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Energetic, vibrational, and electronic properties of silicon
using a nonorthogonal tight-binding model
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We present calculations of energetic, electronic, and vibrational properties of silicon using a nonorthogonal
tight-binding~TB! model derived to fit accurately first-principles calculations. Although it was fit only to a few
high-symmetry bulk structures, the model can be successfully used to compute the energies and structures of
a wide range of configurations. These include phonon frequencies at high-symmetry points, bulk point defects
such as vacancies and interstitials, and surface reconstructions. The TB parametrization reproduces experimen-
tal measurements andab initio calculations well, indicating that it describes faithfully the underlying physics
of bonding in silicon. We apply this model to the study of finite temperature vibrational properties of crystal-
line silicon and the electronic structure of amorphous systems that are too large to be practically simulated with
ab initio methods.
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I. INTRODUCTION

As the capabilities of materials simulations increase,
does the demand for methodologies that can capture the
portant physics accurately while being fast enough to sim
late large systems for long periods of time. Semiconduc
such as silicon, where the quantum-mechanical nature o
electrons mediating the directional interatomic bonding
important, have been especially challenging to describe
curately using empirical potential interactions.1 The simplest
method that captures the quantum-mechanical nature o
electrons, the minimal basis tight-binding~TB! model, is be-
coming a popular method for simulating such systems.2–10

The main challenge in developing these models has been
determination of the Hamiltonian matrix elements~and in the
case of nonorthogonal bases, the overlap matrix element! as
a function of interatomic distance. The most common
proach is to fit the results of either total-energy calculatio
or band-structure features to experiment orab initio calcula-
tions, assuming a particular functional form with some fr
parameters for the distance dependence of the matrix
ments. Most of the models in the literature, however, su
from certain shortcomings. Many models assign a large
of the total energy of the system to a repulsive pair poten
to compensate for adopting an orthogonal set of ba
orbitals.2,5,6Some models do not give an accurate descript
of the band structure of the ground state,7 or the energetics o
important features of bulk semiconducting systems, such
point defects.3,4 Some models were intended for use for
specific application, and were optimized and tested only
geometries relevant to that application.9 Finally, other mod-
els use a very large number of free parameters and fit a
large number of structures, leading to potentially unphys
values for the parameters and the suspicion that the goo
to the data set may not guarantee reliability.8
PRB 620163-1829/2000/62~7!/4477~11!/$15.00
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In the past, TB models have mainly been used as inter
lative schemes assuming that the configurations that w
being fit will encompass the configurational space where
model will be used. In this paper we use the~nonorhogonal!
NRL-TB method,11 an extrapolative method that uses para
eters obtained from fittingab initio calculations of a few
high-symmetry structures, to compute the energies of a w
range of geometries for silicon. We find that the results co
pare very well toab initio calculations for configurations tha
are substantially different from those included in the fitti
data set. This increases our confidence that the reason fo
accurate results in the tested configurations is that the p
ics underlying the model is correct.

This paper is organized as follows: In Sec. II we descr
the functional form of our TB parametrization and the fittin
data set. In Sec. III we discuss applications of the TB mo
to bulk properties such as the diamond lattice band struc
and energies of other lattices, point defect properties suc
formation and relaxation energies, and surface energies
reconstructions. We also report on two applications of
TB model that would be impractical withab initio methods,
one using molecular dynamics~MD! simulations to compute
finite temperature properties of the bulk crystal, and anot
using the model to compute electronic properties of la
amorphous systems. In the final section we summarize
results.

II. FUNCTIONAL FORM AND FITTING

In this paper we present results for two parametrizatio
one using asp3 basis, which has already been presented
some detail,10 and another using asp3d5 basis. Since their
functional forms are nearly identical and have already b
presented, we will only give a brief summary here. The to
4477 ©2000 The American Physical Society
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energy of the system is written as the sum of the energie
the occupied electronic eigenstates. The onsite Hamilton
matrix elements vary with the local density, allowing th
NRL-TB method be fit to linearized augmented plane wa
~LAPW! eigenvalues that have been shifted so that
LAPW total energy is equal to the eigenvalue sum. The
fore all of the contributions to the total energy are accoun
for in the eigenvalue sum and the addition of a repulsive p
potential, a feature common to most TB models, is
needed.

The energies of the electronic states and the corresp
ing eigenvectors are the solutions to a generalized eigenv
equation with Hamiltonian and overlap matrix elements
rametrized as follows: The basis used to describe the Ha
tonian and overlap matrices is a set of ones, threep, and for
one of the parametrizations fived orbitals around each atom
with all interactions assumed to be in the two-cen
approximation.12 A local atomic density at atomi is defined
as

r i5(
j

e2l2uRW j 2RW i u f ~ uRW j2RW i u!, ~1!

whereRW i is the position of atomi andl is a fitting param-
eter. The cutoff functionf (R) is given by

f ~R!5
F11expS R2Rc15Lc

Lc
D G21

R<Rc

0 R.Rc ,

~2!

whereRc is 12.5 a.u. andLc is 0.5 a.u. The onsite matrix
elements are given in terms of the local atomic densityr i as

hil 5a l1b lr i
2/31g lr i

4/31x lr i
2 , ~3!

wherel is the orbital type index (s, p, or d) anda l , b l , g l ,
andx l are fitting parameters. The distance dependent par
the two-center Hamiltonian matrix elements are given by

Hll 8m~R!5~all 8m1bll 8mR1cll 8mR2!exp~2gll 8m
2 R! f ~R!,

~4!

wherel and l 8 are orbital type indices,m is an index for the
type of interaction between orbitals (s, p, or d), and the
parametersall 8m bll 8m , cll 8m , and gll 8m are fitting param-
eters. The distance dependent parts of the overlap m
elements are

Sll 8m~R!5~d l l 81t l l 8m1qll 8mR1r ll 8mR2!

