode, for either charge storage !as a supercapacitor" at
early times or salt removal !capacitive deionization" at late
times, as we now explain. These regimes are completely
analogous to those identified and analyzed by BTA #25$ for
flat electrodes, based on asymptotic analysis involving the
same small parameter, )/1, although the geometry of a po-
rous electrode leads to different dynamical equations and
scalings.

B. Supercapacitor Regime

For early times, t=O!) ", there is a dominant balance in
Eq. !15a", which corresponds to capacitive charging of the
double layers. Since we start from an initial condition of
uniform concentration, c!x ,0"=1, Equation !15b" represent-
ing salt diffusion can be neglected at first, so the quasi-
neutral solution phase has an initially uniform conductivity.
Concentration variations then appear as small corrections,
which can be calculated perturbatively. !The range of valid-
ity of this approximation is discussed in the next section."
During this regime, the double-layer voltage drop is initially

small, '%#'= '#−#1'/1 !or /kT /ze with dimensions", since
we assume initially uncharged double layers in order to focus
only on the charge induced by the applied voltage.

To analyze the earliest times of our model problem, we
expand the PDEs for small voltages to obtain a linear initial-
boundary-value problem for 0!x!1 !inside the electrode"
based on a diffusion equation for the potential,

"#

" t̃
=

"2#

"x2 , #!x,0" = #1,
"#

"x
!1, t̃" = 0,

"#

"x
!0, t̃" = Bie#!0, t̃" , !17"

with a rescaled time variable t̃= t / ) =O!1". The Robin
boundary condition at x=0 results from a linear potential
profile in the SDL !due to the constant concentration" and
resembles the classical boundary condition modeling exter-
nal convection in heat or mass transfer #44$, where

Bie =
Ledsdl

pLsdl
!18"

plays the role of the Biot number. As shown in Appendix B,
the exact solution can be expressed as a Fourier series #45$,

#!x, t̃" = #m-
n=0

( + 4 sin &n

2&n + sin 2&n
,e−&n

2t̃ cos#&n!x − 1"$ ,

!19"

where the discrete spectrum .&0 ,&1 ,&2 , . . ./ is defined by
positive solutions of the transcendental equation, &n tan &n
=Bie. For Bie=2 !as in the numerical example in the next
section", we obtain for &i: .1.08, 3.64, 6.58,…/. As shown
below, a “diffusion layer” of charging !potential variation"
spreads from the SDL interface across the electrode in a
dimensionless time t̃= t / ) =O!1". After this initial penetra-
tion phase, the series solution !19" becomes much more use-
ful, as it can be truncated after the first term to very high
!exponential" accuracy.

As in the case of flat electrodes #25$, the linearized prob-
lem for low voltages or early times, Eq. !17", has a classical
RC circuit interpretation #29$, namely, that the porous elec-
trode acts as a “transmission line” in series with the SDL
“resistor,” as shown in Fig. 3. This physical interpretation
becomes clearer if we briefly restore units. The dimensional
time scale for the charging dynamics is

*c =
Le

2

De

&D
0

hp
= +&D

0 hp

De
,+Le

hp
,2

= *RCNRC
2 , !20"

where we recognize the “mixed” time scale *RC=&D
0 hp /De

!the geometric mean of the diffusion times across the pore
and across the double layer" as the RC time constant #25$ of
a pore section !by analogy with parallel-plate electrodes
separated by hp" and NRC as the effective number of such RC
circuit elements along the length of a typical pore.

