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We present calculations of energetic, electronic, and vibrational properties of silicon using a nonorthogonal
tight-binding(TB) model derived to fit accurately first-principles calculations. Although it was fit only to a few
high-symmetry bulk structures, the model can be successfully used to compute the energies and structures of
a wide range of configurations. These include phonon frequencies at high-symmetry points, bulk point defects
such as vacancies and interstitials, and surface reconstructions. The TB parametrization reproduces experimen-
tal measurements arab initio calculations well, indicating that it describes faithfully the underlying physics
of bonding in silicon. We apply this model to the study of finite temperature vibrational properties of crystal-
line silicon and the electronic structure of amorphous systems that are too large to be practically simulated with
ab initio methods.

I. INTRODUCTION In the past, TB models have mainly been used as interpo-

As the capabilities of materials simulations increase, sdative schemes assuming that the configurations that were
does the demand for methodologies that can capture the inlpeing fit will encompass the configurational space where the
portant physics accurately while being fast enough to simumodel will be used. In this paper we use m®norhogonal
late large systems for long periods of time. Semiconductor®RL-TB method* an extrapolative method that uses param-
such as silicon, where the quantum-mechanical nature of theters obtained from fittingab initio calculations of a few
electrons mediating the directional interatomic bonding ishigh-symmetry structures, to compute the energies of a wide
important, have been especially challenging to describe agange of geometries for silicon. We find that the results com-
curately using empirical potential interactioch$he simplest  pare very well taab initio calculations for configurations that
method that captures the quantum-mechanical nature of ttere substantially different from those included in the fitting
electrons, the minimal basis tight-bindif§B) model, is be- data set. This increases our confidence that the reason for the
coming a popular method for simulating such systém8. accurate results in the tested configurations is that the phys-
The main challenge in developing these models has been tlies underlying the model is correct.
determination of the Hamiltonian matrix elemefasd in the This paper is organized as follows: In Sec. Il we describe
case of nonorthogonal bases, the overlap matrix elemasts the functional form of our TB parametrization and the fitting
a function of interatomic distance. The most common ap-data set. In Sec. Ill we discuss applications of the TB model
proach is to fit the results of either total-energy calculationgo bulk properties such as the diamond lattice band structure
or band-structure features to experimengbrinitio calcula-  and energies of other lattices, point defect properties such as
tions, assuming a particular functional form with some freeformation and relaxation energies, and surface energies and
parameters for the distance dependence of the matrix eléeconstructions. We also report on two applications of the
ments. Most of the models in the literature, however, suffefTB model that would be impractical withb initio methods,
from certain shortcomings. Many models assign a large pa@ne using molecular dynami¢MD) simulations to compute
of the total energy of the system to a repulsive pair potentiafinite temperature properties of the bulk crystal, and another
to compensate for adopting an orthogonal set of basigising the model to compute electronic properties of large
orbitals>>® Some models do not give an accurate descriptiormorphous systems. In the final section we summarize the
of the band structure of the ground statar, the energetics of results.
important features of bulk semiconducting systems, such as

' P ;
pomt. Qefecté_. Some models were .|ntended for use for a Il. FUNCTIONAL FORM AND FITTING

specific application, and were optimized and tested only for

geometries relevant to that applicatidfinally, other mod- In this paper we present results for two parametrizations,

els use a very large number of free parameters and fit a vergne using asp® basis, which has already been presented in
large number of structures, leading to potentially unphysicasome detaif’ and another using ap*d® basis. Since their

values for the parameters and the suspicion that the good fitinctional forms are nearly identical and have already been
to the data set may not guarantee reliabffity. presented, we will only give a brief summary here. The total
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energy of the system is written as the sum of the energies of TABLE |. Parameters for thep® basis tight-binding model.
the occupied electronic eigenstates. The onsite Hamiltonian

matrix elements vary with the local density, allowing the Onsite parameters
NRL-TB method be fit to linearized augmented plane wave: 1.1036
(LAPW) eigenvalues that have been shifted so that therbital @ (Ry) B (Ry) ¥ (Ry) X (Ry)

LAPW total energy is equal to the eigenvalue sum. There-
fore all of the contributions to the total energy are accounte
for in the eigenvalue sum and the addition of a repulsive paiP
potential, a feature common to most TB models, is not

—0.0532 —0.9076 —8.8308 56.5661
0.3579 0.3036 7.0922 —77.4786
Hamiltonian matrix parameters

needed. Interaction  a (Ry) b (Ry/a.u) c(Ry/a.u?) gau *?
The energies of the electronic states and the corresponqi{ssg 219.5608 —16.2132 —15.5049 1.2644

ing eigenvectors are the solutions to a generalized eigenvalq_qeSp 10.1279 —4.4039 0.2267 0.9227

equation with Hamiltonian and overlap matrix elements pa;, " _

rametrized as follows: The basis used to describe the Hamil,,”™ i2.9590 1.7208 La191 10314
. o opr 0.2654 46718 —2.2162 1.1113

tonian and overlap matrices is a set of @anéhreep, and for

L . . Overlap matrix parameters
one of the parametrizations fivkorbitals around each atom, Interaction  t (@u~Y) q@u-d) r@u-d) u@u-)

with all interactions assumed to be in the two-center

approximation? A local atomic density at atornis defined  s__, 5.1576 0.6600 —0.0815 1.1081
as Sspo 8.8736 —16.2408 5.1823 1.2407
Sope 11.2505 —1.1701 —1.0591 1.1376