3exp~2ull 8m
2 R! f ~R!, ~5!

where t l l 8m , qll 8m , r ll 8m , and ull 8m are fitting parameters
and d l l 8 is the Kronecker delta. Note that the symbols f
some of the parameters are different from those used in
10. The overlap matrix elements have similar function
form to the Hamiltonian matrix elements, but are constrain
to go to the correct value, zero or one, at zero interato
separation. The angular dependence of the Hamiltonian
overlap matrix elements is the standard two-center Sla
Koster form.12

The 41 parameters used by the functional form for thesp3

basis parametrization are fit to four high-symmetry crys
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lattices: simple cubic~sc!, face-centered cubic~fcc!, body-
centered cubic~bcc!, and the diamond structure. The fittin
data set includes both the total energy and band structur
each lattice, as computed by LAPWab initio density-
functional theory~DFT! calculations in the local-density ap
proximation~LDA ! for a wide range of volumes around th
energy minimum. The diamond lattice data included the w
est range of volumes, from 12.2 Å3/atom to
22.7 Å3/atom. The sc lattice structures ranged fro
12.6 Å3/atom to 18.5 Å3/atom, the fcc lattice from
12.7 Å3/atom to 15.0 Å3/atom, and the bcc lattice from
13.0 Å3/atom to 16.0 Å3/atom. The best-fit root-mean
square~rms! error of the valence-band energies for the d
mond lattice is 0.12 eV, and the rms error for the crys
lattice total energies is 0.020 eV.

The sp3d5 basis parametrization has 69 paramete
which were fit to the diamond lattice band structure at v
umes ranging from 13.5 Å3/atom to 22.7 Å3/atom. This
set of parameters does not allow for any Hamiltonian
overlap matrix elements between differentd orbitals, but al-
lows all interactions betweens and p orbitals, as well ass
2d andp2d interactions. Since this model is optimized fo
accuracy in the band structure, we adjusted the DFT/L
calculations, which predict an indirect gap of 0.5 eV,
applying a uniform shift of 0.67 eV to the conduction ban
of the ideal volume diamond lattice, matching the band g
to the experimental result.13,14 For the other lattice constant
in the fit we shifted the conduction band so that the gap w
scaled up by a factor of 1.17/0.552.34. The shift amount
increased monotonically from 0.67 eV for larger volum
and decreased monotonically for smaller volumes. The b
fit rms error for the diamond lattice valence band and low
two conduction bands is 0.21 eV, and the rms error for
diamond lattice total energies is 0.004 eV.

The parameters that result from this fit for thesp3 and
sp3d5 basis models are listed in Tables I and II, respective
The sp3 basis Hamiltonian and overlap matrix elements a
plotted in Fig. 1, and the onsite matrix elements for the d

TABLE I. Parameters for thesp3 basis tight-binding model.

Onsite parameters
l 1.1036
Orbital a ~Ry! b ~Ry! g ~Ry! x ~Ry!

s 20.0532 20.9076 28.8308 56.5661
p 0.3579 0.3036 7.0922 277.4786

Hamiltonian matrix parameters
Interaction a ~Ry! b ~Ry/a.u.! c ~Ry/a.u.2) g ~a.u.21/2)

Hsss 219.5608 216.2132 215.5049 1.2644
Hsps 10.1279 24.4039 0.2267 0.9227
Hpps 222.9590 1.7208 1.4191 1.0314
Hppp 10.2654 4.6718 22.2162 1.1113

Overlap matrix parameters
Interaction t ~a.u.21) q ~a.u.22) r ~a.u.23) u ~a.u.21/2)

Ssss 5.1576 0.6600 20.0815 1.1081
Ssps 8.8736 216.2408 5.1823 1.2407
Spps 11.2505 21.1701 21.0591 1.1376
Sppp 2692.1842 396.1532 213.8172 1.5725
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mond structure are plotted in Fig. 2. The variation of t
onsite matrix elements with nearest-neighbor distance
structure dependent because they have a nonlinear de
dence on the density, which is itself a structure-depend
quantity. Note that thesss, pps, andppp Hamiltonian and
overlap parameters have the expected sign, while thesps
parameters are opposite in sign to the usual conventio12

However, this sign is not physically meaningful, since it
determined by the~arbitrary! choice of sign of thes and p
basis orbitals, and does not affect the eigenvalues or ene
computed with the model. Cohenet al. have also used a
similar method to generate parameters for silicon.9 They
used a somewhat different functional form and concentra
their fitting and tests on high-pressure phases. Since we
interested in applying this TB model to complex structur
including defects and surfaces, but at or near atmosph
pressure, we have employed a different set of geometries
our fitting data set.

