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a b s t r a c t

We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells,
such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not
only operation in the galvanic discharging mode, spontaneously generating a positive current against
an external load, but also operation in two modes which require a net input of electrical energy: (i) the
electrolytic charging mode, where a negative current is imposed to generate a voltage exceeding the
open-circuit voltage, and (ii) the “super-galvanic” discharging mode, where a positive current exceed-
ing the short-circuit current is imposed to generate a negative voltage. Analysis of the various (dis-)
charging modes of galvanic cells is important to predict the efficiency of electrical to chemical energy
conversion and to provide sensitive tests for experimental validation of fuel cell models. In the model, we
consider effects of diffuse charge on electrochemical charge-transfer rates by combining a generalized
Frumkin-Butler-Volmer equation for reaction kinetics across the compact Stern layer with the full Poisson-
Nernst-Planck transport theory, without assuming local electroneutrality. Since this approach is rare in
the literature, we provide a brief historical review. To illustrate the general theory, we present results for
a monovalent binary electrolyte, consisting of cations, which react at the electrodes, and non-reactive
anions, which are either fixed in space (as in a solid electrolyte) or are mobile (as in a liquid electrolyte).
The full model is solved numerically and compared to analytical results in the limit of thin diffuse lay-
ers, relative to the membrane thickness. The spatial profiles of the ion concentrations and electrostatic
potential reveal a complex dependence on the kinetic parameters and the imposed current, in which the
diffuse charge at each electrode and the total membrane charge can have either sign, contrary perhaps to
intuition. For thin diffuse layers, simple analytical expressions are presented for galvanic cells valid in all
three (dis-)charging modes in the two subsequent limits of the ratio ı of the effective thicknesses of the
compact and diffuse layers: (i) the “Helmholtz limit” (ı → ∞) where the compact layer carries the double
layer voltage as in standard Butler-Volmer models, and (ii) the opposite “Gouy-Chapman limit” (ı → 0)
where the diffuse layer fully determines the charge-transfer kinetics. In these limits, the model predicts
both reaction-limited and diffusion-limited currents, which can be surpassed for finite positive values of
the compact layer, diffuse layer and membrane thickness.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Reversible galvanic cells, such as redox flow cells [1–4],
reversible solid oxide fuel cells [5–9], and rechargeable batteries
[10–12] are electrochemical cells that can run both in a galvanic
mode, thereby converting chemical energy in electric energy, and in
the reverse, electrolytic, mode where electrical energy is returned
into chemical energy. In the galvanic mode electrons flow sponta-
neously through an external load toward the more positive electric
potential in the direction from anode to cathode, whereas in the
electrolytic mode, the electrons are pumped toward the more neg-
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ative potential of the cathode. Similar to rechargeable batteries,
redox flow cells and reversible solid oxide fuel cells can be used
to store electrical energy in the form of chemical energy. The main
difference with rechargeable batteries is that the chemical energy
is stored in a fluid phase which can be pumped to a secondary
container, rather than being stored in a finite-capacity solid phase.

In this manuscript we develop a general mathematical model
of electrochemical charge-transfer and ion transport in galvanic
cells and apply it to a one-dimensional model cell operating in
steady-state. We analyze not only the standard galvanic discharg-
ing regime in which the cell ‘generates electricity’ with positive
power by spontaneously driving electrons through the external
circuit [17,18], but also two operating regimes which require exter-
nal electrical forcing. The first is the electrolytic charging regime
in which an applied voltage exceeding the open-circuit voltage
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Fig. 1. Regimes of operation of a galvanic cell with imposed current. The calculations
are based on a proton conducting fuel cell (see parameter settings of Fig. 3).

drives current in the reverse direction to convert electrical energy
into chemical energy [5–9], while the second is an unconventional
‘super-galvanic’ regime in which the current is forced beyond the
maximum for a galvanic cell in a shorted circuit. These three modes
of operation are illustrated in Fig. 1. Analysis of the full range of oper-
ation is important to better understand the efficiency and physical
mechanisms of energy conversion, and to enable more sensitive
experimental validation of mathematical models of galvanic cells.

In this manuscript we will present calculation results for the ion
density and electrostatic potential profiles as function of charge-
transfer kinetic rates and of the imposed current. Two models for
the electrolyte are considered. In the first case we consider a mem-
brane electrolyte material in which the countercharge has a fixed,
constant, distribution in space, while only the reactive ion is mobile.
This is the typical situation for a solid-state proton or oxygen-ion
conducting electrolyte membrane. In the second case we analyze
the situation where the inert (non-reactive) ion is mobile and is
redistributed across the membrane. This situation is more typical
for a fuel cell or redox flow cell operating in liquid (e.g., aqueous)
solution.

In both cases we illustrate the general theory in calculations that
assume a one-dimensional planar geometry, steady-state opera-
tion, and constant (time-independent) chemical potentials of the
reduced forms of the reactive cation, whose values are different at
the anode and the cathode to describe a galvanic cell. The assump-
tion of a constant chemical potential in each electrode corresponds,
for instance, to a hydrogen fuel cell where the cation is a proton
which reacts to/from an absorbed hydrogen atom in equilibrium
with a large gas phase of constant hydrogen pressure (higher in the
anode compartment than in the cathode compartment). The same
assumption can also describe the case that the ion reduces to a
neutral atom upon arriving at the cathode and is incorporated into
the electrode phase (and vice-versa for oxidation at the anode). In
this situation, our calculations extend the analysis of Bazant and co-
workers [13–15] on electrolytic cells, where the reactions occurring
at the two electrodes are the same, only driven in opposite direc-
tions by an applied cell voltage (and thus the open-circuit voltage
is zero). In such situations, the behavior of the model electrolytic
cell is invariant with respect to the sign of the current, but this sym-
metry is broken in a galvanic cell because the conditions at the two
electrodes are different.

An important element in our work is the consideration of dif-
fuse charge, or polarization, effects near the electrodes. By including
these effects in our calculations, we build on recent work for fuel
cells [16,17] that goes beyond the standard assumption of elec-

Fig. 2. Schematic representation of potentials in an equilibrium polarization-layer
based on the Gouy-Chapman-Stern model, in which the compact or Stern layer is
located directly next to the electrode and separated from the diffuse layer (and ulti-
mately the electrolyte bulk solution) by the Stern, reaction, or Outer Helmholtz plane
(OHP).

troneutrality throughout the electrolyte phase, which is ubiquitous
in the battery and fuel cell literature [5,11,18–27]. Though polariza-
tion of the electrolyte is confined to nanoscopic “diffuse charge”
or “space charge” layers near the electrodes where ionic concen-
trations and the electrostatic potential rapidly vary, as shown in
Fig. 2, the electrostatic potential across the polarization-layer can
be a significant part of the overall cell voltage. An additional reason
to consider the polarization-layer in detail is that the ion con-
centrations and field strength at the reaction plane (which we
equate to the Stern, or Outer Helmholtz, plane, i.e. the bound-
ary of the electrolyte continuum) strongly influence the electron
charge-transfer rate. We emphasize in this work the importance
of a final “Stern” boundary condition, which relates the Stern
layer voltage difference to the field strength at the Stern plane
[13–15,38]. Considering these elements jointly, a complete math-
ematical model is developed which self-consistently and logically
describes the effect of the charge stored in the polarization-layers
on the electrochemical charge-transfer rates. In contrast, in stan-
dard models for electrochemical cells, local electroneutrality is
implicitly assumed throughout the complete electrolyte phase, and
the electron charge-transfer rate does not depend on the structure
of the polarization-layer.

Polarization-layer effects in electrochemical cells have been
included in a limited amount of previous work [13–17,28–30,39,40]
but except for Refs. [16,17] these papers consider electrolytic oper-
ation where the open-circuit voltage (OCV) is zero and no current
is generated spontaneously upon closing the electrical circuit.
This class of problems includes the broad topic of electrodialysis,
where ion transport is analyzed between ion-exchange membranes
under the application of an external voltage. Related work has
focused on super-limiting currents and hydrodynamic instability at
large voltages [31,32], but for this class of problems much simpler
Dirichlet boundary conditions of constant ion concentrations and
constant electrostatic potential are commonly used to describe the
membrane electrolyte interface. In the present context of Faradaic
charge-transfer reactions, some authors modeling diffuse charge
in electrolytic cells [28,29] have simplified the problem by tak-
ing the Gouy-Chapman limit of a zero Stern layer thickness, but
this removes any local field strength-dependence from the charge-
transfer reaction rate and thus predicts a reaction-limited current,
which cannot be exceeded without negative ion concentrations in
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the model. With a Stern layer included, it can be shown that ion con-
centrations are always positive [13,15]. In the case of a fuel cell with
fixed countercharge, a more detailed galvanic cell model, which
includes polarization-layer effects, has been developed by Franco
et al. [16].

In our recent paper [17] a fuel cell model is presented for the
case of fixed countercharge, where local electroneutrality in the
bulk electrolyte is assumed and a quasi-equilibrium structure of the
polarization-layer considered. This is the thin diffuse layer (‘thin-
DL’) limit of the full model presented below. In Ref. [17] calculation
results are presented, following Bazant et al. and Chu and Bazant
[14,15], as function of the parameter ı, the ratio of the effective
Stern layer (or compact layer) thickness to the Debye screening
length. In the “Gouy-Chapman limit” of ı = 0, the Stern layer poten-
tial difference is zero, while in the opposite “Helmholtz limit”,
where ı = ∞, the Stern layer carries the complete voltage across
the double layer, since in the Helmholtz limit the Stern capacity is
assumed to be infinitely larger than that of the diffuse layer. The
Helmholtz limit of the generalized Frumkin-Butler-Volmer (gFBV)
equation (discussed below in detail) turns out to be equivalent to
the standard Butler-Volmer (BV)-based model for fuel cell operation
[18–20,22,26,27]. Therefore, in Ref. [17] a mathematically simple
methodology is presented to generalize the standard BV-model for
fuel cells toward arbitrary values of the ratio ı. In the present work
we build on Refs. [16] and [17] by also considering mobile counter-
charge, by analyzing in more detail the structure and charge sign of
the polarization-layers as function of current, and by studying the
effect of imposing negative and very positive currents on galvanic
cell operation.