To improve on this analytical solution, a “weakly nonlin-
ear” asymptotic approximation #25,28$ can be systematically
constructed in the asymptotic limit of thin double layers, as a

1

q

SDL pore

FIG. 3. Equivalent-circuit interpretation of the linearized charg-
ing dynamics of a porous electrode, Eq. !19", as a transmission line
#23$, where the quasi-neutral solution in the pores acts as a series of
resistors coupled to the electrode by parallel double-layer
capacitors.
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regular perturbation series for t̃= t / ) =O!1". The leading-
order approximation involves a uniform bulk concentration
in Eq. !15"a, but without linearizing for small potentials. In-
stead, we obtain a nonlinear PDE for the leading-order po-
tential in the supercapacitor regime

cosh+#1 − #

2 ,+ "#

" t̃
−

"#1

" t̃
, = !2# , !21"

where we also allow for a time-dependent applied voltage
#1!t̃". The nonlinear prefactor in Eq. !21" is the dimension-
less differential capacitance of the double layer in the GC
model #25$, and more generally, could be replaced by analo-
gous expressions for many other quasi-equilibrium double-
layer models !as reviewed in Ref. #32$".

In the GC model, the differential capacitance, and thus the
local “RC time,” diverge exponentially with voltage, which
causes the charging dynamics to slow down substantially as
the local voltage leaves the linear regime. As a result, the
desalination regime !when the salt concentration starts to
vary" is reached before the voltage much exceeds the thermal
voltage, '%#'"1. This effect is reduced in modified double-
layer models for finite-sized ions, which predict a decay of
differential capacitance at large voltage, as the double layer
expands due to ion crowding #46,47$, although this can be
offset by other effects such as dielectric saturation #32$. Non-
monotonic differential capacitance can lead to some surpris-
ing dynamical phenomena at blocking electrodes, such as
flow reversal in AC electro-osmosis #48$, so it would be
interesting to study the weakly nonlinear dynamics of porous
electrodes in the supercapacitor regime using different
double-layer models.

C. Desalination Regime

For a sufficiently large applied voltage or small initial salt
concentration !i.e., not very thin double layers inside the
pores", the supercapacitor regime eventually transitions to
the “strongly nonlinear” desalination regime, where the salt
concentration within the porous electrode deviates signifi-
cantly from its initial value. For flat electrodes, the nonlinear
dynamics of this transition have been extensively analyzed
#25–28$. Weakly nonlinear capacitive charging, Eq. !21",
breaks down when counterion adsorption into the double lay-
ers starts to exceed coion expulsion, leading on the macro-
scopic scale to a much larger counterion transport into the
electrode !from bulk solution" than the transport of coions
outward. For smooth electrodes in the GCS model, the BTA
criterion for validity of the weakly nonlinear dynamics in
response to a suddenly applied DC voltage is #25$

0d = 4% )

,c
sinh2+%#D

4
, = 4%&D!C"

,hp
sinh2+ ze%$

4kT
, / 1.

!22"

Analogous frequency-dependent criteria can be derived for
the breakdown of weakly nonlinear response to an AC volt-
age applied at flat electrodes #28$.

For the supercapacitor regime of a porous electrode, Eq.
!22" must hold at the scale of a single pore, and there may be

additional constraints set by the spatially varying dynamics
at the electrode length scale, as well as additional micro-
scopic effects missing in our model, such as surface conduc-
tion. The scalings in Eq. !22" show that the supercapacitor
regime is valid for highly concentrated electrolytes !very thin
double layers" and/or small voltages. Conversely, if the bulk
ionic strength is large !as in CDI of seawater", the desalina-
tion regime requires a large applied voltage !1kT /ze with
dimensions".

In the desalination regime, one must solve the full model
!15" for t=O!1", i.e., at the macroscopic diffusion time scale,

*d =
Le

2

De
=

*c

)
. !23"

At this time scale, the terms on the left hand sides of Eqs.
!15a" and !15b", representing the Maxwell current density
and salt adsorption rate, are small, O!) ", but can become
important if the voltage gets sufficiently large to violate Eq.
!22".