III. APPLICATIONS

To test the transferability of thesp3 parameters we com
puted the total energy of a range of structures important
condensed phases of silicon including bulk systems, p
defects, and surfaces. First we review the diamond lat
band structure, cohesive energies of a number of bulk latt
as a function of volume, and the elastic constants of
diamond structure, as presented in Ref. 10. To address
issue of improving the diamond lattice band structure

TABLE II. Parameters for thesp3d5 basis tight-binding model.

Onsite parameters

l 1.1108
Orbital a ~Ry! b ~Ry! g ~Ry! x ~Ry!

s 20.0555 21.1131 27.3201 74.8905
p 0.4127 20.0907 5.3155 244.0417
d 0.9691 20.9151 25.9743 602.0289

Hamiltonian matrix parameters
Interaction a ~Ry! b ~Ry/a.u.! c ~Ry/a.u.2) g (a.u.21/2)

Hsss 234.6937 218.6013 215.0266 1.2502
Hsps 9.5555 24.1279 0.2499 0.8761
Hpps 222.6782 1.3611 1.3879 1.01655
Hppp 21.5942 4.7914 21.5693 1.1030
Hsds 27571.4416 2.2354 7.0122 1.6234
Hpds 21.8087 23.4695 27.7637 1.6294
Hpdp 0.8933 0.1058 20.0224 0.8217

Overlap matrix parameters
Interaction t ~a.u.21) q ~a.u.22) r ~a.u.23) xu ~a.u.21/2)

Ssss 2.4394 0.9091 20.0749 1.0590
Ssps 212.0027 214.6860 6.1856 1.2218
Spps 13.9608 21.1961 21.2606 1.1118
Sppp 188.0012 2143.3625 33.5043 1.4340
Ssds 11.4724 20.4454 20.5838 1.0598
Spds 20.6071 0.05789 0.0221 0.8130
Spdp 22.1340 20.5209 20.0948 1.0580
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present an electronic structure calculation using thesp3d5

parametrization. We expand our analysis of thesp3 param-
eters to include phonon spectra at several high-symm
points. As a more stringent test we use this parametriza
to compute the energies of some lower-symmetry configu
tions. For the bulk we simulate important point defects,
cluding several low-energy interstitial configurations, the v
cancy, and the concerted exchange pathway for diffus
For the (100) and (111) surfaces we compute ideal surf
energies as well as relaxation energies for a number of
constructions. From MD simulations we compute the me
squared atomic displacement for a range of temperatures
vibrational density-of-states, and the phonon-dispersion r
tions. Finally, we use thesp3d5 basis model to study the
electronic structure of large amorphous systems.

A. Bulk

The band structure of the diamond structure lattice, wh
was part of the fitting data set, is shown in Fig. 3. The v
lence band is in very good agreement with LAPW calcu
tions. The conduction band is not as well described, with

FIG. 1. Hamiltonian matrix elements~upper panel! and overlap
matrix elements~lower panel! for thesp3 parametrization plotted as
a function of interatomic distance.

FIG. 2. Onsite matrix elements for thesp3 parametrization for
the diamond structure plotted as a function of the lattice consta
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minimum indirect gap of 1.02 eV appearing at theL point
rather than at approximately three fourths of the way fr
the G to the X point as first-principles calculations and e
periments have established. The size of the gap is some
smaller than the experimental value of 1.17 eV,15 although it
is larger than the DFT/LDA prediction to which it was fitte

We have addressed the issue of obtaining a better fi
the gap and the conduction band and came to the follow
conclusions. The addition of fived orbitals to the basis im-
proves the fit of the conduction band, as can be seen in
3. The lowest-energy conduction band is nearly perfect w
compared to a LAPW calculation with a rigid 0.67 eV sh
of the conduction bands,13,14 and the higher bands are als
closer to the LAPW calculation than with thesp3 basis
model. The valence bands are very well described, altho
the lowest band at theG point is too flat. The density-of-
states~DOS!, including its decomposition into contribution
from different angular momentum states~which is found us-
ing TB eigenvectors that were not fitted!, is also in very good
agreement with DFT/LDA calculations. The three peaks
the valence band are clear, as is the decomposition

FIG. 3. Band structure of Si in the diamond lattice compu
with thesp3 ~upper panel! andsp3d5 ~middle panel! bases, and the
density-of-states for thesp3d5 model~bottom panel!. Dashed lines
are TB results, solid lines are DFT/LDA results~a rigid shift has
been applied to the DFT/LDA conduction-band results used for
sp3d5 basis model!. All energies are referred to as the valence-ba
maximum.
hat

of
g

ig.
n

h

n
to

mainly s character in the lowest peak, mixeds andp charac-
ter in the middle peak, andp character in the third peak
There is very littled character in the valence band, while th
conduction band is mainly of mixedp andd character, with
smallers contribution.