When ions can be considered as point charges, without excluded
volume, the structure of the electrolyte including the diffuse (polar-
ization) layer that forms on the electrodes is described using the
full, non-equilibrium Poisson-Nernst-Planck (PNP) model for the
transport rates of all mobile ions through the electrolyte [32].
At equilibrium, or in the thin-DL limit, the diffuse part of the
double layer can be described by Poisson-Boltzmann (PB) the-
ory (Gouy-Chapman equation). These microscopic models for the
polarization-layer must be coupled to a suitable expression for
the electron charge-transfer rate and combined with an additional
boundary condition on the electrostatic potential, to replace the
macroscopic assumption of bulk electroneutrality. Here we will
use a generalized Frumkin-corrected Butler-Volmer (gFBV) equa-
tion which, in our view, extends in a relevant way more familiar
formulations based on the assumption of local equilibrium of the
polarization-layer. The gFBV-formulation explicitly considers the
compact (or Stern) layer potential difference as the driving force
for electron transfer and the concentrations of reactive ions directly
adjacent to the electrode, i.e., at the Stern or reaction plane, and does
not a-priori assume the existence of a quasi-equilibrium Boltzmann
distribution of the polarization-layer. For the additional electro-
static boundary condition, we model the Stern layer as a uniform
dielectric, and this effectively gives the forward and backward reac-
tion rates an Arrhenius dependence on the normal electric field at
the electrode. The generalized formulation completes the math-
ematical description without arbitrary assumptions such as local
equilibrium or electroneutrality of the electrolyte or for instance a
prescribed, constant surface charge, and can be applied in such situ-
ations as thin electrolyte films (where diffuse layers overlap and/or
the bulk electrical field is a significant portion of the field strength
in the polarization-layer), operation at large, super-limiting cur-
rents [15] or large AC frequencies, which are all situations where the
diffuse charge distribution loses its quasi-equilibrium structure.

FBV-formulations for the charge-transfer rate (either general-
ized, and those that assume quasi-equilibrium for the polarization-
layers) differ from the standard unmodified BV-approach in which
the ion concentrations outside the polarization-layer (in the quasi-

neutral bulk solution) are used and the interfacial overpotential is
based on the total potential difference across the interface (thus
over the Stern layer plus the diffuse layer) or more heuristically
is based on the electrode potential relative to that of a reference
electrode. When the BV equation is used, one is forced to combine
this with a model for ion transport that neglects the possibility of
charge separation (as occurs in the polarization-layer). Instead, the
gFBV equation which is based on local conditions at the Stern plane
(ion concentration, and field strength, which determines the Stern
layer potential difference) can be unequivocally and transparently
combined with the PNP model which describes ion concentration
and potential profiles both in the electrolyte bulk, as well as in the
diffuse layers, all the way up to the reaction planes. The result-
ing PNP-gFBV model can be generally used, for the equilibrium
situation, as well as for steady-state and fully dynamic transport
problems.

2. History of modeling electrochemical charge-transfer
including polarization-layer effects

The mathematical description of charge-transfer reactions is
at the heart of any model for electrochemical cells, so we begin
with a brief historical overview of various contributions where
polarization-layer effects are included in charge-transfer rate mod-
eling, a development initiated by Frumkin [33] who first included
diffuse-charge effects in a Butler-Volmer framework. In this section
we describe what we call the “generalized Frumkin-Butler-Volmer”
(gFBV) equation, and compare with related representations in the
literature. The gFBV-equation for the electrochemical conversion
rate J of an n-electron reaction is given as a sum of an oxidation and
a reduction reaction

J = KOCRexp(˛On!"s) − KRCOexp(−˛Rn!"s) (1)

where ˛O and ˛R are the transfer coefficients (˛O + ˛R = 1) and CR
and CO are concentrations of the reacting species in the reduced
and oxidized state at the Stern, pre-electrode, Outer-Helmholtz, or
reaction, plane [in numbers per volume]. As we will explain in more
detail below, Eq. (1), although superficially similar, is fundamentally
at odds with the textbook literature in electrochemistry, because
!"s is here explicitly defined as the voltage difference across the
inner, or Stern, layer and concentrations are those at the Stern, or
reaction, plane, not outside the polarization-layer. In Eq. (1) we have
assumed ideal thermodynamics for the two atoms (or, ions) “R” and
“O” and use concentrations Ci instead of activities, ai. Non-idealities,
such as volume constraints for finite-sized ions, can be included in
modifications of Eq. (1), such as discussed in Ref. [17]. More general
models based on electrochemical potentials for non-ideal solutions
have also recently been proposed in the context of rechargeable
batteries [12] but here we focus on the traditional Butler-Volmer
perspective, where the interfacial voltage biases the energy barrier
for charge-transfer.

In particular, in Eq. (1), we view !"s as the difference in dimen-
sionless electrostatic potential between the electrode, "m, and
the electrical potential at the reaction, plane, "S, which is usually
assumed to coincide with the Stern plane, just beyond the first sol-
vation layer of the electrode [34]. To simplify notation, throughout
the paper we use dimensionless electrostatic potentials " which
relate to dimensional potentials V via " = fV with f = F/RT = e/kT is the
inverse thermal voltage. The conversion rate J relates to the Faradaic
current density i according to i = J·e·n.

For the one-electron proton reduction, Frumkin [33] already
gives Eq. (1) [first part of his Eq. (3) for the proton reduction, and his
Eq. (4) for the oxidation]. Also for the one-electron proton reduc-
tion and the reverse oxidation, Eq. (1) is given by Levich [35]. For
an n-electron reduction, the second part of Eq. (1) is also given as
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Eq. (56) by Parsons [36]. For infinitely fast kinetics, the appropri-
ate electrochemical boundary condition can also be derived from
Eq. (1). Assuming CR fixed, e.g. for an ion that upon reduction
becomes incorporated in the electrode, Eq. (1) results for n = 1 in
!"s = ˇ + lnCO with ˇ a constant. This boundary condition was used
in numerical work by Buck [37] (his Eq. (6)) and Smith and White
[32]. Itskovich et al. [38] give Eq. (1) for a one-electron reaction
with CR fixed (their Eq. (10), based on assuming a constant chemical
potential of the species in the reduced state), given by

J = J∗

[
exp(˛O#) − CO

CO,eq
exp(−˛R#)

]
(2)

where the ‘Stern’ overpotential # is the potential difference
across the Stern layer minus that value at equilibrium, given by
# = !"s − !"s,eq. We can show that Eq. (2) directly results from Eq.
(1) when we set J = 0 in Eq. (1) to obtain the equilibrium poten-
tial over the Stern layer, !"s,eq, as !"s,eq = ln(KRCO,eq/KOCR,eq),
where CO,eq and CR,eq are the concentrations of the oxidized and
reduced species at equilibrium at the Stern plane, and by making
the replacements J∗ = (KRCO,eq)˛O (KOCR,eq)˛R .

For completeness we give the generalized n-electron version of
Eq. (2) with also CR participating, which is given by

J = J∗

[
CR

CR,eq
exp(˛On #) − CO

CO,eq
exp(−˛Rn #)

]
(3)

where as above concentrations C are defined at the Stern plane,
and the Stern overpotential # is given by # = !"s − !"s,eq. Finally
we represent Eq. (1) as

J = J†
[

CRexp(˛On (!"s − "0)) − CO

CO,eq
exp(−˛Rn (!"s − "0))

]
(4)

where "0 is a ‘formal potential’, which follows from Eq. (1) as "0 =
n−1 ln(KRK−1

O ) and where J†is given by J† = KR
˛O KO

˛R . Eq. (4) was
given for n = 1 in refs. [39] and [40].

Eq. (1) has been written down in some recent papers and ana-
lyzed with different, simplified models of the double layer. In
the context of charge-transfer between two immiscible electrolyte
solutions, Horvai [44] gives Eq. (1) but with n replaced by z, being
the ‘charge of the ion’. In the same context, Senda [45] exactly
gives Eq. (1) for an n-electron reaction. Murphy et al. [28] give a
representation of Eq. (1) for a one-electron reaction with the con-
centration of both the oxidized and reduced species included, which
is their Eq. (15). To our knowledge, Ref. [28] is the first paper that
makes a full numerical calculation of a complete electrochemical
cell with a microscopic reaction model, which is a limit of the gFBV
Eq. (1), combined with the full Poisson-Nernst-Planck (PNP) trans-
port theory. In their calculations, Murphy et al. [28] only consider
the Gouy-Chapman (GC) limit of the gFBV equation (effectively set-
ting !"s = 0) because the “ions are assumed to be point charges
and the plane of closest approach of ions is just the electrode sur-
face.” A similar exercise, in which the PNP theory is combined with
the gFBV equation in the GC-limit, is presented by Moya et al. [29].
In both papers the kinetic constants are chosen such that at equi-
librium no polarization-layer is formed, and thus the OCV is zero.
The electrostatic boundary condition used in these papers [28,29]
essentially equates the potential at the reaction plane to that of the
electrode under all conditions. This GC-limit (!"s = 0), however,
lacks any voltage or electric-field dependence and thus reduces to
standard first-order chemical reaction kinetics and can also become
unphysical in some situations, since it predicts reaction-limited cur-
rents, beyond which negative ion concentrations are predicted. As
we shall see, this problem can be avoided by introducing a more
general boundary condition on the electrostatic potential, which
self-consistently inserts the electric field dependence in the reac-
tion rate via the full gFBV Eq. (1).