215 3 - -
p=> e MIR-RIf(|R ~R))), 1) Spr ~692.1842  396.1532 —13.8172 1.5725

]

Whereﬁi is the position of atom and\ is a fitting param-

- el lattices: simple cubidsc), face-centered cubi(fcc), body-
eter. The cutoff functiorf (R) is given by

centered cubidbco), and the diamond structure. The fitting

ROR.4+5L.\1-1 data set includes both the total energy and band structure of
l+exr{# R<R. each lattice, as computed by LAPWb initio density-
f(R)= Le (2)  functional theory(DFT) calculations in the local-density ap-
0 R>R., proximation(LDA) for a wide range of volumes around the

) ) ) ~energy minimum. The diamond lattice data included the wid-
whereR; is 12.5 a.u. and. is 0.5 a.u. The onsite matrix gt range of volumes, from 12.2 Ratom to

elements are given in terms of the local atomic densitg8s 22 7 A3/atom. The sc lattice structures ranged from

12.6 A%/atom to 18.5 Aatom, the fcc lattice from
12.7 A®/atom to 15.0 A¥/atom, and the bcc lattice from
wherel is the orbital type indexg, p, ord) ande;, 3, ,, 13.0 A%atom to 16.0 A¥atom. The best-fit root-mean-
andy, are fitting parameters. The distance dependent parts gauare(rms) error of the valence-band energies for the dia-

the two-center Hamiltonian matrix elements are given by mond lattice is 0.12 eV, and the rms error for the crystal
lattice total energies is 0.020 eV.

Hyr (R =(ay,+ by, R+ CH,MR2)exp(_gﬁ,MR)f(R), The sp3d5_ basis parametrization has 69 parameters,
(4)  Wwhich were fit to the diamond lattice band structure at vol-
_ o _ _ umes ranging from 13.5 Aatom to 22.7 A’/atom. This
wherel andl” are orbital type indicesy is an index for the et of parameters does not allow for any Hamiltonian or
type of interaction between orbitalsr( , or 6), and the  ,yerlap matrix elements between differenorbitals, but al-
parameters ., by, .., andgy,, are fitting param-  |ows all interactions betwees and p orbitals, as well as
eters. The distance dependent parts of the overlap matrix 4 andp—d interactions. Since this model is optimized for
elements are accuracy in the band structure, we adjusted the DFT/LDA
calculations, which predict an indirect gap of 0.5 eV, by
S u(RY= (8 + b Ay R ,RE) applying a uniform shift of 0.67 eV to the conduction bands
xexp(—uﬁ, R)f(R), (5) of the ideal yolume diamo&d lattice, matching the band gap
" to the experimental resuit* For the other lattice constants
wherety,, duy:,, 7., anduy,,, are fitting parameters, in the fit we shifted the conduction band so that the gap was
and &, is the Kronecker delta. Note that the symbols forscaled up by a factor of 1.17/06:8.34. The shift amount
some of the parameters are different from those used in Reincreased monotonically from 0.67 eV for larger volumes
10. The overlap matrix elements have similar functionaland decreased monotonically for smaller volumes. The best
form to the Hamiltonian matrix elements, but are constrainedit rms error for the diamond lattice valence band and lower
to go to the correct value, zero or one, at zero interatomi¢wo conduction bands is 0.21 eV, and the rms error for the
separation. The angular dependence of the Hamiltonian amdfamond lattice total energies is 0.004 eV.
overlap matrix elements is the standard two-center Slater- The parameters that result from this fit for teg® and
Koster form!2 sp°d® basis models are listed in Tables | and II, respectively.
The 41 parameters used by the functional form forgdpg ~ The sp® basis Hamiltonian and overlap matrix elements are
basis parametrization are fit to four high-symmetry crystalplotted in Fig. 1, and the onsite matrix elements for the dia-

hi=a+ Bip?*+ yipi+ xi1p7 3
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TABLE II. Parameters for thep3d® basis tight-binding model.

Onsite parameters

A 1.1108
Orbital a (Ry) B (Ry) v (Ry) x (Ry)
S —0.0555 —-1.1131 —7.3201 74.8905
0.4127 —0.0907 5.3155 —-44.0417 ;
d 0.9691 —-0.9151 —5.9743  602.0289 15 2 25 3 35 4 45 5
Hamiltonian matrix parameters T (Angstrom)
Interaction  a (Ry) b (Ry/a.u) c (Ry/a.u?) g (au ? o
0.6 85
Her 234.6937 —18.6013 —15.0266 1.2502 04 ;gg T
Hspo 9.5555 —4.1279 0.2499 0.8761 ’ \ oy
Hpopo —22.6782 1.3611 1.3879 1.01655 v 02 p
Hopr —1.5942 47914 —1.5693 1.1030 0t e
Hego ~7571.4416 2.2354 7.0122 1.6234 T
Hpdo -1.8087 —3.4695  —7.7637 1.6294 02} oo
Hpdr 0.8933  0.1058 —0.0224  0.8217 15 2 25 3 35 4 45 5
Overlap matrix parameters r (Angstrom)

Interaction t(a.u’l) g@u’® r@u’® xu(aud

FIG. 1. Hamiltonian matrix elementsipper pangland overlap

Sssr 2.4394 0.9091 —0.0749 1.0590 matrix elementglower panel for thesp® parametrization plotted as
Sspo —12.0027 —14.6860 6.1856 1.2218 a function of interatomic distance.