To obtain such a good fit for the band structure thesp3d5

model was fit only to the full diamond lattice band structu
at all volumes. The lack of other structures and energy inf
mation in the fitting data set deteriorates the energetics of
model. We decided that the best compromise is to use
minimal sp3 basis for all total-energy calculations present
in this paper, and to use thesp3d5 to compute the electronic
structure of amorphous silicon presented later in this sect
We note in passing that in his book, Papaconstantopoul16

was able to obtain a good fit of the conduction band near
gap with asp3 basis model. However, that work differs from
the present approach in two important ways: first, it utiliz
three-center integrals and second, it treats the Hamilton
and overlap matrix elements for the first three neighb
shells as independent parameters, rather than giving the
an analytical functional form that varies with distance. The
differences provide the flexibility that produces a better fit
the conduction states.

The total energies as a function of volume for a wi
range of structures are shown in Fig. 4, and their equilibri
structural and energy properties are listed in Table III. All
the structures have higher energy than the diamond struc
including some low-energy, rarely examined theoreti
phases such as hexagonal diamond and the clath
structures.17 The TB model reproduces the LAPW resul
very well for the four structures to which it was fit, as can
seen from the equilibrium energies, volumes, and b
moduli listed in Table IV. These quantities were comput
using a Birch fit18 to the fitting data and thesp3 TB model
calculations. The elastic constants of the ground-state
mond structure are listed in Table V. Those that do not
volve shear,c11 andc12, are within 22% of LAPW calcula-
tions and 14% of experiment.19 The shear elastic constan
computed without allowing for relaxation of the internal d
grees of freedom of the two-atom unit cellc44* , is 34% larger
than the LAPW result. Allowing for the internal relaxatio
bringsc44 within 19% of experiment.19 A detailed compari-

e
d

FIG. 4. Total energy vs volume for the diamond structure
well as a number of crystal structures for Si not included in
fitting, computed using the TB model. Si34 is a clathrate structure
BC8 is the body centered eight-atom structure,b-Sn is the structure
of the b phase of tin, and hcp is the hexagonal-close packed st
ture.
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son of the energetic and structural parameters of two cl
rate structures, Si34 and Si46, comparing results of our TB
model with experiment, DFT calculations, and results of
orthogonal TB model, is shown in Table VI. The ener
differences between the clathrates and the diamond struc
are lower than in DFT calculations, although they are of
correct sign. The structures, including both the lattice c
stant and the internal structural parameters of the basis
within 1% of the experimental values.20,21 This agreement is
as good as that provided by DFT/LDA plane-wa
calculations22 or by anab initio localized orbital method,17

and substantially better than the orthogonal TB model
Goodwinet al.2 tested by Kahn and Lu.23

Phonon frequencies at high-symmetry points in the B
louin zone~BZ! computed with the TB model using the fro
zen phonon approximation are compared with experim
tally measured values in Table VII.24 The agreement is quite
good: the TB results are within 15% of experiment for all b
three of the modes, theX3 , L1, andW2 modes, which are off
by about 25%, 30%, and 60%, respectively. While this go
description of the phonon spectra is a nontrivial test of

TABLE IV. Equilibrium energy relative to the diamond struc
ture ~E! in eV per atom, volume~V! in Å 3 per atom, and bulk
modulus~B! in GPa, for the lattice structures in the fitting data s
computed with thesp3 TB model and with LAPW DFT/LDA.

Lattice TB DFT/LDA

Diamond E 0.000 0.000
V 19.97 19.78
B 108.3 96.4

sc E 0.279 0.338
V 15.17 15.76
B 101.5 105.6

fcc E 0.495 0.484
V 14.28 13.85
B 117.1 93.54

bcc E 0.474 0.439
V 13.58 14.08
B 88.56 111.3

TABLE III. Equilibrium energies and structural features of h
pothetical crystal lattices for Si computed with thesp3 TB model.E
is equilibrium energy relative to the diamond structure in eV p
atom, V is the volume in Å3 per atom, andc/a is the unit cell
aspect ratio.The internal structural parameterx for the H-Dia struc-

ture is the position (13 , 2
3 ,x) of the atom at site 4f , and for the BC8

structure is the position (x,x,x) of the atom at site 16c. Notation for
the lattice types is the same as in Fig. 4

Lattice E V c/a x

Dia 0.000 19.97
H-Dia 0.021 19.94 1.647 0.0630
BC8 0.229 18.05 0.1008
b-Sn 0.357 14.56 0.5278
SH 0.389 14.93 0.9479
v 0.480 13.77 0.5917
HCP 0.498 14.04 1.637
h-
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model, it represents only infinitesimal deviations of atom
positions from the diamond structure, which was part of
fitting data set. In the following sections we show that th
TB model can also accurately describe the energies of c
figurations that are substantially different from those in t
fitting data set.

B. Point defects

The ground-state structure for silicon is the covalen
bonded, open network of the diamond structure. Since str
covalent bonds in the ideal lattice allow for little atom
motion at temperatures below the melting point, proces
such as diffusion are dominated by point defects, which
far more mobile than perfectly bonded atoms.25 The forma-
tion energy of such defects strongly influences their conc
trations and is therefore an important material property.