Superficially similar expressions as Eqs. (1)–(4) can be found in
the textbook literature (e.g., see p. 99 in Ref. [41]; p. 210 in Ref.
[42]; p. 109 in Ref. [43]) but there presented without inclusion of
polarization-layer effects (standard Butler-Volmer equation) and
thus with the concentrations, Ci, defined outside the diffuse layer,
and the overpotential, #, defined as the difference between the
case with and without current of the potential difference across
the full polarization-layer, from electrode to solution. Even more
heuristically, the overpotential is often defined as the measurable
difference between the situation with and without current of the
working electrode potential relative to that of reference electrode.
This approach, to omit polarization-layer effects in the modeling
of charge-transfer reactions, may be due to the perspective, sum-
marized by Newman [42], that microscopic double layer modeling
lacks a “firm macroscopic basis” in thermodynamics, and thus “can-
not be applied with any certainty to solid electrodes”, in spite of the
“impressive qualitative account of complicated electrode behavior
that can be attributed to double layer structure”. For thin diffuse
layers, Newman attributes this uncertainty to the unknown surface
charge, which would be enough to determine the ion profiles in
quasi-equilibrium (unaffected by the current).

From a mathematical perspective, what is missing is a micro-
scopic boundary condition on the electrostatic potential, which can
provide the local field strength entering the gFBV Eq. (1). Indeed,
we are not aware of any textbooks on electrochemistry that provide
a complete set of boundary conditions for microscopic modeling
with diffuse charge, since the assumption of bulk electroneutral-
ity obviates the need for a boundary condition on the potential.
Instead, the standard approach for microscopic modeling within
the polarization-layer is simply to specify the surface charge, ion
concentration or potential (usually equated with the electrokinetic
“zeta potential”). Below, we will show that all of these parameters
(surface charge, concentration, potential) can be highly sensitive
to the current and reaction parameters in a complete microscopic
model, and thus cannot be left as a macroscopic fitting parameter
without sacrificing predictability.

To our knowledge, the “missing boundary condition” on the elec-
trostatic potential to be used in conjunction with the generalized,
non-equilibrium, FBV Eq. (1) was first proposed to be explicitly
related to the properties of Stern’s compact layer by Itskovich et
al. [38]. We are not aware of any subsequent work with this gen-
eral mathematical model for charge-transfer reaction kinetics with
diffuse charge until the recent work of Bazant and co-workers
[13–15,46] who write the electrostatic boundary condition at the
Stern plane in the form

d"
dX

∣∣∣
S

= ∓!"s

$S
(5)

where X is the place coordinate, and $S is an effective width for the
compact layer, equal to its true width times the permittivity ratio
of the electrolyte to the compact layer. In Eq. (5) and subsequent
expressions, the upper sign in ‘±’ and ‘∓’ is required for bound-
aries where the place coordinate X points from electrode into the
electrolyte (in our calculations this will be the anode side), and the
lower sign is for the other electrode. The boundary condition, Eq.
(5), enforces continuity of the electric displacement from the con-
tinuum electrolyte region into the compact layer, which is described
by Stern’s model of an uncharged, uniform dielectric coating on the
electrode. As described in Ref. [14], Eq. (5) can also be generalized
to account for a nonlinear, charge-dependent differential capaci-
tance of the Stern layer. The combination of the gFBV Eq. (1) with
the Stern boundary condition, Eq. (5), yields an intuitive expression
for charge-transfer reaction kinetics,

J = KOCRexp(∓˛On$S"′
n) − KRCOexp(±˛Rn$S"′

n) (6)
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where the acceleration factor of the kinetic rates is shown to be
proportional to the normal electric field strength at the reaction

plane; for a one-dimensional geometry, "′
n = d"

dX

∣∣∣
S
.

Eq. (6) clearly shows the departure of the generalized FBV for-
mulation from the traditional BV approach: whereas in the latter
the driving force (the term within the exponent) is the overpoten-
tial #, i.e., a difference in potential between two positions (electrode
and solution, or between the working and reference electrode) and
two conditions (with non-zero and zero current), here it (simply)
is a fully local property only requiring information of the present
state (not requiring comparison with the equilibrium state), namely
the gradient of potential at the Stern plane. Not only are we of the
opinion that this is the more general result, but additionally also
that it is a much more insightful and easier-to-grasp formulation of
how the electrode potential influences charge-transfer rates. It can
be transparently incorporated in general calculation schemes for
electrochemical systems as a fully ‘localized’ boundary condition,
without a need to consider reference and equilibrium states, etc.

A crucial dimensionless group in the full PNP-gFBV description is
the ratio ı of the effective thickness of the Stern layer$S to that of the
diffuse layer $D given by the Debye-Hückel screening length, first
introduced as the parameter % by Itskovich et al. [38]. The influence
of (non-zero values for) ı was investigated in detail only much more
recently, starting with Bonnefont et al. [13] using a complete PNP-
gFBV description including the Stern boundary condition. (Itskovich
et al. [38] only analyze single-electrode polarization curves.) Bon-
nefont et al.’s [13] Eq. (7) is equivalent to our Eq. (1) (but note the
reversed subscripts “R” and “O”). Furthermore, Bonnefont et al. [13]
are first to take values of the ratio KO/KR such that at equilibrium
a polarization-layer is formed, but since this ratio is the same on
both electrodes, the open-circuit voltage, OCV, equals zero, which
precludes spontaneous current and only describes electrolytic cell
operation. Bazant et al. [14], Chu and Bazant [15] and Prieve [30]
extend these calculations. He et al. [39] use the gFBV-formulation
in the represention of Eq. (4), for a steady-state calculation for a
spherical nanoelectrode, with the counterelectrode as a infinitely
large shell, infinitely far away. On the nanoelectrode they set the
formal potential "0 to zero which implies that at equilibrium no
polarization-layer is formed. The same gFBV-representation is used
in Ref. [40]. In both these works a seemingly rather complicated
expression is used for the potential drop over the compact layer,
!"s, which however, is equivalent to Eq. (5). Olesen et al. [47] also
give Eq. (1) for a one-electron reaction but in their calculations
take a local equilibrium approach for the polarization-layer, and
linearize for a small Stern overpotential. In the context of proton-
conducting fuel cell modeling, the gFBV equation was recently given
by Franco et al. [16] (his Eq. (52)) in a fully dynamic transport model,
an approach which was significantly simplified in Ref. [17] assum-
ing local equilibrium for the polarization-layers.

Interestingly, this generalized formulation, which was the start-
ing point of Frumkin’s analysis [33], in which the ion concentrations
are taken at the Stern plane, and the potential driving the electron
transfer is explicitly based on the Stern layer potential difference,
is rarely mentioned in the literature, let alone used in calcula-
tions. (To our knowledge, the above literature overview is rather
complete.) Instead, starting with Frumkin himself in 1933, the
polarization-layer structure has always been considered to be
locally at equilibrium, and this additional information has been
implemented [48]. This is surely a suitable simplification in many
cases, although it has more limited predictive power, because it
breaks down when polarization-layers influence one another such
as when the electrolytic film is thin, electron currents are very high
and/or large AC frequencies are applied. Another important point
is that the resulting expressions do not necessarily become easier
to grasp.

Let us show that Eq. (1) is equivalent to the resulting more
common representations of the Frumkin-Butler-Volmer equation,
which we base on Eq. (11) in Delahay [49] (p. 158), given by

i = i0t exp{(˛n − z)"2}[exp{−˛n("M − "e
M)}

− exp{(1 − ˛)n("M − "e
M)}] (7)

where i0t is an exchange current density, z the charge of the oxidized
ion, "M is the dimensionless electrode potential with reference
to the bulk of the solution outside of the double layer ("sol), and
"M

e the value of "M at equilibrium (for zero current); "2 is the
potential at the reaction plane, also relative to "sol, see Fig. 2.
Replacing in Eq. (7) "M − "2 by !"s, exp(− z"2) by CO/CO,∞ (this
is where we remove the equilibrium Boltzmann assumption again
and return to the generalized formulation), replacing the constants
it0exp(!n"M

e)/CO,∞ by KR, exp(−(z − n)"2) by CR/CR,∞ (Boltzmann
for the reduced species), and replacing it0exp(−(1 − !)n"M

e)/CR,∞
by KO, we obtain Eq. (1) (apart from an overall minus-sign; note
that ˛ = ˛R and 1 − ˛ = ˛O).

Besides its more general applicability, an additional advantage
of Eq. (1) over Eq. (7) is in our view its increased transparency,
for instance showing clearly the role of ion concentrations in the
charge-transfer rate, not being hidden in the parameters "M

e and
it0. A related point is that the representation according to Eq. (7)
implicitly requires unchanging and unambiguous values for the
background ion concentrations, CO,∞ and CR,∞. Though this require-
ment will be valid in many situations, at high currents and/or
thin electrolyte films significant gradients in ion concentration can
develop in the bulk electrolyte when all ions are mobile, and CO,∞
and CR,∞ are then different at the anode and cathode. For very high
currents a related effect is that the polarization-layer expands sig-
nificantly [15,31,50] no longer conforming to the (Gouy-Chapman)
equilibrium structure, which can also be the case when high fre-
quencies are applied in the voltage or current signal imposed on
the electrochemical cell.