Sppo 13.9608 -1.1961 —-1.2606  1.1118 _ _ _

Sopm 188.0012 —143.3625 33.5043 1.4340 Ppresent an electronic structure calculation using siéd®

Sedo 11.4724 —0.4454 —0.5838 1.0598 parametrization. We expand our analysis of $p8 param-

Spa —0.6071 0.05789 0.0221 08130 eters to include phonon spectra at several high-symmetry
Span 21340 -05209 —0.0948 1.0580 points. As a more stringent test we use this parametrization

to compute the energies of some lower-symmetry configura-
tions. For the bulk we simulate important point defects, in-

mond structure are plotted in Fig. 2. The variation of thecluding several low-energy interstitial configurations, the va-
onsite matrix elements with nearest-neighbor distance i§&nCY, and the concerted exchange pathway for diffusion.
structure dependent because they have a nonlinear deper’ the (100) and (111) surfaces we compute ideal surface

dence on the density, which is itself a structure-depender@nergies as well as relaxation energies for a number of re-
quantity. Note that theso, ppo, andppm Hamiltonian and constructions. From MD simulations we compute the mean-

overlap parameters have the expected sign, whilestive squar_ed atomic _displacement for a range of temperatures, the
parameters are opposite in sign to the usual conveﬁ%ion.\{'brat'or,‘al densﬂy-of-states,sagd thg phonon-dispersion rela-
However, this sign is not physically meaningful, since it is ions- Finally, we use thep’d> basis model to study the
determined by thearbitrary choice of sign of thesandp  €l€ctronic structure of large amorphous systems.

basis orbitals, and does not affect the eigenvalues or energies

computed with the model. Coheet al. have also used a A. Bulk

similar method to generate parameters for siliéorhey The band structure of the diamond structure lattice, which
used a somewhat different functional form and concentrateg, o part of the fitting data set, is shown in Fig. 3. The va-
their fitting and tests on high-pressure phases. Since we ajg,ce pand is in very good agreement with LAPW calcula-

interested in applying this TB model to complex StructureSyjong The conduction band is not as well described, with the
including defects and surfaces, but at or near atmospheric

pressure, we have employed a different set of geometries for

6
our fitting data set. T
4
Ill. APPLICATIONS > 27 Es ]
~ P
To test the transferability of thep® parameters we com- @0
puted the total energy of a range of structures important for 2 /
condensed phases of silicon including bulk systems, point , , ,
. . . . -4
defects, and surfaces. First we review the diamond lattice 4.5 5 55 6 6.5
band structure, cohesive energies of a number of bulk lattices a9 (Angstrom)

as a function of volume, and the elastic constants of the
diamond structure, as presented in Ref. 10. To address the FIG. 2. Onsite matrix elements for tlep® parametrization for
issue of improving the diamond lattice band structure wethe diamond structure plotted as a function of the lattice constant.
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FIG. 4. Total energy vs volume for the diamond structure as
well as a number of crystal structures for Si not included in the
fitting, computed using the TB model.,gis a clathrate structure,
BC8 is the body centered eight-atom structy@esn is the structure
of the B phase of tin, and hcp is the hexagonal-close packed struc-
ture.

mainly s character in the lowest peak, mixeéndp charac-
ter in the middle peak, ang character in the third peak.

= There is very littled character in the valence band, while the
2 conduction band is mainly of mixeg andd character, with

E 1_2 | smallers contribution.

g o To obtain such a good fit for the band structure $ipéd®

= s | model was fit only to the full diamond lattice band structure
§ ' at all volumes. The lack of other structures and energy infor-
Z g I mation in the fitting data set deteriorates the energetics of the
° model. We decided that the best compromise is to use the
é 0_15 _1'0 5 0 5 minimal sp® basis for all total-energy calculations presented