For the GC model, we can combine Eqs. !15a" and !15b"
to obtain an alternate evolution equation for the concentra-
tion,

+1 −
)
%c

tanh
#1 − #

4 , "c

"t

= !2c + ) +tanh
#1 − #

2 , ! · !c ! #" , !24"

where the hyperbolic tangent factors tend to unity for highly
charged regions, '%#'11, in the desalination regime. For
arbitrarily large voltages, in the asymptotic limit of thin
double layers, the leading-order behavior for t=O!1" is again
approximately governed by a linear diffusion equation

"c

"t
= !2c + O! ) " , !25"

only now for the neutral salt concentration, rather than the
electrostatic potential. These reversed roles are clearly seen
in the example of Fig. 3 below, where the potential at early
times in !a" has a similar profile as the concentration at late
times in !b". From Eq. !15" in this limiting regime, the po-
tential is determined by the condition of small volume-
averaged current into the double layers,

! · !c ! #" = O! ) " , !26"

which also determines the quasi-equilibrium volume-
averaged profiles of charge, q, and salt, w, adsorbed by the
double layers.

The difficulty in using the simple limiting Eqs. !25" and
!26", however, is that the O!1" initial conditions come from
nontrivial asymptotic matching with the early-time superca-
pacitor regime. This requires solving the full equations nu-
merically !as in the next section" or performing a more so-
phisticated asymptotic analysis, beyond the scope of this
article. Similar problems relating to this dynamical transition
are encountered for large dc voltages suddenly applied to
smooth electrodes #25$ or polarizable particles #26$. In con-
trast, the steady response to a large ac voltage removes this
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difficulty !while adding others" due to the imposed time scale
of the ac period, which effectively selects one of the two
limiting regimes #28$.

Finally, we note that a proper description of the desalina-
tion regime also requires including some additional physics
that we have neglected. In addition to various electrochemi-
cal surface effects already mentioned, such as specific ad-
sorption of ions and Faradaic reactions, there is another im-
portant source of nonlinearity in the ion transport equations,
even for thin double layers. As noted by BTA #25$, when the
condition !22" is violated, surface conductivity becomes
comparable to the bulk conductivity, and thus the tangential
transport in the double layer should also be considered
#26,34$. This would be a major complication for volume av-
eraging which has never been considered in porous-electrode
theory.

IV. NUMERICAL RESULTS

As described in the previous section, the full model is
difficult to solve, or even approximate, analytically when the
applied voltage is large enough !or the initial double layers
thick enough" to enter the desalination regime. In this sec-
tion, we present numerical solutions of the full model for a
typical case of CDI, which illustrate the two limiting regimes
and the transition between them. In this section, calculation
results are presented for the following parameter settings,
namely, Lsdl=Le=100 2m, dsdl=D /De=1. Furthermore,
&B=0.72 nm, C(=10 mM, &D

0 =3.03 nm, porosity p=0.5,
and a=2·107 m2 /m3, thus hp=25 nm and )=&D

0 /hp=0.121.
The effective thickness of the Stern layer, &S, is set to zero,
thus %#S=0. We consider adsorption of cations in a nega-
tively biased electrode !#1=−10", and thus ie, jsalt, jcharge, and
q are all positive numbers, while %#D is of negative sign. All
potentials are relative to the potential in bulk solution, just
outside the SDL.

Figures 4 and 5 summarize our calculation results, focus-

ing on the electrode region !0!x!1", where Fig. 4 shows
the development of the electrostatic potential profile in time
#Fig. 4!a"$, as well as the salt concentration profile #Fig.
4!b"$, while Fig. 5!a" shows how the ion current decreases
across the electrode, and Fig. 5!b" how the measurable total
current and salt adsorption rate !the latter evaluated at the
edge of the SDL with bulk solution" change in time. In the
calculation, upon applying the voltage, very rapidly charge is
stored in the electrode, especially near its outer edge. Indeed,
in Fig. 4!a", even for the first curve at t00.00125 !t̃
=0.0103", the potential within the aqueous pore phase, #, is
already significantly above the electrode matrix potential of
#1=−10 near the outer edge of the electrode. Note that for
these initial times, the full numerical model is in perfect
agreement with the supercapacitor-equation, Eq. !19". In this
short time, quite some charge has already adsorbed at the
internal electrode surface area, i.e., at the matrix/solution in-
terface, and the corresponding value of %#D compensates the
difference between #1 and #. With increasing time progres-
sively more charge adsorbs, %#D increases, the profiles of
potential # in the aqueous pore phase gradually fade out, and
eventually the pore potential # becomes equal to the poten-
tial in the SDL and in bulk solution.