3. Theory

In this section we discuss the complete mathematical model,
which combines the Poisson-Nernst-Planck (PNP) model for the
ion transport flux in the electrolyte with the generalized Frumkin-
Butler-Volmer (gFBV) rate equation and the Stern boundary
condition. The theory can be generally applied both for the case
where the countercharge is mobile and for the case where it is
immobilized, such as will be assumed in an example calculation
for a solid electrolyte used in a hydrogen fuel cell. In the latter case,
an overall balance for the inert ions does not need to be consid-
ered. At the end of this section we first discuss the simplifications
that result in the thin diffuse layer (thin-DL) model of Ref. [17] and
finally present the analytical results when additional to the thin-DL
assumption, the GC-limit (ı = 0) or Helmholtz-limit (ı = ∞) is con-
sidered as well, both for the case of mobile and for immobilized
countercharge. Note that throughout this manuscript we focus on a
one-dimensional and planar geometry, with two perfectly smooth,
planar electrodes placed perfectly parallel, in direct contact with
the electrolyte phase in between, which only contains the reactive
monovalent cations and inert monovalent anions. Effects of addi-
tional background salt are not considered [32]. Because we only
consider the steady-state, the charge-transfer rate J is equal to the
electron current density i (when J is multiplied with the electronic
charge e and the number n), as well as being equal to the trans-
port flux of the reactive ion (being the cation), at each position in
the electrolyte. Note that in a dynamic (time-dependent) calcula-
tion this would be different and the Maxwell displacement current,
related to capacitive charging of the double layers, would have to
be included as well [13,28,29,46].
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3.1. Electrochemical charge-transfer and equilibrium
thermodynamics

In the calculations we assume a one-electron reaction
O+ + e− ↔ R with R being a neutral particle at a fixed chemical poten-
tial. This condition is appropriate for a system where the neutral
particle derives from the electrode, e.g. as in electro-dissolution of
a metal [13–15], or because it is an absorbed neutral hydrogen atom
in equilibrium with hydrogen molecules in an adjacent gas phase
[17]. In those cases, Eq. (1) simplifies to

J = JO exp
(1

2
!"s

)
− KRCO exp

(
−1

2
!"s

)
(8)

where we have also assumed the transfer coefficients to be equal
to 1/2. (See references in Ref. [14] on the appropriateness of assum-
ing ˛ = 1/2 for one-electron reactions, and see Ref. [51] where it
is argued that when experimentally deviations from ˛ = 1/2 are
observed, this may well be due to neglected polarization-layer
effects.) The transfer rate J is defined to be positive for the oxida-
tion reaction, which implies that when cations are the only reactive
species in the electrolyte, it describes the cation flux in the direction
away from the electrode into the electrolyte. (Note that this is the
opposite of the sign convention in refs. [13–15].) The rate constants
KR and JO for the reduction and oxidation together fully define both
the kinetics and the thermodynamics of the charge-transfer reac-
tion (both numbers are strictly positive). Indeed, from the gFBV
equation we can derive how the rate constants KR and JO relate to
the thermodynamics of the process, especially to the electromotive
force, or open-circuit voltage, "0. Assuming J = 0 and implementing
a Boltzmann distribution, CO = C∞exp(− !"D), which is valid in the
limit of thin, non-overlapping double layers (where the electric field
is negligible outside the double layer, compared to the larger values
within), we obtain from Eq. (8) the Nernst equilibrium condition for
the electrode potential [33,52],

!"T = ln
KRC∞

JO
= cnst + ln C∞ (9)

where !"T is the total interfacial potential difference over the
double layer (thus, across Stern plus diffuse layer), counted from
electrode to bulk solution (!"T = "m − "sol).

For a full electrochemical cell at equilibrium, the potential dif-
ference over the bulk electrolyte solution is zero, and thus the
dimensionless open cell voltage "0 = "m,C − "m,A is given by

"0 = !"T,C − !"T,A = ln
KR,C

KR,A

JO,A

JO,C
(10)

where A and C refer to the anode and cathode. Because we define
"0 to be positive for galvanic operation, we must choose the anode
and cathode such that we comply with KR,C/JO,C > KR,A/JO,A.

3.2. Poisson-Nernst-Planck transport model

The Nernst-Planck equation describes the mass transfer flux of
each of the ionic species as a sum of a concentration term (diffusion)
and a term due to the electrical field (migration),

Ji = −Di

{dCi
dX

+ ziCi
d"
dX

}
(11)

where Di is the ion diffusion coefficient, zi the dimensionless charge
(e.g. −1 for a monovalent anion), and X the place coordinate. For
a solid electrolyte with fixed anions, we set D− = 0. For a complete
description of the electrolyte phase, Eq. (11) must be supplemented
with Poisson’s equation

d2"
dX2 = −4&$B(C+ − C−) (12)

where $B is the Bjerrum length, given by $B = e2/(4"εkT), which
can be related to the Debye-Hückel screening length according to
$D = (8&$BC∞)−1/2.

For stationary conditions (steady-state), and a planar, one-
dimensional geometry, the flux J is everywhere the same for the
reactive species, and at the boundaries (reaction planes) it is (in
magnitude) equal to the Faradaic current given by Eq. (8). In steady-
state, the flux is zero everywhere for the inert ions. The final
boundary condition is provided by the Stern condition, Eq. (5). Fol-
lowing Ref. [14], one more condition is needed to relate the current
to the cell voltage in steady-state, which is an integral constraint
specifying the total number of inert anions

L∫

0

CidX = C∞L (13)

where C∞ is the average concentration of inert anions. For a 1:1 salt,
with one ion reactive and the other inert (without added indifferent
salt), C∞ equals the bulk ionic strength.

3.3. Dimensionless Poisson-Nernst-Planck
Frumkin-Butler-Volmer model

Next we discuss the dimensionless representation of the full
PNP-gFBV model based on a system with a monovalent reactive
cation, and a single type of monovalent inert anion. First we present
the model for the case that the inert ion is fixed in space, at a con-
stant concentration of C∞. The dimensionless coordinate is given by
x, running from anode to cathode, related to the dimensional coor-
dinate X according to x = X/L where L is the distance between the
two opposite Stern planes. The ratio of Stern layer thickness over
Debye length is given by ı = $S/$D and the ratio of $D over L is given
by ε, i.e., ε = $D/L. The dimensionless concentration of the cationic
mobile species is c+, which is the dimensional concentration C+ over
C∞. The dimensionless Poisson equation then becomes

d2"
dx2 = − 1

2ε2

(
c+ − 1

)
(14)

while the dimensionless Nernst-Planck equation in the steady-state
becomes

dc+

dx
= −4j − c+ d"

dx
(15)

where the reduced flux j is given by j = J/Jlim with Jlim = 4D+C∞/L
[13–15].

The dimensionless gFBV equation is given by

±j = jOexp
(1

2
!"s

)
− kRcOexp

(
−1

2
!"s

)
(16)

where kR = (KRC∞/Jlim) and jO = (JO/Jlim). At the two Stern planes the
boundary condition is

!"s = ∓εı
d"
dx

∣∣∣
S

(17)

When both ions are mobile, Eq. (14) is modified to

d2"
dx2 = − 1

2ε2 (c+ − c−) (18)

and the Nernst-Planck equation must be solved for the anion as
well, which becomes analogous to Eq. (15)

dc−

dx
= c− d"

dx
(19)

and implies a Boltzmann distribution, c−∝ exp("), for thermal equi-
librium in a dilute solution.
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To simplify the analysis [13–15,46], it is in this case (when both
ions are mobile) advantageous to define an average dimensionless
concentration c = 1/2(c+ + c−) and a dimensionless charge density
( = 1/2(c+ − c−) which modifies Eq. (18) into

d2"
dx2 = − (

ε2 (20)

and results in a replacement of Eq. (15) and (19) by

dc
dx

= −2j − (
d"
dx

(21)

and
d(
dx

= −2j − c
d"
dx

(22)

The model is completed with an overall balance for the inert ion,

given by

1∫

0

(c − ()dx = 1. Electrostatic potentials can be set to zero

at an arbitrary position (in Figs. 5 and 6 the anode potential, "m,A,
is set to zero, whereas "m,C = 0 in Figs. 8 and 9).

Next we will discuss the analytical solution of the steady-state
galvanic cell model in the asymptotic limit of thin-diffuse layers
ε → 0, where the membrane thickness is much larger than the
Debye length. These equations can be used in all three modes of
operation identified in Fig. 1. First we show the results for the case
of fixed countercharge (‘solid electrolyte’) and secondly for mobile
countercharge (‘liquid electrolyte’). In the first case, this analytical
model has already been presented in Ref. [17] and will be repeated
briefly here. For the case of mobile countercharge, this set of equa-
tions extends on the analytical model for an electrolytic cell in the
thin-DL limit of Ref. [14].

3.4. Galvanic cell model for the thin diffuse layer-limit for a solid
electrolyte

In the thin diffuse layer-limit for a material with fixed coun-
tercharge, the Nernst-Planck equation, Eq. (11), can be simplified
by neglecting the concentration diffusion term for bulk electrolyte
transport, resulting in Ohm’s law for ion transport, which for the
case that only the cation is mobile and reactive, and for a one-
dimensional planar geometry, is given by

i = R∗ −1
elyt !"elyt (23)

where i is the current density (in A/m2) which equals the cation flux
J times electron charge e, where R∗

elyt = L(D+C∞e)−1 (with L is mem-

brane thickness) is an Ohmic resistance in m2/A, and where !"elyt
is the dimensionless potential difference over the bulk electrolyte
from a position just outside the diffuse layer at the anode-side of the
cell to the same position on the cathode-side, !"elyt = "sol,A − "sol,C.