in this paper, and to use tis®d® to compute the electronic
structure of amorphous silicon presented later in this section.
FIG. 3. Band structure of Si in the diamond lattice computedV& NOte in passing that in his book, Papag:onstantopbfijlos
with the sp® (upper panelandspd® (middle panel bases, and the Was able to obtain a good fit of the conduction band near the
density-of-states for thepd® model (bottom panel Dashed lines ~9ap with asp® basis model. However, that work differs from
are TB results, solid lines are DFT/LDA resulis rigid shift has  the present approach in two important ways: first, it utilizes
been applied to the DFT/LDA conduction-band results used for théhree-center integrals and second, it treats the Hamiltonian
sp°d® basis model All energies are referred to as the valence-bandand overlap matrix elements for the first three neighbor
maximum. shells as independent parameters, rather than giving them as
an analytical functional form that varies with distance. These
minimum indirect gap of 1.02 eV appearing at thepoint  differences provide the flexibility that produces a better fit to
rather than at approximately three fourths of the way fromthe conduction states.
the T to the X point as first-principles calculations and ex-  The total energies as a function of volume for a wide
periments have established. The size of the gap is somewhgtnge of structures are shown in Fig. 4, and their equilibrium
smaller than the experimental value of 1.17 ®\&jthough it structural and energy properties are listed in Table II. All of
is larger than the DFT/LDA prediction to which it was fitted. the structures have higher energy than the diamond structure,
We have addressed the issue of obtaining a better fit adhcluding some low-energy, rarely examined theoretical
the gap and the conduction band and came to the followinghases such as hexagonal diamond and the clathrate
conclusions. The addition of five orbitals to the basis im- structures.’” The TB model reproduces the LAPW results
proves the fit of the conduction band, as can be seen in Figery well for the four structures to which it was fit, as can be
3. The lowest-energy conduction band is nearly perfect wheseen from the equilibrium energies, volumes, and bulk
compared to a LAPW calculation with a rigid 0.67 eV shift moduli listed in Table IV. These quantities were computed
of the conduction bands;** and the higher bands are also using a Birch fit® to the fitting data and thep® TB model
closer to the LAPW calculation than with thep® basis calculations. The elastic constants of the ground-state dia-
model. The valence bands are very well described, althougmond structure are listed in Table V. Those that do not in-
the lowest band at th& point is too flat. The density-of- volve shearc,; andc,,, are within 22% of LAPW calcula-
states(DOS), including its decomposition into contributions tions and 14% of experimemt. The shear elastic constant
from different angular momentum stat@ghich is found us- computed without allowing for relaxation of the internal de-
ing TB eigenvectors that were not fitfeds also in very good grees of freedom of the two-atom unit cef,, is 34% larger
agreement with DFT/LDA calculations. The three peaks inthan the LAPW result. Allowing for the internal relaxation
the valence band are clear, as is the decomposition intbringsc,, within 19% of experiment® A detailed compari-

energy (eV)
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TABLE llI. Equilibrium energies and structural features of hy- TABLE V. Elastic constants in GPa for the diamond structure,
pothetical crystal lattices for Si computed with thg® TB model.E computed with thesp® TB model, LAPW DFT/LDA calculations,
is equilibrium energy relative to the diamond structure in eV perand experimentc}, is the shear elastic modulus computed without
atom, V is the volume in A% per atom, anct/a is the unit cell  allowing for relaxation of the internal degrees of freedom in the
aspect ratio.The internal structural parametéor the H-Dia struc-  two-atom unit cell.

ture is the position §,%,x) of the atom at site # and for the BC8

structure is the positiorx(x,x) of the atom at site 16 Notation for B DFT/LDA Expt.®
the lattice types is the same as in Fig. 4 cu 179 152 166
Lattice E \Y da X C}f 3 60 64
ck, 135 101
Dia 0.000 19.97 Cas 95 80
H-Dia 0.021 19.94 1.647 0.0630
BCS 0.229 18.05 0.1008  From Ref. 19.
B-Sn 0.357 14.56 0.5278 . e A .
SH 0.389 14.93 0.9479 model, it represents only infinitesimal deviations of atomic
° 0.480 13.77 05917 positions from the diamond structure, which was part of the
HCP 0'498 14' 04 1'637 fitting data set. In the following sections we show that this

TB model can also accurately describe the energies of con-
figurations that are substantially different from those in the

son of the energetic and structural parameters of two clathf—Ittlng data set.

rate structures, §i and Sjg, comparing results of our TB
model with experiment, DFT calculations, and results of an
orthogonal TB model, is shown in Table VI. The energy The ground-state structure for silicon is the covalently
differences between the clathrates and the diamond structutgnded, open network of the diamond structure. Since strong
are lower than in DFT calculations, although they are of thecovalent bonds in the ideal lattice allow for little atomic
correct sign. The structures, including both the lattice conmotion at temperatures below the melting point, processes
stant and the internal structural parameters of the basis, agtich as diffusion are dominated by point defects, which are
within 1% of the experimental valué$?! This agreement is  far more mobile than perfectly bonded atofig.he forma-
as good as that provided by DFT/LDA plane-wave tion energy of such defects strongly influences their concen-
calculation$? or by anab initio localized orbital method’  trations and is therefore an important material property. In
and substantially better than the orthogonal TB model of
Goodwinet al? tested by Kahn and LE? TABLE VI. Energy differencesAE relative to the diamond

Phonon frequencies at high-symmetry points in the Bril-structure and structural parameters for the two optimized clathrate
louin zone(BZ) computed with the TB model using the fro- structures, Sjy and Sis. AE is given in eV/atom, the lattice con-
zen phonon approximation are compared with experimenstantao is given in A , and the internal parameters are given in
ta”y measured Values in Table \H1The agreement |s qu|te terms of the lattice constant. USing the notation of Ref. 17, the
good: the TB results are within 15% of experiment for all butParameters of the $istructure are the positiork{,Xe ,xe) of the
three of the modes, thé;, L;, andW, modes, which are off 2{0m at site 3a, and the positionXg,X, ,2;) of the atom at site
by about 25%, 30%, and 60%, respectively. While this gooogf%']g';fof’nazrziet’;e]rjz’:éhtﬁfsg:iggjge(;rezﬂ;eo?i’sg'ggi&xgtxsi?te

S . L o Zk

description of the phonon spectra is a nontrivial test of the24k. PW denotes plane-wave basis DFT/LDA calculations from
Ref. 22, LO denotes local orbital DFT/LDA calculations from Ref.
17, OTB denotes the orthogonal tight-binding results from Ref. 23,
and NRL-TB denotes the present paper. Note that the experimental
'samples are actually of N8iz, with x<<11, and NaSiye.