,

r

TABLE V. Elastic constants in GPa for the diamond structu
computed with thesp3 TB model, LAPW DFT/LDA calculations,
and experiment.c44* is the shear elastic modulus computed witho
allowing for relaxation of the internal degrees of freedom in t
two-atom unit cell.

TB DFT/LDA Expt. a

c11 179 152 166
c12 73 60 64
c44* 135 101
c44 95 80

aFrom Ref. 19.

TABLE VI. Energy differencesDE relative to the diamond
structure and structural parameters for the two optimized clath
structures, Si34 and Si46. DE is given in eV/atom, the lattice con
stant a0 is given in Å , and the internal parameters are given
terms of the lattice constant. Using the notation of Ref. 17,
parameters of the Si34 structure are the position (xe ,xe ,xe) of the
atom at site 32a, and the position (xg ,xg ,zg) of the atom at site
96g. The parameters of the Si46 structure are the position (xi ,xi ,xi)
of the atom at site 16i and the position (0,yk ,zk) of the atom at site
24k. PW denotes plane-wave basis DFT/LDA calculations fro
Ref. 22, LO denotes local orbital DFT/LDA calculations from Re
17, OTB denotes the orthogonal tight-binding results from Ref.
and NRL-TB denotes the present paper. Note that the experime
samples are actually of NaxSi34 with x,11, and Na8Si46.

Exper. PW LO OTB NRL-TB

Si34

DE 0.077 0.055 0.004
a0 14.62 14.55 14.864 14.479 14.543
xe 0.219 0.2171 0.2174 0.2020 0.2171
xg 0.183 0.1825 0.1824 0.1823 0.1824
zg 0.371 0.3705 0.3701 0.3703 0.3704

Si48

DE 0.069 0.018
a0 10.19 10.355 10.055 10.089
xi 0.183 0.1837 0.1835 0.1835
yk 0.116 0.1172 0.1174 0.1171
zk 0.310 0.3077 0.3077 0.3082
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Table VIII we list the formation energies of three interstiti
configurations, the tetrahedral, hexagonal, and^110& split,
and of the vacancy. All defect energies were computed us
a 16.29 Å cube cell with 21661 atoms, and sampling the B
at the G point. To compute the relaxed configurations
conjugate-gradient algorithm was used,26 with the atomic po-
sitions relaxed until the force on each atom was less tha
meV/Å . In agreement withab initio calculations thê 110&
split is the lowest-energy interstitial configuration, followe
by the tetrahedral and hexagonal configurations.27,28The for-
mation and relaxation energies of all three interstitial co
figurations are within 10% of the range of DFT/LD
calculations.27–29 The formation energy of the ideal vacanc
is also accurately predicted, although its relaxation energ
about twice as large as DFT/LDA calculations predict.27,30

The relaxed geometries are in approximate agreem
with ab initio results,27,28,30although there are some diffe

TABLE VII. Phonon frequencies~in cm21) at high-symmetry
points of the BZ computed with the TB model and measured
perimentally.D5(0,0,p/a) andS5(0,p/2a,p/2a).

TB Exp.a

G 531 518
X1 ~L! 405 415
X3 ~L! 508 406
X4 ~T! 160 150
L1 ~L! 553 417
L2 ~L! 333 383
L31 ~T! 533 487
L32 ~T! 127 114
W1 371 403
W2 221 140
W28 514 470
D1 ~L! 235 237
D3 518 500
D4 144 131
D48 525 474
S1 238 270
S18 528 500
S2 150 141
S3 210 201
S38 452 464
S4 525 480

aFrom Ref. 24.

TABLE VIII. Formation energiesEf
ideal and relaxation energie

DEf
relax , in eV, for point defects computed using the TB model a

comparison to DFT/LDA results. Since the structure of the id
split interstitial is not uniquely defined, the energy listed und
Ef

ideal is actually the relaxed formation energy.

TB LDA a

Ef
ideal DEf

relax Ef
ideal DEf

relax

^110& split interstitial 3.7 3.3
Tetrahedral interstitial 4.8 0.3 3.7–4.8 0.1–0.
Hexagonal interstitial 5.4 0.5 4.3–5.0 0.6–1.
Vacancy 4.2 1.0 3.3–4.3 0.4–0.6

aFrom Refs. 27–30.
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3
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is

nt

ences. The tetrahedral interstitial reduces its symmetry, w
three of the four atoms that surround it relaxing outward a
the fourth relaxing inward, while the interstitial atom itse
moves parallel to the fourth atom. A diagram of this config
ration, shown in Fig. 5, makes clear that the relaxed inter
tial atom has moved part way~0.34 Å! towards a hexagona
site without significantly stretching (,2.5%) any of its
bonds. This geometry differs from the DFT/LDA wor
where the relaxed interstitial had the full symmetry of t
initial configuration,27 although whether those calculation
were restricted to maintain tetrahedral symmetry or sim
found no energy gain from breaking the symmetry is n
stated. The hexagonal interstitial retains its ideal hexago
symmetry with the six ring atoms moving outward by 0.1
in perfect agreement with the DFT/LDA results.27 The four
atoms around vacancy relax inward by about 0.28 Å , in
good agreement with DFT/LDA calculations, which find a
inward relaxation of 0.25 Å . However the structure keep
the full tetrahedral symmetry rather than reducing to
symmetry of the tetragonal structure thatab initio calcula-
tions predict.27,30