In the model in the thin-DL limit, an equilibrium structure for
the diffuse layers prevails on each electrode, which are separated by
the bulk electrolyte phase in which the concentration of ions is con-
stant, namely the ionic strength C∞. In this case we have Boltzmann
statistics for the proton concentration at the Stern plane,

CO = C∞exp(−!"D) (24)

where !"D is the potential difference across the diffuse layer, equal
to "S − "sol, with "sol the value of the potential outside the diffuse
layer, at the start of the bulk solution phase.

In Ref. [17] a modification of Eq. (8) was used that more explic-
itly considers a hydrogen concentration cell. In such a cell, protons
migrate through the electrolyte, driven by a difference in the hydro-
gen gas pressure between the anode and cathode compartment.
The calculation is based on an anode compartment with hydro-
gen gas pressure pH2,A, and a cathode compartment with pressure

pH2,C (<pH2,A). In this case, when mass transport of gaseous hydro-
gen from the compartment to the electrodes and the hydrogen
dissociation reactions are fast enough, we can make the replace-
ments KR = k*j

√
p*/(C∞e) and JO = k*j

√
pH2/e, and together with Eq.

(24) rewrite Eq. (8) as [17]

i = k∗
{√

pH2 exp
(1

2
!"s

)
−

√
p∗exp

(
−!"D − 1

2
!"s

)}
(25)

where k*j is a purely kinetic rate constant of the respective elec-
trode and p* is a thermodynamic property of the membrane
electrolyte material in combination with the electrode material (p*
has dimension of pressure). The parameter p* can be considered
the ‘zero-charge pressure’, i.e., is defined such that no polarization-
layer is formed at equilibrium in the membrane electrolyte when
the hydrogen gas phase pressure in the adjacent compartment, pH2,
exactly equals p*. For pH2 > p* the membrane electrolyte becomes
positively charged at equilibrium, and vice-versa for pH2 < p*.

For the equilibrium structure of the diffuse layer, the analytical
solution for the case that the mobile ions are positive (cations) and
the fixed anions are immobile, is given by [17,53]

!"s = !"D

|!"D|
ı
√

exp(−!"D) + !"D − 1 (26)

The model for the thin-DL limit is based on the above equations,
evaluated on both electrodes, as well as on the closure equation

fVcell = "cell = "m,C − "m,A

= (!"s + !"D)C − (!"s + !"D)A − !"elyt (27)

Recall that f = F/RT = e/kT is the inverse of the thermal voltage used
to define all of our dimensionless potentials. It must be noted
that in this model based on the thin DL-limit where local “quasi-
equilibrium” can be assumed in the diffuse layers, as described by
Eq. (26), this does not imply that the structure of the diffuse lay-
ers is that of a true equilibrium system (where the current is zero).
Instead, the electrode charge density and the values of !"s and
!"D in Eq. (26) are influenced by the current density i via the gFBV
equation, Eq. (25).

Note that Eqs. (23)–(25) can be rewritten in the dimen-
sionless parameters as used in Eqs. (14)–(22) when we use
the conversions jO,i = 1/4k*iR*

elyt
√

pH2,i, kR,i = 1/4k*iR*
elyt

√
p*, and

i = 4j/R*elyt, resulting in !"elyt = 4j and ±j = jO exp(1/2!"s) − kR
exp(−!"D − 1/2!"s).

We are now ready to derive analytical current-voltage relations
for galvanic cells applicable in all three modes identified in Fig. 1.
These relationships are based on first taking the thin-diffuse layer
limit as above and then either the Gouy-Chapman limit (ı = 0) or
the Helmholtz-limit (ı = ∞). For the GC-limit, we obtain

"cell = "0 − 4j + ln
1 − j/jO,A

1 + j/jO,C
(28)

where the dimensionless open cell voltage is
"0 = ln(kR,CjO,A/kR,AjO,C), while for the H-limit we obtain

"cell = "0 − 4j − 2 arcsinh
j√
ˇA

− 2 arcsinh
j√
ˇC

(29)

where ˇA = 4kR,AjO,A and ˇC = 4kR,CjO,C. Eqs. (28) and (29) are math-
ematically identical to the same limits of the thin-DL fuel cell
model presented in Ref. [17] (Eqs. (25) and (27) there), using the
conversions given above. The expression for the H-limit, Eq. (29),
has been presented in the context of hydrogen fuel cells in refs.
[18–20,22,26,27]. Results of the thin-DL model are plotted in Fig. 3a
and compared to analogous expressions for the liquid-electrolyte
case of mobile countercharge in Fig. 3b, which will be discussed
below.
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Fig. 3. Cell voltage vs. current for a galvanic cell with fixed (a) and mobile (b) coun-
tercharge, operating in all three modes identified in Fig. 1 in the thin-diffuse layer
(zero-ε) limit based on Eqs. (23)–(36) (jO,A = 0.8, jO,C = 0.1, kR,A = 1, kR,C = 30). Reaction-
limited current is obtained in the GC-limit when j → jO,A or j → − jO,C, while in the
H-limit the current is diffusion-limited when j → ± 1, but only for mobile counter-
charge. Insert in (b) shows non-monotonic dependence of "cell on ı.

3.5. Galvanic cell model for the thin diffuse layer-limit for an
liquid electrolyte

From the leading order approximation-procedure [13–15,46,50]
we can derive a similar semi-analytical model for the thin-DL limit
(ε → 0) for the case of mobile countercharge. The results that we
present here extend on those of Ref. [14] by going from a purely
electrolytic system with zero open-circuit voltage ("0 = 0) to the
general case of galvanic cell. In the thin-DL limit in the bulk of the
electrolyte the cation concentration decreases linearly, and the con-
centrations just outside the two diffuse layers are related according
to (Eq. (35) in Ref. [14]; Eq. (46.13) in Ref. [35])

cC
sol = cA

sol − 2j (30)

where ‘sol’ stands for a position just outside the diffuse layer, see
Fig. 1. Thus, with

∫ 1
0 csol dx = 1 because of conservation of the total

number of inert countercharge, we have cA
sol = 1 + j and cC

sol = 1 − j.
The potential difference across the bulk electrolyte (between the
two points we mark ‘sol’) is given by (Eq. (37) in Ref. [14])

!"elyt = − ln

(
1 − 2j

cA
sol

)
= ln

cA
sol

cC
sol

= ln
1 + j
1 − j

(31)

Eq. (31) is also given by Levich [35], his Eq. (46.15), but there rather
lengthier, namely as a summation of minus twice the second term
of Eq. (31) and once the third term to give −!"elyt. With mobile
countercharge, the structure of the diffuse layer is not described by
Eq. (26) but according to the well-known Gouy-Chapman relation,

!"s = 2ı
√

1 ± j sinh
(1

2
!"D

)
(32)

where we have included the fact that near the electrodes the bulk
ion concentration (on which ı is based via the Debye length, $D)
is modified due to a non-zero current. As before, the upper sign
in ± refers to the anode, the lower sign to the cathode, which
is related to the fact that j is defined positive when the cations
run from anode to cathode. In dimensionless notation, the gFBV-
equation becomes

±j = jOexp
(1

2
!"s

)
− kRcsolexp

(
−!"D − 1

2
!"s

)
(33)

to be applied on both electrodes, and combined with the closure-
equation, Eq. (27).

For the GC- and H-limits, Eqs. (30)–(33) for the case of mobile
countercharge in the thin-DL limit can be solved to give analytical
expressions for #cell vs current j, given for the GC-limit by

"cell = "0 − 4 arc tanh(j) + ln
1 − j/jO,A

1 + j/jO,C
(35)

and for the H-limit by

"cell = "0 − 4 arc tanh(j) − 2 arc sinh
j√

ˇA(1 + j)

−2 arc sinh
j√

ˇC(1 − j)
(36)

which are mathematically equivalent to Eqs. (72) and (75) in Ref.
[14] except for the sign reversal of j (in Ref. [14], j is defined to be
positive for the transport of positive charges from cathode to anode,
which is the opposite of the standard sign convention) and for the
fact that kR and jO (thus ˇ) can have different values at the two
electrodes in Eqs. (35) and (36) above. In this way, we naturally
extend the current-voltage relations of Eqs. (72) and (75) of Ref.
[14] (which describe an electrolytic cell) to galvanic cell operation.
Eqs. (28) and (29) (for fixed countercharge) differ appreciably from
Eqs. (35) and (36) (for mobile countercharge), which is in contrast
to what we erroneously argued in Ref. [17] (namely that they would
be the same, irrespective of whether countercharge would be fixed
or mobile).

The above analytical expressions show clearly how the cell
voltage "cell departs from the open-circuit voltage, "0, due to polar-
ization of the cell at nonzero current, which can be decomposed
into a transport resistance, 4j or 4 arctanh(j), and two kinetic ‘resis-
tances’. When the kinetic constants, jO,i or ˇi, are very large, the
transport resistance dominates, while electrode kinetics dominates
when on at least one of the electrodes jO,i or ˇi is very small.

Fig. 3 shows calculation results for a galvanic cell with fixed
countercharge (Fig. 3a) and for mobile countercharge (Fig. 3b) using
the model in the thin-DL limit, where general results are shown as
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function of the parameter ı based on Eqs. (23)–(27) for fixed coun-
tercharge, and Eqs. (30)–(33) for mobile countercharge, as well as
limiting results for the GC- and H-limit. Reaction-limited currents
in the GC-limit are observed for j = −jO,C = −0.2 and for j = jO,A = 0.8,
as well as diffusion-limited currents at j = ± 1 for mobile counter-
charge (Fig. 3b). We also note an interesting difference between
Fig. 3a (fixed countercharge) and Fig. 3b (mobile countercharge)
that in Fig. 3b we need a much larger range of ı–values to go from
close to the H-limit to close to the GC-limit (∼factor of 1000) than
in Fig. 3a (∼factor of 100).