B. Point defects

TABLE IV. Equilibrium energy relative to the diamond struc-
ture (E) in eV per atom, volum&V) in A2 per atom, and bulk
modulus(B) in GPa, for the lattice structures in the fitting data set
computed with thesp® TB model and with LAPW DFT/LDA.

. Exper. PW LO OTB NRL-TB
Lattice B DFT/LDA
Di d E 0.000 0.000 Siag
lamon v Py 108 AE 0.077 0.055 0.004
: : a, 14.62 14.55 14.864  14.479 14.543
B 108.3 96.4
« = 0279 0338 Xe 0.219 02171 02174  0.2020 0.2171
v 1517 1576 Xq 0.183  0.1825  0.1824  0.1823 0.1824
: : z 0.371  0.3705 03701  0.3703 0.3704
B 101.5 105.6
fee E 0.495 0.484 Sisg
v 14.28 13.85 AE 0.069 0.018
B 117.1 93.54 a, 10.19 10.355 10.055 10.089
bec E 0.474 0.439 Xi 0.183 0.1837  0.1835 0.1835
v 13.58 14.08 Vi 0.116 0.1172  0.1174 0.1171
B 88.56 111.3 Z 0.310 0.3077  0.3077 0.3082
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TABLE VII. Phonon frequenciegin cm™ 1) at high-symmetry
points of the BZ computed with the TB model and measured ex-
perimentally.A=(0,0,m/a) andX = (0,7/2a,m/2a).

B Exp.?
r 531 518
X; (L) 405 415
X3 (L) 508 406
X4 (T) 160 150
L, (L) 553 417
L, (L) 333 383
Ly, (T) 533 487
Ly (T) 127 114
W, 371 403
W, 221 140 FIG. 5. Structure of the tetrahedral interstitial in idéalhite
W, 514 470 sphereps and relaxed(black spheresconfigurations, with bonds
Aq (L) 235 237 connecting atoms within B_.A . The geometry is viewed along the
Ag 518 500 (110 direction with the(111) direction pointing up.
A, 144 131
Ay 525 474 ences. The tetrahedral interstitial reduces its symmetry, with
2 238 270 three of the four atoms that surround it relaxing outward and
Y 528 500 the fourth relaxing inward, while the interstitial atom itself
P 150 141 moves parallel to the fourth atom. A diagram of this configu-
33 210 201 ration, shown in Fig. 5, makes clear that the relaxed intersti-
Sy 452 464 tial atom has moved part wa.34 A) towards a hexagonal
2 525 480 site without significantly stretching<(2.5%) any of its

bonds. This geometry differs from the DFT/LDA work
where the relaxed interstitial had the full symmetry of the
Table VIII we list the formation energies of three interstitial initial configuration?’ although whether those calculations
configurations, the tetrahedral, hexagonal, &dd0) split,  were restricted to maintain tetrahedral symmetry or simply
and of the vacancy. All defect energies were computed usingpund no energy gain from breaking the symmetry is not
a16.29 A cube cell with 2161 atoms, and sampling the BZ stated. The hexagonal interstitial retains its ideal hexagonal
at theI' point. To compute the relaxed configurations asymmetry with the six ring atoms moving outward by 0.1 A,
conjugate-gradient algorithm was uséayith the atomic po-  in perfect agreement with the DFT/LDA resuffsThe four
sitions relaxed until the force on each atom was less than gioms around vacancy relax inward by about80Z , in
meV/A . In agreement wittab initio calculations th€110)  good agreement with DFT/LDA calculations, which find an
split is the lowest-energy interstitial cqnflguratlon, followed jnward relaxation of 0.8 A . However the structure keeps
by the tetrahedral and hexagonal configurati@ifSThe for- o fuil tetrahedral symmetry rather than reducing to the

mation and relaxation energies of all three interstitial con-, -
) . e symmetry of the tetragonal structure thedi initio calcula-
figurations are within 10% of the range of DFT/LDA ti)c/ms pre)(;iclﬂso g

calculations’’~?° The formation energy of the ideal vacancy To test the accuracy of the TB model in describing the
s also accurately predicted, although its relaxationa?cr?goergy iBreaking of bonds within a relatively undisturbed solid we
about twice as large as DFT/LDA calculations predict.
; : . mputed the energy for the concerted exchange pathway for

The relaxed georytze;rslgs are In approximate agreeme iffu2i0n31'32 The egriler along the path for tﬁe ?deal a?wld

with ab initio results?”?** although there are some differ- elmend confiatration g;/ ellga DIET/LDA e e
_ relax igurations, as wi s sultsy ar

TABLE VIII. Formation energie€’**' and relaxation energies plotted in Fig. 6. The ideal energy is within 22% of the
AE{, in eV, for point defects computed using the TB model and pET/| DA calculation throughout the path, with no spurious
comparison to DFT/LDA results. Since the structure of the idea'minima. The relaxation energy is substantially too high, al-
spi)dli;[alir)terstitial is not uniquely defjned, the energy listed underthough the relaxed length of the bond between the diffusing
Ef™" is actually the relaxed formation energy. atoms of 2.15 A is nearly identical to the DFT/LDA result.