To test the accuracy of the TB model in describing t
breaking of bonds within a relatively undisturbed solid w
computed the energy for the concerted exchange pathwa
diffusion.31,32 The energy along the path for the ideal a
relaxed configurations, as well as DFT/LDA results,31,32 are
plotted in Fig. 6. The ideal energy is within 22% of th
DFT/LDA calculation throughout the path, with no spuriou
minima. The relaxation energy is substantially too high,
though the relaxed length of the bond between the diffus
atoms of 2.15 Å is nearly identical to the DFT/LDA resu

Point defect configurations include substantial deviatio
from the ideal lattice geometry and several inequival
atomic sites. In such a situation it is possible for charge to
transfered between atoms. If this charge transfer is subs
tial, the applicability of a model with no Coulombic interac
tion or charge self-consistency may be in doubt. The va
tion of the onsite energies in our TB model could potentia
exacerbate this effect. To measure the amount of cha
transfer we performed a Mulliken population analysis on

-

l
r

FIG. 5. Structure of the tetrahedral interstitial in ideal~white
spheres! and relaxed~black spheres! configurations, with bonds
connecting atoms within 2.5 Å . The geometry is viewed along th

^110& direction with the^11̄1& direction pointing up.
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vacancy, the tetrahedral interstitial, and the hexagonal in
stitial. The deviation of the charge from neutrality~four elec-
trons per atom! was modest, less than half an electron
every case, and as low or lower for the relaxed configu
tions as for the ideal ones. By comparison, a nonorthogo
TB model7 with constant onsite energies predicted somew
smaller charge transfers~by 30% to 50%!, except for the
ideal tetrahedral interstitial where it predicted20.65e as
compared with20.35e on the interstitial atom. This com
parison indicates that the variation of the onsite eleme
does not substantially increase the charge transfer, which
neglected by most TB models.

C. Surfaces

The properties of the silicon surface are critical for pr
cesses such as surface growth and etching. Since atoms
surface have an asymmetric environment and lower coo
nation than in the bulk, the resulting configurations are qu
tatively different from the types of geometries that this T
parametrization was fitted to. Therefore, surface structu
provide an important test of the transferability of the para

FIG. 6. Energy along the concerted exchange pathway for
diffusion of atoms without vacancies or interstitials. DFT/LDA ca
culations of the ideal configuration from Ref. 31 are plotted in
solid line, TB calculations of the ideal configurations in a dash
line, and TB calculations of the relaxed configurations in a dot-d
line. The relaxed DFT/LDA value is only available for the sadd
point.
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eters. We compute the surface energies of the ideal~100! and
~111! surfaces, as well as the relaxation energies for so
simple but representative reconstructions of these surfa
For both surfaces we use a symmetric slab configuration@24
layers for the~100! surface, 6 bilayers for the~111! surface#
and a set ofk points equivalent to a 434 mesh in the full
planar BZ of the 131 surface unit cell. For the~100! surface
we examined the 231 buckled dimer reconstruction, and fo
the ~111! surface we examined 232 reconstructions with
adatoms at three inequivalent sites, theT4 , H3, andB2. The
results of these calculations are listed in Table IX.

The energetics of the ideal surfaces are in agreement
DFT/LDA calculations,33,34 with the ~111! surface about 0.8
eV lower in energy than the~100! surface. Both the relax-
ation energy and the structure of the buckled dimer rec
struction of the~100! surface are in good agreement wi
DFT/LDA calculations.33,35,36 One of the three adatom re
constructions of the~111! surface, with the adatom at theT4
site, is related to the dominant features of the ground-s
737 reconstruction.37 The H3 adatom site is a metastab
position that is involved in the diffusion of adatoms. Th
energy of theB2 site, which lies halfway along the pat
connecting theT4 and H3 sites, determines the barrier fo
migration between them.

The TB model predicts the same ordering in energy
DFT/LDA calculations for the three adatom sites,34,38,39 an
improvement over previous nonorthogonal TB models.7 The
agreement is not quantitative, however, as the TB mo
overestimates the binding energy of the adatom at theT4 site
by about 50%. In this position the adatom forms a bond
length of 2.34 Å to the atom underneath, and bonds of len
2.42 Å to the three next-nearest-neighbors. DFT/LDA cal
lations predict corresponding bond lengths of 2.43 Å a
2.47 Å .34 The surface atom that does not form bonds to
adatom, called the rest atom, makes three bonds of le
2.38 Å with angles of 100.5°, in very good agreement w
the DFT/LDA result of 2.34 Å long bonds with angles o
99.9°. The binding energy of the adatom in theH3 site is
somewhat underestimated as compared with DFT/L
calculations.34,39 In this site the adatom makes three 2.39

e

d
h

i,
ral
TABLE IX. Surface energiesg ~in eV per 131 surface unit cell!, for the (100) and (111) surfaces of S
relaxation energiesDg ~in eV per 131 surface unit cell! relative to the ideal surface, and selected structu
features, computed using the TB model and compared with DFT/LDA results.