Another interesting effect, not mentioned previously, is the pos-
sibility of non-monotonic dependence of the cell voltage "cell on
the parameter ı (for given current j). A clear manifestation of this
effect is seen in the upper-left corner of Fig. 3b where for ı = 1 and
ı = 10 for j = −0.9 the cell voltage "cell is smaller than predicted
by the H-limit. This shows that the GC- and H-limits, in spite of
representing the limiting behavior for ı → 0 and ı → ∞ and conve-
niently approximating the “envelope” of possible charge-voltage
relations, do not strictly bound the range of possible values for
j − "cell when ı is in between 0 and ∞. The reason, illustrated in
the insert of Fig. 3b is that the double layer potentials !"i at the
two electrodes (!"i = !"s + !"D) have different dependencies on
ı and can in some cases combine to give the total cell voltage #cell a
non-monotonic dependence on ı. In this particular case, for j = −0.9,
the ion concentration near the anode is reduced by a factor 10 and
increased at the cathode by a factor of 2, see Eq. (30). Thus the Debye
length is much smaller at the cathode and thus, on increasing $, the
effect of the Stern layer becomes apparent earlier than on the anode.

3.6. Reaction-limited current and diffusion-limited current

The above set of equations can be used to discuss briefly two
types of limiting currents that are predicted in theories of gal-
vanic cells, which are apparent in Fig. 3. Firstly, in the GC-limit
(for both materials, with fixed or mobile countercharge) a reaction-
limited current is predicted in Eqs. (28) and (35) when j → jO,A
or j → −jO,C. This mathematical limit was discussed previously in
refs. [13] and [14], and is due to the unphysical assumption of a
zero thickness of the Stern layer, and thus the disappearance of the
voltage-dependent Arrhenius term from the gFBV charge-transfer
rate equation. Taking a non-zero value for ı eliminates this artifi-
cial limit, though its effect can still be seen as a steepening of the
curve for "cell vs. j (“V–i curve”). Secondly, for the material with
mobile countercharge, Eqs. (35) and (36) contain a term arctanh(j)
which will diverge for j → 1 and j → −1. These are the classical
diffusion-limited currents [14,15,54], which are predicted in the
thin-DL limit for a material with mobile countercharge. Although
in reality most electrochemical cells have thin diffuse layers com-
pared to the bulk dimensions, it must be formally noted that, as
discussed in refs. [14], [15] and [31], in any calculation with a non-
zero value for ε (which is required for a finite-thickness membrane)
the diffusion-limited current is eliminated, although it will result
in a steepening of the V–i curve. For any finite DL thickness, with
a sufficiently large voltage and/or small system, it is possible to
reach the regime of “super-limiting current” in the model, where
the diffuse layer expands to a non-equilibrium structure, as first
described by Rubinstein and Shtilman [31] in the context of elec-
trodialysis. In summary, our full PNP-gFBV model does not predict
any true limiting currents, but only a steepening of the V–i curve.
It is only when either of the parameters ε or ı tends to zero that
true singularities in the V–i curve (or plateaus in the I–V curve) are
predicted.

It is interesting to note that in more complicated situations
diffusion-limited currents can also arise in a full PNP-gFBV model
for non-zero ε. Our analysis assumes a single reactive ion that can
react to/from its reduced state at constant chemical potential in the

two electrodes. A more general situation is that the current also
influences the interfacial concentration of the product species. For
instance, in the case of a neutral product species which must shut-
tle between the electrodes as in refs. [13], [28], [29] and [30], there
is an overall balance of reactive plus neutral species, and thus dif-
fusion limitation of the neutral species can yield a limiting current
for the entire cell, under some conditions, even in a full model with
all length scales finite (ı > 0 and ε > 0).

3.7. Analysis of energy losses during charging-discharging cycles

Analytical equations such as Eqs. (23)–(36) presented above can
be very valuable to use in an analysis of energy storage and conver-
sion in reversible galvanic cells. For example, these equations can be
applied to predict the energy efficiency of redox flow cells, where
parameters jO,i can be made a function of the chemical state of
the reduced species (e.g., dependent of the time-varying hydrogen
gas pressure during charging of a redox flow cell based on elec-
trolytic hydrogen compression). For energy-efficient charging and
discharging it is clearly best to stay close to the open-circuit voltage
"0, although this may overly constrain the desired rates of charging
and discharging. Analysis on the basis of Eqs. (23)–(36) can show to
what extent the cell potential "cell will diverge if the charging cur-
rent (j < 0 during charging) is too large, which implies large losses
during energy storage and poor efficiency of energy storage. In par-
ticular, the energy efficiency, #, defined as the work done by the
cell upon discharge at current jdischarge > 0 (converting chemical to
electrical energy) divided by the external work done to recharge
the cell at current jcharge < 0 (converting electrical back to chemi-
cal energy), is given by # = ("cell(j > 0)/"cell(j < 0)) when the cell
voltage remains at a constant value during the charging phase, as
well as during discharge.

4. Results and discussion

4.1. Solid electrolyte

First we show results for the cell voltage-current characteristic
of a fuel cell with immobilized countercharge. We take the exam-
ple of a hydrogen concentration cell in which mobile protons in the
electrolyte are electrochemically exchanged with gaseous hydro-
gen at the electrodes (via an assumed equilibrium of H2 in the
gas phase with adsorbed hydrogen atoms near the charge-transfer
site) [16,24]. To generate a positive cell voltage, the anode com-
partment hydrogen pressure pH2,A is larger than in the cathode
compartment, pH2,C. The calculation is based on both the complete
PNP-gFBV model using Eqs. (14)–(17), and the model in the thin-DL
limit, based on Eqs. (23)–(27). Parameter settings in the calcula-
tion for Fig. 4 are as follows. For the model in the thin-DL limit
we require pH2,A = 1 bar, k*A = k*C = 105 A/(m2 bar1/2), p* = 1 %bar,
R*elyt = 1 m2/A, f−1 = RT/F = 68.9 mV, and ı = 1. These parameter set-
tings translate into those required for the full dimensionless
PNP-gFBV model when using the conversion formula given below
Eq. (27). As long as in the full model sufficiently thick membranes
are considered, i.e., for low values of ε (below ε ∼ 0.01), results are
virtually identical to those of the thin-DL limit.

In Fig. 4 we show the dependence of Vcell on current density,
i, for different cathode hydrogen pressures. The fuel cell spon-
taneously generates a current (galvanic discharging mode) for
currents between zero and a maximum value, imax, while out-
side this range a current is imposed, both for currents below zero
(electrolytic charging), and for currents above imax (super-galvanic
regime). For large positive currents, the cell acts like a resistor, set by
the bulk membrane resistance, but for negative currents, signs of a
reaction-limited current, or diverging surface overpotential, appear
with decreasing cathodic hydrogen concentration. Interestingly, we
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Fig. 4. Voltage–current characteristic for a hydrogen fuel cell which operates gal-
vanically between 0 < i (A/m2) < 7. A current is imposed upon the cell (not generated
spontaneously) when Vcell and i have opposite signs, such as to the left of the i = 0-axis
(electrolytic charging), and beyond i∼7 A/m2 (super-galvanic regime). Parameter
settings in main text.

do not find strong effects of the applied cathode gas pressure, pH2,C,
when we operate the cell galvanically, but very strong differences
develop when a negative current is imposed on the cell. Such exper-
iments clearly would be very useful to provide informative and
sensitive data to validate models for galvanic cell against. The strong
asymmetry predicted in the curves for Vcell vs i around i = 0 shows
that overpotentials are not identical (for a given magnitude of the
current) when we go from the forward (fuel cell) to the backward
(electrolytic cell) mode, which is different from what follows from
more conventional Butler-Volmer modeling [5].

Next we show in Fig. 5 profiles across the electrolyte membrane
for the proton concentration, and for the electrostatic potential.
From this point onward all calculation results that will be presented
are based on the dimensionless complete PNP-gFBV model with
non-zero values for ε. In order to illustrate the continuous poten-
tial profile across the reaction plane in the model, in all subsequent
figures (except Fig. 7) we include the compact Stern layers in plots of
the electrostatic potential profile extending from electrode to elec-
trode, not only across the continuum regions with dimensionless
coordinate 0 < x < 1. In these graphs, coordinate x is rescaled in such
a way that the continuum space in between the Stern planes (which
are represented by the dashed vertical lines in the graphs) runs from
position ı/(1 + 2ı) to 1−ı/(1 + 2ı). For simplicity, we assume a per-
mittivity ratio of unity between the electrolyte and compact Stern
layer, so that the potential extrapolates linearly across the Stern
layer with the limiting slope from the edge of the electrolyte.

In Fig. 5, all dimensionless concentrations c+ and c− are dimen-
sional concentrations C+ and C− scaled to the ionic strength C∞
(concentration of each of the ions in the uncharged membrane).
Calculation results are presented for ε = 0.03 (Debye length 3%
of the distance between the Stern planes of each electrode), for
kR,A = kR,C = 1, jO,A = 2, jO,C = 0.5, with the anode located to the left
end of each graph, and the cathode on the right end. The chosen
values for kR,i and jO,i imply that at equilibrium (j = 0) according
to "0 = ln kR,CjO,Ak−1

R,Aj−1
O,C, the dimensionless open-circuit voltage

"0 = fV0 is given by "0 = "m,C − #m,A = ln(4) = 1.39, which is in accor-
dance with Fig. 5b (curve for j = 0; "0 is the difference between the
value for " at the very right of the curve, "m,C, minus that at the
very left, "m,A).