Point defect configurations include substantial deviations
from the ideal lattice geometry and several inequivalent
atomic sites. In such a situation it is possible for charge to be

8 rom Ref. 24.

B LDA 2
E|fdea| AE;elax Elfdeal AE;elax

(110 split interstitial 3.7 3.3 transfered between atoms. If this charge transfer is substan-
Tetrahedral interstitial 4.8 0.3 3.7-4.8 0.1-0.2 tial, the applicability of a model with no Coulombic interac-
Hexagonal interstitial 5.4 05 43-5.0 06-1.1 tion or charge self-consistency may be in doubt. The varia-
Vacancy 4.2 1.0 33-43 04-06 tion ofthe onsite energies in our TB model could potentially

exacerbate this effect. To measure the amount of charge
3 rom Refs. 27-30. transfer we performed a Mulliken population analysis on the
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7 B eters. We compute the surface energies of the id€d) and
6 T (111) surfaces, as well as the relaxation energies for some
S 57 w AT simple but representative reconstructions of these surfaces.
QL 8- - . .
T 4 o e For both surfaces we use a symmetric slab configurdfidn
g3t ”ldeal e layers for the(100) surface, 6 bilayers for thel11) surfacd
8 2 A relaxed TB ——e-- and a set ok points equivalent to a ¥4 mesh in the full
1t 2 reliaiﬁ kgﬁ — planar BZ of the X 1 surface unit cell. For thel00) surface
Qe L we examined the 1 buckled dimer reconstruction, and for
0 10 20 30 40 50 60 70 30 90 the (111) surface we examined>22 reconstructions with
Angle (deg) adatoms at three inequivalent sites, The Hs, andB,. The

results of these calculations are listed in Table IX.
d.ﬁFIG' 6.fEnergy a}lﬁng the concerted exchgngle %ali'?r‘;‘l’_%’;or Ithe The energetics of the ideal surfaces are in agreement with
C:JI:\tSi:)Onnsoofa:r?tran ?d\ggl ggaf\i/gﬁ?ant?(;isf?(;: tli:esftltl?flsére plotted ?:11 -aDFT/LDA CalCUIationS%SYMWith the (111) surface about 0.8
solid line, TB calculations of the ideal configurations in a dashedev lower in energy than thél00) surface. Both the relax-

line, and TB calculations of the relaxed configurations in a dot-dashatlon energy and the structure of the buckled dimer recon-

. : . struction of the(100) surface are in good agreement with
line. The relaxed DFT/LDA value is only available for the saddle )
point. y DFT/LDA calculations’®%%2¢ One of the three adatom re-

constructions of thé111) surface, with the adatom at tfg

vacancy, the tetrahedral interstitial, and the hexagonal inte2!t€: iS related to tg? dominant features of the ground-state
stitial. The deviation of the charge from neutralifpur elec- /< 7_reconstructiori: The H; adatom site is a metastable
trons per atornwas modest, less than half an electron inPosition that is involved in the diffusion of adatoms. The
every case, and as low or lower for the relaxed configura€nergy of theB, site, which lies halfway along the path
tions as for the ideal ones. By comparison, a nonorthogondionnecting ther, and Hs sites, determines the barrier for
TB modefl with constant onsite energies predicted somewhaffhigration between them. o

smaller charge transferoy 30% to 50%, except for the ~__The TB model predicts the same ordenng.éér}lgseggergy as
ideal tetrahedral interstitial where it predicted0.6% as DFT/LDA calculations for the three adatom sités,™an
compared with—0.3% on the interstitial atom. This com- IMProvement over previous nonorthogonal TB modeTse
parison indicates that the variation of the onsite element@9r€€ment is not quantitative, however, as the TB model

does not substantially increase the charge transfer, which aRYerestimates the binding energy of the adatom af ihsite
neglected by most TB models. by about 50%. In this position the adatom forms a bond of

length of 2.34 A to the atom underneath, and bonds of length
2.42 A to the three next-nearest-neighbors. DFT/LDA calcu-
lations predict corresponding bond lengths of 2.43 A and
The properties of the silicon surface are critical for pro-2.47 A 3% The surface atom that does not form bonds to the
cesses such as surface growth and etching. Since atoms om@datom, called the rest atom, makes three bonds of length
surface have an asymmetric environment and lower coordi2.38 A with angles of 100.5°, in very good agreement with
nation than in the bulk, the resulting configurations are qualithe DFT/LDA result of 2.34 A long bonds with angles of
tatively different from the types of geometries that this TB 99.9°. The binding energy of the adatom in tHg site is
parametrization was fitted to. Therefore, surface structuresomewhat underestimated as compared with DFT/LDA
provide an important test of the transferability of the param-calculations’**° In this site the adatom makes three 2.39 A

C. Surfaces

TABLE IX. Surface energiey (in eV per 1X 1 surface unit ce)l for the (100) and (111) surfaces of Si,
relaxation energied y (in eV per 1X 1 surface unit cellrelative to the ideal surface, and selected structural
features, computed using the TB model and compared with DFT/LDA results.