TB DFT/LDA a

(100) surface
Ideal surface g ~eV! 2.13 2.5
131 relaxed surface Dg ~eV! 20.02 20.03
231 buckled dimer recons. surf. Dg ~eV! 20.90 20.93
dimer bond length d ~Å! 2.36 2.19
dimer tilt angle u 17° 15°

(111) surface
Ideal surface g ~eV! 1.31 1.39
131 relaxed surface Dg ~eV! 20.02
232 T4 adatom reconstruction Dg ~eV! 20.45 20.27 – 20.30
232 B2 adatom reconstruction Dg ~eV! 20.04 20.10
232 H3 adatom reconstruction Dg ~eV! 20.12 20.16 – 20.25

aFrom Refs. 33–36 and 39.
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bonds with its nearest neighbors. No DFT/LDA results
adatom-surface bond lengths are available. The rest a
makes three 2.40 Å long bonds with angles of 101.1°,
compared with 2.34 Å long bonds with angles of 104.9°
DFT/LDA calculations. In theB2 site the TB model adatom
makes two bonds of length 2.33 Å with the surface. T
binding energy in this configuration is underestimated
compared to the DFT/LDA result.39

D. Finite temperature properties

To examine some finite temperature properties of the
mond structure crystal we used the NRL TB-MD molecul
dynamics package40 developed by Kirchhoff to evolve a 512
atom unit cell at constant energy for 2000 molecul
dynamics time steps~each step corresponds to 2.0 fs!,
varying the initial kinetic energy of the atoms. From th
resulting positions we computed the mean-squared displ
ment. This quantity, plotted against the temperature m
sured in the sample, is shown in Fig. 7. A linear fit of t
mean-squared displacement gives a slope of 1
3105 Å 2/K. In comparison, the Debye temperature, e
tracted from experimental measurements of the tempera
dependence of x-ray diffraction peak broadening,41 corre-
sponds to a mean-squared atomic displacement temper
coefficient of 1.753105 Å 2/K.42

From the Fourier transforms of velocity autocorrelati
functions calculated during MD simulation we obtained t
vibrational density-of-states.43 The phonon-dispersion curve
were extracted from the Fourier transform of the velocity a
position dependent autocorrelation function for a given
larization andk vector.43 The vibrational densities-of-state
from two MD simulations, one at 300 K and one at 1500
are plotted in Fig. 8. The overall shapes are quite simi
although the high-temperature curve is smoother. The pe
are shifted to lower frequencies at 1500 K, indicating a so
ening of the vibrational modes. The corresponding phon
dispersion relations are plotted in Fig. 8, and compa
against experimental values extracted from the graphs
Ref. 44. The dispersion relations from the 300 K MD sim
lation are in good agreement with experiment. The only s
nificant errors are an underestimate of the frequencies of
second branch between theG andL points @L1(A) # and an
overestimate of the frequencies of the highest two branc
near theX point @D5(O), D28(O), S2(O), and S1(O)].

FIG. 7. Mean-squared displacement of atoms in the diam
lattice as a function of temperature. The points are computed f
MD simulations, the solid line is a linear fit going through th
origin, and the dashed line is a line with a slope correspondin
the experimental measurement as discussed in the text.
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Some, although not all, of the vibrational frequencies in
1500 K MD simulation are lower than at 300 K, a result th
is consistent with the differences between the vibratio
densities-of-states in Fig. 8. The high-frequency branc
have the largest shifts, with many of them shifting down
0.5 THz, about 5%. The low-frequency branches, with
exception of theL direction, also shift down, with a particu
larly prominent shift of the second branch at theK point
@S3(A) #.

E. Amorphous structures

As an illustration of the expanded modeling capabiliti
offered by the present TB parametrizations for Si, we stu
the electronic properties of bulk and surface structures
amorphous Si~a-Si!. We emphasize at the outset that t
following discussion is concerned mostly with demonstrat
the capabilities of the approach, rather than the physics
a-Si, the latter being a broader problem beyond the scop
the present paper.

Based on many experimental and theoretical studies,45,46

it is widely accepted that a-Si has the basic structure o
continuous random network~CRN! of tetrahedrally bonded
atoms,47–49 but the question of defects has been the sub
of considerable debate in recent years50,51 and remains
controversial.52 Experimental results appear to favor unde
coordinated, three-fold bonded atoms as the dominant
fects ~so-called ‘‘dangling bonds’’!. On the other hand, the
oretical simulations, using a wide variety ofab initio,52,53

semiempirical54–56 and empirical57–63 methods, consistently
produce both undercoordinated as well as overcoordina
~fivefold bonded! defects, with a significant preference fo
the latter. The type of bonding arrangements at the surfac
a-Si is even less clear than in the case of bulk defects, s

d
m

to

FIG. 8. Vibrational densities-of-states~upper panel! and phonon
dispersion curves~lower panel! extracted from the velocity-velocity
correlation function computed during a molecular-dynamics sim
lation at 300 K ~solid line! and 1500 K~dashed line!. Dots are
experimental data measured at or below 300 K, extracted from
figures in Ref. 44.
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surface-specific measurements are not readily availabl
has been reported thatab initio relaxation of a bulk-
terminated CRN model produces a surface with roug
equal numbers of threefold and fivefold bonded atoms.64 De-
viations from the tetrahedral bonding pattern, either in
bulk or at the surface, are crucial in determining the el
tronic properties of the material because they introduce st
in the gap.52–54,64,65

In order to study the electronic properties of bulk a
surface a-Si, we first prepare a 32.9 Å365.8 Å
316.5 Å bulk amorphous sample with 1728 atoms. B
cause such a large sample is impractical to generate u
any electronic structure based simulation method, we si
late the quenching of the liquid with an interatom
potential,66 following a procedure similar to the one used
Ref. 62. The resulting structure has over 96% tetrahe
coordination, with only fivefold coordinated defects.