After application of the voltage, the ion concentration
profiles in the electrode change more gradually. In Fig. 4!b",
we clearly observe how first mainly near the outer electrode
surface, the salt concentration decreases due to counterion
adsorption at the matrix/solution interface and co-ion transfer
out of the electrode. In the SDL slowly the classical steady-
state profile is reached for which ion concentration linearly
decays, while within the electrode the minimum in salt con-
centration shifts to the inner boundary. After t01 gradually
the concentration everywhere increases again !not shown" to
finally reach unity again !i.e., equal to the concentration in
bulk solution".

Figure 5!a" shows how within the electrode the current
carried by the ions gradually decreases with depth, to be-
come zero at the inner electrode boundary. Indeed, the cur-
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FIG. 4. Capacitive response of porous electrode to step change in electrode potential as function of time and position. Arrow shows the
direction of time, 0.001! t!0.5. Parameter settings in the text. !a" Electrostatic potential, #. !b" Salt concentration, c.
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rent carried by the electrons in the conductive matrix phase
progressively increases in this direction such that the total
current !which is equal to the ion current at x=0" remains
constant. The total current is plotted as function of time in
Fig. 5!b" together with the salt transport rate, which we
evaluated at the outer edge of the SDL !divided by electrode
porosity, p". Though after an initial period both curves are
close, they are certainly not overlapping, showing the rel-
evance of distinguishing between charge transport !current"
and salt transport.

The porous-electrode model can be incorporated in a
larger-scale process model, e.g., for capacitive deionization,
where the salt removal rate from bulk solution notably influ-
ences the bulk salt concentration, which in its turn influences
the adsorption rates. Not only salt removal can be modeled,
but it is just as well possible to model the subsequent step of
salt release !after short-circuiting the cell". Though in this
work, we have applied the porous-electrode model to de-
scribe the capacitive charging of an electrode, Faradaic
charge-transfer processes including diffuse-layer !Frumkin"
effects #38–42,49–52$ can also be included. For such Fara-
daic reactions, such as occur in the porous electrodes of fuel
cells, it is the !local, and time-dependent" Stern layer poten-
tial difference !which is a function of the local charge density
stored in the double layer at the matrix/solution interface"
which—together with the local ion concentration—self-
consistently determines the charge-transfer rate !and is deter-
mined by it". Such a porous-electrode model including Fara-
daic charge transfer relates to the work by Franco et al. #51$,
which is set up for a hydrogen fuel cell, where the proton is
considered to be the only mobile species.

V. CONCLUSION

We have presented a simple mathematical model for the
nonlinear dynamics of charging and desalination by a porous

electrode, which is biased by an applied voltage relative to
the bulk solution. The model accounts for the transport of
ions within the electrode pores and also in the solution phase
outside the electrode. Both charge and salt are stored in the
double layers that form on the internal matrix/solution inter-
face within the electrode, which are assumed to be thin com-
pared to typical pore dimensions. Using the classical Gouy-
Chapman-Stern model for the double layer, analytical
expressions are available for salt adsorption and charge den-
sity, which are essential elements of the porous-electrode
model. The equations are combined into two PDEs for the
volume-averaged salt concentration and electrostatic poten-
tial within the pores, and two dynamical regimes are identi-
fied: the “supercapacitor regime” at early times and/or small
voltages and the “desalination regime” for late times and
large voltages. Numerical calculations are presented for the
salt concentration profiles as function of time, both within
and outside the electrode region, as well as the profiles for
potential and ion current. It would be straightforward to ex-
tend the theory to account for different models of the double
layer, nonuniform porosity, or Faradaic reactions. A non-
trivial extension would be to include geometry-dependent
effect of tangential surface conduction within the pores and
rigorously derive the strongly nonlinear, volume-averaged
porous-electrode equations. It would also be interesting !and
challenging" to relax the thin double-layer approximation for
nanoporous electrodes. Applications of the presented theory
include energy storage in supercapacitors and capacitive
deionization by porous electrodes.
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APPENDIX A: FORMAL DERIVATION OF POROUS-
ELECTRODE THEORY FROM THE BTA EQUATIONS