For equilibrium, Eq. (9) gives the total voltage difference over
each double layer !"T (where !"T is a summation of the volt-

Fig. 5. Proton concentration (c+) and electrostatic potential (") profiles for a fuel cell
with fixed countercharge operated at various values of the dimensionless current j.
The anode is located left and the cathode right. For currents 0 ≤ j ≤ 0.20 the cell
functions as a galvanic cell while outside this range a current must be imposed on
the cell. Dashed lines in (b) denote the Stern plane. In (a) the profiles are shifted up-
and downward for clarity; in the bulk the dimensionless concentration is ∼1 for all
conditions.

age difference over the diffuse part, !"D, and that over the Stern
layer, !"s), which can be written in dimensionless units as !"T =
ln(kRj−1

o ). The full calculation gives the same result, with for j = O
!"T = −ln(2) at the anode and !"T = +ln(2) at the cathode. How-
ever, this does not imply that the equilibrium structure of the double
layer is the same on both electrodes, because in this case protons
are expelled on one electrode and are attracted to the other, which
results in a different structure of the diffuse layer, and thus a differ-
ent value for the diffuse charge (which determines !"s). Indeed,
on the cathode we obtain in this case a slightly higher magnitude
of the diffuse layer potential !"D (and thus a lower !"s) than on
the anode.

Fig. 5a shows concentration profiles shifted up- or downward
by multiples of 0.2 to increase readability (except for the curve for
j = 0.5, which is not modified). For positions between 0.2 and 0.8
all concentrations c+ are very close to unity. Fig. 5b shows the cor-
responding dimensionless electrostatic potentials " as function of
position. Thin layers to the very left and right in each graph repre-
sent the Stern layer, with the Stern planes shown as dashed vertical
lines in Fig. 5b. Fig. 5b shows how the cell voltage "cell = "m,C − #m,A
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is positive for a current of j = 0.20 and below. As galvanic (sponta-
neous) operation requires both a positive j and a positive value for
"cell, galvanic operation for the present parameter settings is only
observed for 0 ≤ j ≤ 0.20. Below j = 0 we have electrolytic conditions
with an imposed current which is in the opposite direction com-
pared to the current direction for ‘normal’ galvanic operation, i.e.,
we push electrons ‘in reverse’ and pump hydrogen gas from the low
pressure side to the high pressure side. This is the situation where
excess electrical energy is stored in the form of compressed hydro-
gen gas, which we have called ‘electrolytic charging’ in Fig. 1. In
contrast, the ‘super-galvanic regime’ requires an imposed current
beyond the maximum that can be provided in galvanic opera-
tion, namely when the external resistance is zero (jmax∼0.20). This
regime is represented in Fig. 5 by the curves ranging from j = 0.50
to j = 2.0.

As shown in Fig. 5a we have at equilibrium (j = 0) an excess
of protons on the anode and a deficit on the cathode. As dis-
cussed previously [13,14,17] there is no theoretical constraint for
the two diffuse charge densities to exactly compensate one another,
i.e., there is no requirement for the total membrane charge to be
zero, not even at equilibrium. The only constraint is that the total
charge on all electrodes combined plus the charge in the electrolyte
membrane must sum to zero so that the entire system is electri-
cally neutral. Furthermore, there is no requirement for the electron
charge and the diffuse charge on any electrode to exactly compen-
sate one another (except in equilibrium). Instead, the difference
between the two values of charge (which for thick membranes will
be small) determines the field strength just outside the diffuse layer
and thus the migration current into the bulk electrolyte. In Fig. 5a
we observe that with increasing currents first the cathode diffuse
layer becomes uncharged (just beyond j = 0.5) and slightly later the
same occurs for the anode diffuse layer (slightly beyond j = 1.0).
Beyond that point, for j = 1.5 and j = 2.0 in Fig. 5a, we obtain con-
centration profiles which are completely reversed compared to the
situation below j = 0.5, with now an excess of protons on the cath-
ode, and a deficit on the anode. These diffuse layer profiles at high
currents provide for the ‘reverse’ reduction reaction of the proton
on the anode to be suppressed (which requires the proton concen-
tration at the anode to go down) and thus the net reaction rate to go
up. Vice-versa, the proton concentration is increased at the cathode
to increase its reduction rate there and thus to increase the proton
conversion rate. The reversal of the sign of the diffuse charge upon
changing the current from very negative to very positive is a general
phenomenon and can also be found for electrolytic cells, also for the
case of mobile countercharge [14,15], and even for a cell where at
equilibrium the diffuse layers are uncharged.

Finally we show in Fig. 6 results for j = 0.1 and for galvanic condi-
tions, i.e., "m,C > "m,A, which implies we consider situations where
electrical energy is generated. We vary the values of jO,A and jO,C but
by keeping their ratio constant at jO,A/jO,C = 4 the open cell voltage
remains at "0 = 1.39. By varying the values of jO,i we obtain the three
situations as discussed in Ref. [17]:

1. Both jO,A and jO,C are below kR,i (which is unity for both elec-
trodes) and we have the situation that on both electrodes we
have a proton deficit (Case III in Fig. 2 in Ref. [17]);

2. Only jO,A is above kR,i and we have a proton deficit on the cathode
and a proton excess on the anode (Case I in Fig. 2 in Ref. [17]);

3. Both jO,A and jO,C are above kR,i and we have a proton excess on
both the anode and cathode (Case II in Fig. 2 in Ref. [17]).

What Fig. 6 shows is how the structure of the polarization-layer
adjusts itself to the kinetic properties of the electrode reac-
tions, such that for the steady-state the current becomes constant
across the system. The sign of the voltage difference across each
polarization-layer cannot be derived for instance from the sim-

Fig. 6. Proton concentration (c+) and electrostatic potential (") profiles for a galvanic
cell with fixed countercharge (dimensionless current j = 0.1, ε = 0.03, kR,A = kR,C = 1).
In all cases the open cell voltage is the same, namely "0 = ln(jO,A/jO,C)∼1.39.

ple fact that the cell operates as a fuel cell, generating electrical
energy, unless there is a-priori information of the electrode kinet-
ics and/or the equilibrium structure of the polarization-layers (such
as contained in the value of the zero charge pressure p* of the
membrane/electrode-interface for a hydrogen fuel cell). The only
constraint for spontaneous, galvanic, operation is that we cannot
have a negative charge on the anode and a positive charge on the
cathode because then Kirchhoff’s rule (of a zero total voltage drop
around a current loop), Eq. (27), would always predict a negative
cell voltage.

4.2. Liquid electrolyte

The second set of calculations is based on the case that both ions
are mobile, not only the reactive cation, but the inert anion as well.

4.2.1. Liquid electrolyte–electrolytic cell
First we discuss results of a calculation in which kR and jO are

given the same values on both electrodes, as in refs. [14] and [15],
see Fig. 7. This implies that there are no conditions that the cell oper-
ates spontaneously, but instead current can only be forced through
the cell, which effectively is always in the “electrolytic charging
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Fig. 7. Ion concentration profiles in a liquid electrolytic cell with reactive cations and all ions mobile, at various values of the current j and for ı = $S/$D either zero or unity
(on both electrodes: jO,i = 1, kR,i = 2, ε = $D/L = 0.05) as function of x = X/L. Anode located left, cathode right.

mode” where external electrical energy is converted into chemical
energy (which is then also equivalent to the super-galvanic regime).
This calculation will give the same results if the current is reversed.
Because we take different values for kR and jO the electrode is
charged even at equilibrium, i.e., without imposing a current. For
the parameters we choose (kR = 2, jO = 1) at equilibrium we have an
excess of inert anions on both electrodes and both electrodes have
a negative diffuse charge. Because the total anion number is fixed,
the increase in anion concentration at the electrodes implies that
in the bulk its concentration is decreased compared to the situation
that the membrane is uncharged. For the reactive cation there is no
such number balance, and its total concentration in the membrane
will be below the total number in the uncharged situation, because
in bulk its concentration must be equal to that of the anion (thus,
lower than in the uncharged membrane) and in the diffuse layers
the cation is also depleted.

In Fig. 7 we show both the cat- and anion concentration profiles
for the Gouy-Chapman (GC) limit of the gFBV equation where ı = 0
(Fig. 7a,b), and the general case where we use a nonzero value for
ı, namely ı = 1 (Fig. 7c,d). As discussed before, in the GC-limit a
maximum current can be reached (the reaction-limited current)
because the GC-limit assumes that the Stern potential difference

!"s is zero. Thus, Eq. (8) can be rearranged to give

cO,A =
jO,A − j

kR,A
, cO,C =

jO,C + j
kR,C

(34)

which predicts negative concentrations for imposed currents j ≥ jO,A
or j ≤ −jO,C. This shows that formally the GC-limit of the gFBV equa-
tion is an unphysical approximation, and we should ideally always
use a value of ı > 0. Eq. (34) implies that for the parameter set-
tings of Fig. 7, the reaction-limited currents in the GC-limit are
jreaction-limited = ± jO,i = ± 1. Indeed, when the current j approaches
unity, Fig. 7a,b shows clear signs of reaction-limitation near the
anode, where the cation concentration approaches zero. Another
aspect of Fig. 7a,b is that in the thin-DL (ε = 0) limit, j = ± 1 is also
the diffusion-limited current. Though in the present calculation
a finite ratio for Debye length over membrane thickness is used
(ε = $D/L = 0.05), this diffusion limitation will also affect the ion
concentration and potential profiles, leading to an expansion of
the cathodic diffuse layer (extended “space charge” region) char-
acterized by a nearly complete expulsion of anions, the properties
of which can be analyzed on the basis of asymptotic analy-
sis [14,15,54]. According to this analysis, when j reaches beyond
1 − (2ε)2/3 an expansion of the cathodic diffuse layer is expected
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Fig. 8. Equilibrium ion concentration and potential profiles in a liquid galvanic cell
with reactive cations and all ions mobile (open-circuit condition, thus current j = 0,
ı = 1, jO,A = 10, jO,C = 1, kR,A = kR,C = 1, ε = 0.05). Anode located left, cathode right.

with width of order O(ε2/3) extending with further increasing cur-
rents [14,31,50]. These effects near the cathode are clearly observed
in Fig. 7a,b. In particular, the double layer expands to a width of
roughly 0.15 ≈ ε2/3 at the cathode for j = 0.80 ≈ 1 − (2ε)2/3, and then
expands further at j = 0.9 with near-total depletion of the anions
propagating further into the bulk. A consequence of the simul-
taneous onset of both limitations is that the total charge in the
electrolyte becomes significantly negative: at an imposed current of
j = 0.9, large enough to feel strong effects of both limiting currents,
the total cation concentration integrated across the membrane is
only 40% of its value at j = 0. Meanwhile, the total anion number is
fixed, and its distribution becomes highly unbalanced, with a huge
increase in concentration near the anode, due to the expulsion of
anions from the growing space-charge layer on the cathode, where
the anion concentration drops to a few ppm already at j = 0.9.