B DFT/LDA @
(100) surface
Ideal surface v (eV) 2.13 25
1X1 relaxed surface Ay (eV) —0.02 —0.03
2X1 buckled dimer recons. surf. Ay (eV) —0.90 -0.93
dimer bond length dA) 2.36 2.19
dimer tilt angle 0 17° 15°
(111) surface
Ideal surface v (eV) 1.31 1.39
1% 1 relaxed surface Ay (eV) -0.02
2X2 T, adatom reconstruction Ay (eV) —-0.45 -0.27 ——-0.30
2X2 B, adatom reconstruction Ay (eV) -0.04 -0.10
2X2 Hj adatom reconstruction Ay (eV) -0.12 —0.16 ——0.25

8 rom Refs. 33—36 and 39.
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FIG. 7. Mean-squared displacement of atoms in the diamond 15 = b
lattice as a function of temperature. The points are computed from i A
MD simulations, the solid line is a linear fit going through the S
origin, and the dashed line is a line with a slope corresponding to E 10 |
the experimental measurement as discussed in the text. b

St 2 TR R ey
bonds with its nearest neighbors. No DFT/LDA results for Lo
adatom-surface bond lengths are available. The rest atom 0 )
makes three 2.40 A long bonds with angles of 101.1°, as ' =¥ K X A T A L

compared with 2.34 A long bonds with angles of 104.9° in
DFT/LDA calculations. In theB, site the TB model adatom
makes two bonds of length 2.33 A with the surface. The?
binding energy in this configuration is underestimated a
compared to the DFT/LDA resuft.

FIG. 8. Vibrational densities-of-stat@spper pangland phonon
ispersion curveflower panel extracted from the velocity-velocity
orrelation function computed during a molecular-dynamics simu-
ation at 300 K(solid line) and 1500 K(dashed ling Dots are
experimental data measured at or below 300 K, extracted from the
o . figures in Ref. 44.

D. Finite temperature properties

To examine some finite temperature properties of the diaSome, although not all, of the vibrational frequencies in the
mond structure crystal we used the NRL TB-MD molecular-1500 K MD simulation are lower than at 300 K, a result that
dynamics packadedeveloped by Kirchhoff to evolve a 512- is consistent with the differences between the vibrational
atom unit cell at constant energy for 2000 molecular-densities-of-states in Fig. 8. The high-frequency branches
dynamics time stepgeach step corresponds to 2.0),fs have the largest shifts, with many of them shifting down by
varying the initial kinetic energy of the atoms. From the 0.5 THz, about 5%. The low-frequency branches, with the
resulting positions we computed the mean-squared displacexception of the\ direction, also shift down, with a particu-
ment. This quantity, plotted against the temperature meaarly prominent shift of the second branch at tepoint
sured in the sample, is shown in Fig. 7. A linear fit of the[S4(A)].
mean-squared displacement gives a slope of 1.72
x10° A?/K. In comparison, the Debye temperature, ex-

tracted from experimental measurements of the temperature E. Amorphous structures

dependence of x-ray diffraction peak broaderfthgorre- As an illustration of the expanded modeling capabilities
sponds to a mean-squared atomic displacement temperatuséfered by the present TB parametrizations for Si, we study
coefficient of 1.7 10° A ?/K.*? the electronic properties of bulk and surface structures in

From the Fourier transforms of velocity autocorrelationamorphous Sia-S). We emphasize at the outset that the
functions calculated during MD simulation we obtained thefollowing discussion is concerned mostly with demonstrating
vibrational density-of-stateé®. The phonon-dispersion curves the capabilities of the approach, rather than the physics of
were extracted from the Fourier transform of the velocity anda-Si, the latter being a broader problem beyond the scope of
position dependent autocorrelation function for a given pothe present paper.
larization andk vector®® The vibrational densities-of-states ~ Based on many experimental and theoretical stutfiés,
from two MD simulations, one at 300 K and one at 1500 K,it is widely accepted that a-Si has the basic structure of a
are plotted in Fig. 8. The overall shapes are quite similarcontinuous random networfCRN) of tetrahedrally bonded
although the high-temperature curve is smoother. The peakstoms?’~#°but the question of defects has been the subject
are shifted to lower frequencies at 1500 K, indicating a softof considerable debate in recent y&&ré and remains
ening of the vibrational modes. The corresponding phononeontroversiaP? Experimental results appear to favor under-
dispersion relations are plotted in Fig. 8, and comparecoordinated, three-fold bonded atoms as the dominant de-
against experimental values extracted from the graphs dects(so-called “dangling bondsj. On the other hand, the-
Ref. 44. The dispersion relations from the 300 K MD simu-oretical simulations, using a wide variety ab initio,>*>3
lation are in good agreement with experiment. The only sigsemiempirical*~>® and empirical’~® methods, consistently
nificant errors are an underestimate of the frequencies of theroduce both undercoordinated as well as overcoordinated
second branch between theandL points[A;(A)] and an  (fivefold bonded defects, with a significant preference for
overestimate of the frequencies of the highest two branchethe latter. The type of bonding arrangements at the surface of
near theX point [A5(0), A,'(0), %,(0), and X4(0)]. a-Si is even less clear than in the case of bulk defects, since
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surface-specific measurements are not readily available. It
has been reported thab initio relaxation of a bulk-
terminated CRN model produces a surface with roughly
equal numbers of threefold and fivefold bonded at8fi3e-
viations from the tetrahedral bonding pattern, either in the
bulk or at the surface, are crucial in determining the elec-
tronic properties of the material because they introduce states
in the gap'S.2—54,64,65