For a binary electrolyte between blocking parallel-plate
electrodes, BTA #25$ used matched asymptotic expansions in
the limit of thin double layers to derive effective boundary
conditions

− )
"q!%#̄D, c̄"

" t̄
= n̂ · !c̄!̄#̄" , !A1"

− )
"w!%#̄D, c̄"

" t̄
= n̂ · !̄c̄ !A2"

to be applied to the standard bulk equations for a quasi-
neutral binary electrolyte,

0 = !̄ · !c̄!̄#̄" , !A3"

" c̄

" t̄
= !̄2c̄ , !A4"

where overbars indicate variables in the quasi-neutral bulk
solution inside a pore !outside the thin double layers", where
length is scaled to hp, time is scaled to hp

2 /D, and where
%#̄D=#1− #̄ is the local diffuse-layer voltage. The effective
boundary conditions !A1" and !A2" express conservation of
charge and salt, respectively, where q is the integrated charge
!per area" in the diffuse part of the double layer !and −q is
the surface charge density", and w is the integrated excess
total number of ions, relative to the nearby bulk solution. For
multidimensional situations, the BTA Eqs. !A1" and !A2"
must be replaced by more general “surface conservation
laws” with additional nonlinear terms describing tangential
transport of ions in the double layers, derived in Ref. #34$ by
matched asymptotic expansions in higher dimensions. Here,
we neglect such corrections, following all prior modeling on
porous electrodes, although we believe they can be important
and should be considered in future work.

In order to formally perform volume averaging for a po-
rous microstructure, we integrate Eqs. !A3" and !A4" over
the pore volume in a macroscopic volume element of !di-
mensionless" volume V !Fig. 6" and apply the divergence
theorem to obtain surface integrals, with two contributions.
The first contributions, from the double layers formed on the
pore surface with !dimensionless" total area Ap, are evaluated
using Eqs. !A1" and !A2". The second contributions, from
the quasi-neutral pore cross sections on the faces of the mac-
roscopic volume element with !dimensionless" total area Av,
are related to the volume-averaged fluxes of charge and salt.
We relate the internal pore variables in Eqs. !A1"–!A4" to the
macroscopic, volume-averaged variables from the main text
via the following definitions:

c =
1
Vp
&

Vp

c̄dv̄ , !A5"

q!%#D" =
1
Ap
1

Ap

q!%#̄D"dā , !A6"

w!%#D" =
1
Ap
1

Ap

w!%#̄D"dā , !A7"

! · !c ! #" =
Dehp

2

DLe
2

1
Vp
1

Av

n̂ · !c̄!̄#̄"dā !A8"

!2c =
Dehp

2

DLe
2

1
Vp
1

Av

n̂ · !c̄dā , !A9"

which hold in the limit that the microscopic variables are
slowly varying, and are roughly constant at the scale of in-
dividual pores. Recall that hp=Vp /Ap is the mean pore thick-
ness, defined as the mean pore volume per pore area.

With these definitions, we arrive at two general, nonlinear
PDEs for the volume-averaged response of porous elec-
trodes,

)
"q!%#D,c"

"t
= ! · !c ! #" , !A10"

)
"w!%#D,c"

"t
= !2c −

"c

"t
, !A11"

which are analogous to the BTA boundary conditions !A1"
and !A2" for locally smooth electrodes. !Note that the time
scale is now that of diffusion across the electrode length,
rather than the pore width, consistent with the change in
length scale upon volume averaging." These PDEs are con-
sistent with classical formulations of porous-electrode theory
#1,2$, except that we have provided simple analytical expres-
sions for the left hand sides and a formal derivation based on
the asymptotic limit of thin double layers within the pores. In
general, we could derive formulae for q and w for any
concentrated-solution theory of the quasi-equilibrium double
layer #32$, and this has been done for simple models of
finite-sized ions #46$ and applied to extend the BTA analysis
of parallel-plate blocking electrodes #47$. The theory could
also be naturally extended to multicomponent, asymmetric

V

A
Av

p

p

V

FIG. 6. Sketch of a macroscopic volume element of volume V
containing a pore space of volume Vp and internal surface area Ap,
which intersects the volume element with cross-sectional area Av.
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electrolytes by replacing q and w with more general “surface
concentrations” of the ionic species, given by integrals of the
excess ionic concentrations !relative to the nearby bulk solu-
tion" across the diffuse part of the double layer #34$.