To model the surfaces of a-Si, we considered two qu
tatively different 1728 atom slabs. The ‘‘cleaved sample’’
created from the bulk structure by turning off the period
boundary conditions in the third direction. The ‘‘quench
sample’’ is created directly from the liquid phase by turni
off periodic boundary conditions in the third direction an
quenching the resulting liquid slab with the interatomic p
tential. Not surprisingly, the quenched surfaces are slig
rougher ~by about 1 Å! than the cleaved surfaces. Th
cleaved surfaces regions contain mostly~65%! fourfold co-
ordinated atoms, with a predominance of threefold~29%!
over fivefold~6%! coordinated atoms. On the other hand, t
quenched surfaces have somewhat higher fourfold coord
tion ~72%!, with many ~27%! fivefold and almost no~1%!
threefold coordinated atoms. Note that these surfaces
fully reconstructed, and therefore ‘‘bulk’’ concepts of defec
do not apply; many of the fourfold coordinated atoms do
have tetrahedral bond angles, and the fivefold coordina
atoms tend to appear in clusters near the top layer of
surface, rather than as isolated floating bonds below the
layer.

While the size of these samples makes calculating t
electronic structure with first-principles methods impractic
the sp3d5 basis TB parametrization described in Sec.
makes such a study feasible. In Fig. 9 we compare the e
tronic DOS of the three amorphous samples computed w
the TB model~see also Fig. 3 for the diamond structu
crystal electronic DOS!. The bulk amorphous sample DOS
much smoother than the crystal, in agreement with ot
simulation results.53,67 There are only two peaks in the va
lence band, corresponding to the highest and lowest peak
the DOS of the crystal. Despite the structural differenc
between the two surface models, their overall DOS is qu
similar, showing that the electronic signatures of underco
dinated and overcoordinated atoms at the amorphous su
are difficult to distinguish. This result is consistent with t
arguments of Pantelides for bulk defects.50 The DOS of the
surface samples differ from that of the bulk sample ess
tially only in the gap region. This indicates that all surfac
related defects produce gap states, consistent with analo
results for bulk defects.52,54,65 It is also interesting that the
surface DOS above the gap region is depleted relative to
bulk one. A more detailed analysis of these results will
given elsewhere.68 Here, we wish to point out only the effi
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ciency of the approach in generating reliable electronic str
ture information for large systems.

IV. SUMMARY

We have applied the NRL-TB method to generate T
models for Si that were fit to LAPW results of a small num
ber of high-symmetry crystal structures. We found that
resulting Hamiltonians are transferable to a much wid
range of geometries. A model with a nonorthogonalsp3 ba-
sis reproduces DFT/LDA and experimental measureme
for a wide range of material properties, including elastic co
stants and phonon frequencies, point defect formation e
gies, and surface energies and reconstructions. In fact,
TB model is as good or better at describing the energetic
point defects than some models that included such struct
in their fitting process. It is also the only nonorthogonal T
model we are aware of that correctly describes the ene
sequence of different adatom configurations on the~111! sur-
face of silicon. The ability of the model to accurately d
scribe such diverse systems, despite having been fitted
small number of high-symmetry crystal structures, increa
our confidence that the model captures the essential phy
of bonding in solid-state silicon systems.

The efficiency of the model makes it possible to stu
finite temperature properties of large silicon systems thro
molecular-dynamics simulation, an application that would
impractical with DFT/LDA methods. We have shown th
the model reproduces experimental results for atomic me
squared displacements as a function of temperature in
silicon. Phonon densities-of-states and dispersion curves
tracted from MD simulations at different temperatures sh
good agreement with experiment at low temperatures, an
substantial softening of many modes at higher temperatu
By addingd orbitals and modifying the fitting data set, w
obtained a model that accurately reproduces both the vale
and conduction bands of silicon in the diamond structure
the price of deterioration in the accuracy of the energet
This sp3d5 parametrization makes possible the study of

FIG. 9. The electronic TB DOS computed with thesp3d5 pa-
rametrization for the bulk and surface a-Si samples. The lo
curve~dashed line! is the DOS for the bulk amorphous sample. T
two upper curves show the excess DOS associated with the
faces, plotted as the difference between the cleaved sample
and bulk amorphous DOS~dotted line!, and the difference betwee
the quenched sample DOS and the bulk amorphous DOS~solid
line!.
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electronic structure of amorphous systems with nearly 2
atoms.
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