In order to study the electronic properties of bulk and W
surface a-Si, we first prepare a 32.9x%65.8 A 0 5 12 '9 '6 3 (') 3 é
x16.5 A bulk amorphous sample with 1728 atoms. Be- I
cause such a large sample is impractical to generate using energy (¢V)
any electronic structure based ;imulatign methqd, we sir_‘nu— FIG. 9. The electronic TB DOS computed with th
late the%quench'ng of the liquid with an interatomic \ametrization for the bulk and surface a-Si samples. The lower
potential,” following a procedure similar to the one used in cyrye (dashed lingis the DOS for the bulk amorphous sample. The
Ref. 62. The resulting structure has over 96% tetrahedralyo upper curves show the excess DOS associated with the sur-
coordination, with only fivefold coordinated defects. faces, plotted as the difference between the cleaved sample DOS

To model the surfaces of a-Si, we considered two qualiand bulk amorphous DO@lotted ling, and the difference between
tatively different 1728 atom slabs. The “cleaved sample” isthe quenched sample DOS and the bulk amorphous [xd$d
created from the bulk structure by turning off the periodicline).
boundary conditions in the third direction. The “quenched
sample” is created directly from the liquid phase by tuming ;e of the approach in generating reliable electronic struc-
off per|9d|c boundary condl_t|ons in the th|rd_ dlrect|on and ture information for large systems.
guenching the resulting liquid slab with the interatomic po-
tential. Not surprisingly, the quenched surfaces are slightly
rougher (by about 1 A than the cleaved surfaces. The
cleaved surfaces regions contain mo$8%%) fourfold co-
ordinated atoms, with a predominance of threef®28%) We have applied the NRL-TB method to generate TB
over fivefold(6%) coordinated atoms. On the other hand, themodels for Si that were fit to LAPW results of a small num-
guenched surfaces have somewhat higher fourfold coordindser of high-symmetry crystal structures. We found that the
tion (72%), with many (27% fivefold and almost nd1%) resulting Hamiltonians are transferable to a much wider
threefold coordinated atoms. Note that these surfaces arange of geometries. A model with a nonorthogosgt ba-
fully reconstructed, and therefore “bulk” concepts of defectssis reproduces DFT/LDA and experimental measurements
do not apply; many of the fourfold coordinated atoms do notfor a wide range of material properties, including elastic con-
have tetrahedral bond angles, and the fivefold coordinategtants and phonon frequencies, point defect formation ener-
atoms tend to appear in clusters near the top layer of thgies, and surface energies and reconstructions. In fact, this
surface, rather than as isolated floating bonds below the topB model is as good or better at describing the energetics of
layer. point defects than some models that included such structures

While the size of these samples makes calculating theiin their fitting process. It is also the only nonorthogonal TB
electronic structure with first-principles methods impractical,model we are aware of that correctly describes the energy
the sp®d® basis TB parametrization described in Sec. Ilsequence of different adatom configurations on(iHgl) sur-
makes such a study feasible. In Fig. 9 we compare the eledace of silicon. The ability of the model to accurately de-
tronic DOS of the three amorphous samples computed witlscribe such diverse systems, despite having been fitted to a
the TB model(see also Fig. 3 for the diamond structure small number of high-symmetry crystal structures, increases
crystal electronic DOS The bulk amorphous sample DOS is our confidence that the model captures the essential physics
much smoother than the crystal, in agreement with otheof bonding in solid-state silicon systems.
simulation results$>®’ There are only two peaks in the va-  The efficiency of the model makes it possible to study
lence band, corresponding to the highest and lowest peaks 6fiite temperature properties of large silicon systems through
the DOS of the crystal. Despite the structural differencesnolecular-dynamics simulation, an application that would be
between the two surface models, their overall DOS is quitémpractical with DFT/LDA methods. We have shown that
similar, showing that the electronic signatures of undercoorthe model reproduces experimental results for atomic mean-
dinated and overcoordinated atoms at the amorphous surfasquared displacements as a function of temperature in bulk
are difficult to distinguish. This result is consistent with the silicon. Phonon densities-of-states and dispersion curves ex-
arguments of Pantelides for bulk defettsThe DOS of the tracted from MD simulations at different temperatures show
surface samples differ from that of the bulk sample essengood agreement with experiment at low temperatures, and a
tially only in the gap region. This indicates that all surface-substantial softening of many modes at higher temperatures.
related defects produce gap states, consistent with analogoBy addingd orbitals and modifying the fitting data set, we
results for bulk defectz>*®°It is also interesting that the obtained a model that accurately reproduces both the valence
surface DOS above the gap region is depleted relative to thend conduction bands of silicon in the diamond structure, at
bulk one. A more detailed analysis of these results will bethe price of deterioration in the accuracy of the energetics.
given elsewher€® Here, we wish to point out only the effi- This sp®d® parametrization makes possible the study of the

difference

ffffff

density of states (arb. units)

pSdB pa-

IV. SUMMARY
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electronic structure of amorphous systems with nearly 200Base in Dayton, Ohio, and by the Maui High Performance

atoms.
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