The reaction-limited current is avoided for any non-zero value
of ı. Indeed, if we choose ı = 1 we are easily able to solve the
model numerically far beyond j = 1 and can thus present in Fig. 7c,d
results up to j = 1.5. Furthermore, even at that current the total
cation number (integrated over the full membrane) does not devi-
ate significantly from the value of the uncharged membrane. The
anion density profile is also much less peaked near the anode and
decreases much more gradually from anode to cathode. At the cath-
ode its value is low but even at j = 1.5 it is still as large as ∼0.1% of the
value in the uncharged state (instead of ppm’s which was already
reached at j = 0.9 in the case of ı = 0).

4.2.2. Liquid electrolyte–galvanic cell
Next we will discuss the situation that we have unequal val-

ues for kR,i and jO,i on the two electrodes (namely, kR,A = 1, kR,C = 1,
jO,A = 10, and jO,C = 1). As a result the cell will operate galvanically
in a certain range of currents and voltages, namely in between
0 ≤ "cell ≤ ln(10). These calculations move beyond previous work
(refs. [14] and [15]) where equal values for kR,i and jO,i on both
electrodes were used.

In Fig. 8 we first show results for a zero current, j = 0, which
already presents interesting behavior, showing apparent interac-
tions between the double layers, even though they do not overlap.
Because at the cathode (right-hand side in the graph) kR,C and jO,C
are equal to one another, one would naively expect that there all
concentration profiles, as well as the potential profile, remain flat
(no diffuse charge). However, in Fig. 8 we unexpectedly do observe
the development of a diffuse layer. The explanation of this effect
is as follows, and relates to the fact that the membrane is rela-

tively thin. However, the effect is not due to a double layer overlap
between the anode and cathode diffuse layers, but instead is due
to a modification of the bulk ion concentration due to the very
pronounced diffuse layer that forms on the other electrode, the
anode. The diffuse layer formation on the anode in the equilibrium
state is due to the large difference between kR,A and jO,A. Because a
very negative diffuse layer potential difference develops, anions are
expelled from the interface region into the bulk of the membrane,
leading to an anion bulk concentration increase. In order to main-
tain bulk quasi-neutrality, this requires additional cations, which
are synthesized from an oxidation at the anode until the cation
bulk concentration equals that of the anions. This increase in bulk
cation concentration has an effect on the equilibrium diffuse layer
structure on the cathode, and by combining cO = c∞*exp(−"D) with
Eq. (9) we obtain the equation !"T = ln(jO/(kRc∞*)) which we can
use to rationalize that for the cathode (where jO = kR) this increase
of c∞* will result in a potential drop near the cathode, i.e., !"T,C < 0,
and therefore the development of a negative excess diffuse charge.
This effect is generally to be expected whenever one electrode “X” is
able to modify the bulk solution concentration to some extent and
in this way will affect other electrodes, resulting in a modification
of the diffuse layer structure there, even for zero current, without

Fig. 9. Ion concentration and potential profiles in a liquid galvanic cell with reactive
cations and all ions mobile (parameter settings as in Fig. 8 except for current j).
Concentrations are shifted vertically in a). Dashed vertical lines in b) denote the
Stern planes. The insert picture presents the cell voltage as function of current.
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double layer overlap, and when the other electrode was uncharged
in the absence of the electrode X.

In Fig. 9 we show results for the parameter settings of Fig. 8
for currents above and below zero, in all three ranges as shown in
Fig. 1. Fig. 9a shows both anion- and cation density profiles, and
Fig. 9b the electrostatic potential profile. In Fig. 9a ion concentra-
tions are shifted up- and downward by steps of !c = 0.2, to increase
clarity of presentation. Without the vertical shift in the concentra-
tion profiles, in all cases c+ is ∼1 at the cathode. Fig. 9a shows that
in the bulk of the membrane the anion and cation concentrations
are about equal, up to the upper boundary of galvanic operation,
around j = 0.5. Because of the pronounced voltage difference over
the anode polarization-layer, its structure is relatively unperturbed
by the applied current. On the other hand, on the cathode the net
diffuse charge switches sign when going from negative to positive
current. The potential profiles in Fig. 9b show again how on the
anode the diffuse layer voltage difference is not greatly influenced
by current, whereas on the cathode it changes sign around j = 0. The
insert shows the cell voltage as function of current and shows that
the regime for galvanic operation is in between 0 < j < 0.45, with
imposed currents outside this range.

A final comment can be made based on the results shown in
Fig. 9, namely on the use of the terminology ‘positive’ and ‘negative’
electrodes often found in the literature. When polarization-layer
effects are considered, care must be taken to use such terms only
when it is clear if one refers to the cell potential, the excess charge
in the diffuse layer, or to the electronic charge on the electrode. To
show for instance that the sign of the electronic charge and of the
cell potential are not directly related, consider for instance that in
Fig. 9 for j = 0.1 on both electrodes there is an excess positive charge
of the ions in the diffuse layers, while the cathode is at a positive
potential with respect to the anode (cell potential "cell > 0). At j = 0.7
the signs of the diffuse layer charge on the electrodes are the same
as for j = 0.1, but the sign of the cell potential has reversed.

5. Conclusions

We have developed a general mathematical framework to
describe the steady response of galvanic cells to the full range of
spontaneous and imposed currents, which yields simple analytical
results in the asymptotic limit of thin double layers, as well as a con-
venient system for numerical simulation. These results should be
widely applicable to fit and interpret experimental current-voltage
measurements in galvanic cells, such as fuel cells and batteries,
and to test different theoretical assumptions. In particular, for thin
double layers, by considering both the Helmholtz limit (of zero
diffuse layer thickness) as well as the Gouy-Chapman limit (of
zero Stern layer thickness), we have derived two pairs of sim-
ple, analytical charge-voltage relations for galvanic cells, which
approximately bound the possible behavior of the model in the
thin-double layer regime. One pair of charge–voltage relations
(28)–(29) describes solid electrolytes with fixed counter-charge,
and the other (35)–(36) describes binary liquid electrolytes with
mobile ions. As shown in Fig. 3, these analytical formulae, and
numerical results for intermediate values of the ratio ı of the
Stern and Debye lengths, predict a wide range of behavior in the
charge-voltage relation, which can be applied to experimental mea-
surements. Additionally, these simple theoretical predictions can be
used to analyze the efficiency of energy storage in reversible gal-
vanic cells and can be applied to place limits of the acceptable rates
of charging and discharging to control energy losses.

In our model, the generalized Frumkin-Butler-Volmer (gFBV)
equation is combined with the Stern model for continuity of the
electric displacement field across the reaction plane, to give the
required boundary conditions for the Poisson-Nernst-Planck (PNP)
theory for mass transfer of charged species. The PNP equations

describe the potential and ion profiles in the electrolyte bulk and
diffuse part of the polarization-layer alike, without making an
artificial distinction between bulk and diffuse layer, and with-
out implicitly assuming local or overall electroneutrality. Indeed,
though in an electrochemical cell, the membrane electrolyte phase
plus the electrodes will be overall electroneutral, the electrolyte
generally has a non-zero overall charge. In the generalized gFBV-
PNP model with a finite electrolyte membrane thickness and for
the case of a single reactive ion that reacts to/from a species at
fixed potential, the unphysical concepts of a diffusion-limiting cur-
rent (which is only predicted for the case of mobile countercharge)
and reaction-limited current (for both mobile and fixed counter-
charge) are avoided if one assumes a non-zero Stern layer thickness
(ı > 0) and a non-zero Debye-length (ε > 0), respectively. Instead,
the model allows any cell voltage or current to be achieved when
realistic physical length scales are used.

Relevant experimental information can be obtained of fuel cell
operation by imposing an electrical current upon a galvanic cell,
either by reversing the current direction, or by operation in the
super-galvanic regime where the imposed current is larger than the
spontaneous galvanic cell current in the limit of a shorted electrical
circuit. Especially at high magnitudes of the imposed currents, the
experimental data that are obtained can be used as a sensitive test
to derive microscopic information and to distinguish between dif-
ferent theoretical models, as illustrated in Fig. 3. A proper model for
galvanic cells should be able to describe data equally well when the
cell is run in a forward mode (galvanic operation, i.e., production
of electrical energy, and in the super-galvanic regime) and when it
is run in the backward mode (electrolytic charging, i.e., conversion
of electrical into chemical energy) using a single set of parame-
ter settings. In general, we conclude that experiments on galvanic
cells should explore the full range of imposed currents for a more
stringent test of theoretical models.

Note added in proof

The second part of Eq. 1 can also be found in L.I. Antropov, “Kinet-
ics of electrode processes and null points of metals,” Council of
Scientific & Industrial Research, New Delhi (1960), p. 13.
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