For the GCS model analyzed in the main text, the formula
for q is well-known !and due to Gouy himself", and there is
also a simple formula for w !Refs. #20,25,26$"

q!%#D,c" = −2 %c sinh
%#D

2
, !A12"

w!%#D,c" = 4%c sinh2%#D

4
. !A13"

For the GCS model, the voltage drop required is only over
the diffuse part of the double layer, which is related to the
full voltage drop, including the Stern layer, by a nonlinear
capacitance equation #25,41$. The charge efficiency in the
GCS model is given by #20,26$,

' 2
w

q
= − tanh

%#D

4
, !A14"

while the differential charge efficiency, defined as

& 2
jsalt

jcharge
=

"w

"t
/
"q

"t
, !A15"

takes a simple form in the GCS model,

&'c = − tanh
%#D

2
, !A16"

with the additional constraint of a constant bulk salt concen-
tration c. The latter expression !A16" appears in Eq. 106 of
the “weakly nonlinear” analysis of BTA #25$. For “strongly
nonlinear” analysis, when the salt concentration c varies in
time, there is no compact expression for differential charge
efficiency & but based on q2=w2+4%cw, jsalt !"w /"t" and
jcharge !"q /"t" are related in the GCS model according to

"q

"t
= +w

q
+

2%c

q
, "w

"t
+

w

q%c

"c

"t

= − coth
%#D

2
"w

"t
−

1
%c

tanh
%#D

4
"c

"t
, !A17"

which we used in deriving Eq. !24". We can also express Eq.
!A17" as

& = − tanh
%#D

2
· +1 +

'

%c

"c

"t
/
"q

"t , , !A18"

where the second term is missing in Eq. !4" in Ref. #21$. The
two terms in Eq. !A17" or !A18" can be of comparable size at
low voltage, but Eqs. !A13" and !A17" imply that the simple
formula, &=

jsalt

jcharge
3−tanh

%#D

2 , becomes a good approxima-
tion in the desalination regime of large voltages.

APPENDIX B: ANALYTICAL SOLUTION FOR LINEAR
RESPONSE

Here, we derive the solution !19" of the linear initial-
boundary-value problem !17" for the electrostatic potential in
the supercapacitor regime, using the “finite Fourier trans-
form” !generalized Fourier series" method #44$. The solution
is expressed as a sum of separable terms,

#!x,t" = -
n=0

(

#n!t"$n!x" ,

where .$n/ are eigenfunctions of the !self-adjoint" Laplacian
operator satisfying the same homogeneous Robin boundary
conditions

d2$n

dx2 = − &n
2$n,

d$n

dx
!0" = Bie$n!0",

d$n

dx
!1" = 0,

which are orthogonal under the inner product, 4f ,g5
=60

1f!x"g!x"dx. If we scale the eigenfunctions to be orthonor-
mal, 4$n ,$m5=.n,m, then they take the form,

$n!x" = An cos#&n!x − 1"$, An
2 =

4&n

2&n + sin 2&n
,

where the eigenvalues are positive roots of &n tan &n=Bie.
Orthonormality implies #n= 4# ,$n5, which allows us to
transform the PDE !12" into a simple ordinary differential
equation,

d#n

dt
= 7 "#

"t
,$n8 = 7 "2#

"x2 ,$n8 = 7#,
d2$n

dx2 8 = − &n
2#n,

using the self-adjoint property in the third step. The solution
is

#n!t" = An#m
sin &n

&n
e−&n

2t,

since #n!0"= 4#!x ,0" ,$n!x"5=#m41,$n5.
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