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Abstract  
 
This paper presents a physically based theory to model the strength and lifetime 
distributions of quasibrittle structures. The theory is derived from the fracture 
mechanics of atomic lattice cracks propagating through the lattice by tiny jumps 
over numerous activation energy barriers on the surface of the free energy 
potential of the lattice, caused by crack length jumps by one atomic spacing. The 
theory indicates that the strength threshold is zero, and that the strength 
distribution for a quasibrittle structure depends on its size, as well as geometry, 
varying from Gaussian distribution (modified by far-left power law tail) for small-
size structures, to Weibull distribution for large-size structures. The theory is 
further extended to model the lifetime distribution of quasibrittle structures under 
constant loads (creep rupture). It is shown that, for quasibrittle materials, there 
exists a marked size effect on not only the structural strength but also the lifetime, 
and that the latter is stronger. For various quasibrittle materials, such as industrial 
ceramics and fibrous composites, it is demonstrated that the proposed theory 
correctly predicts the experimentally observed deviations of strength and lifetime 
histograms from the classical Weibull theory, as well as the deviations of the 
mean size effect curves from a power law. 
 
 
1. Introduction 
 
Engineering structures must generally be designed for tolerable failure probability 
Pf ≤ 10-6 per lifetime. Experimental verification by histogram testing for such a 
low failure probability is impossible. Obviously, a physically based theory is 
needed. For the limiting special cases of plastic or brittle failure, the type of 
probability distribution of structural strength is known and the distribution 
function can be calibrated by calculating its mean and variance. For plastic 
failure, the failure load is essentially a weighted sum of the strength contributions 
from all the RVEs, which are random. Therefore, according to the central limit 
theorem, the failure load must follow the Gaussian (normal) distribution. For 
brittle failure, in which the failure of one RVE causes the failure of the whole 
structure, the weakest-link model applies. If the number of RVEs that could 
trigger the failure is very large (>104), then the failure load must follow the 
Weibull distribution.  
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Quasibrittle materials, which include concrete, fiber composites, rocks, stiff 
cohesive soils, tough ceramics, rigid foams, sea ice, wood, bone, various bio- and 
high-tech materials, and most materials on approach to nano-scale,  are brittle 
heterogeneous materials where the fracture process zone (FPZ) is not negligible 
compared to the structure size. It has been demonstrated that the behavior of 
quasibrittle materials transits from quasi-plastic to brittle with increasing structure 
size. Such a transition has a significant consequence for structural reliability and 
lifetime prediction of quasibrittle structures. Extensive histogram testing shows 
that the cumulative distribution function (cdf) of strength of many quasibrittle 
materials deviates from the two-parameter Weibull distribution. This deviation 
was thought to imply the three-parameter Weibull distribution with non-zero 
threshold. However, for a broad-range strength histogram with many thousands of 
data, a systematic deviation from the experimental histograms still remains [1, 2, 
3].  
 
This paper reviews a recently developed theory that explains the deviations of 
strength histograms of quasibrittle materials from the Weibull distribution, and 
then focuses on extending the theory to model the lifetime distribution of these 
materials.  The new theory is validated by optimum fitting of the strength and 
lifetime histograms of various quasibrittle materials such as industrial ceramics 
and fibrous composites.  
 
 
2. Strength Distribution at Nanoscale via Atomistic Fracture Mechanics 
 
Consider a nano-scale size atomic lattice block undergoing fracture as shown in 
Fig. 1 [4]. At the fracture front, the interaction force (the cohesive force along the 
interatomic crack) and the corresponding separation between the atoms are 
characterized by a local bond potential Π1 (Fig. 1) which is a part of the overall 
potential function Π (or more generally, free energy) of the atomic lattice 
(crudely, Π1 could be described as the Morse or Lennard-Jones potential, but a 
specific form is not needed here). 
 
The interatomic crack propagates by jumps from one crack length to another (Fig. 
2b, c). During each jump, one barrier on the potential Π as a function of u must be 
overcome (see the wavy potential profile in Fig. 2c). Due to thermal activation, 
the state of the atomic lattice block fluctuates and can jump over the activation 
energy barrier in both forward and backward directions (Fig. 2b, c, d), though not 
with the same frequency due to the presence of the remote stress. Let Q0 be the 
activation energy barrier at the current crack length. When the cohesive crack 
length (defined by the location of state 3 in Fig. 1c) jumps by one atomic spacing, 
ha (i.e, from ai to ai+1, i = 1, 2, 3,...), the activation energy barrier is changed by a 
small amount ΔQ corresponding to the energy release by fracture (Fig. 2c,d) 
associated with the equilibrium load drop ΔP (Fig. 2a). 
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Within the framework of fracture mechanics, the energy release rate of the atomic 
lattice can be expressed as : G  = Da g(α)σ2/E where E = elastic Young's modulus 
for the continuum approximation of the lattice, Da = total length (or dimension) of 
the cross section of the lattice (Fig. 1a), σ  = remote average stress (Fig. 1a) 
applied on the lattice  (which is proportional to P/bDa, b = length of crack front in 
the third dimenstion), g(α) = k2(α) = dimensionless energy release rate function of 
linear elastic fracture mechanics of continuous bodies, characterizing the fracture 
and block geometry,  k(α) = dimensionless stress intensity factor [12, 13], and α = 
a/Da. Accordingly,  
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where Va = Va(α) = habDag(α) = activation volume of the lattice crack (if  the 
applied stress tensor is written as σ s where σ = stress parameter, one could more 
specifically write Va = s : va where va = activation volume tensor, as in atomistic 
theories of phase transformations in crystals [4]). 
 
Since the crack jump by one atomic spacing ha is very small, the activation energy 
barrier for a forward jump, Q0 − ΔQ/2, differs very little from the activation 
energy barrier for a backward jump, Q0 + ΔQ/2. So the jumps of the state of the 
atomic lattice block, characterized by its free energy potential Π, must be 
happening in both directions. According to the transition-rate theory [6, 7], in the 
limit of a large free-energy barrier, Q0 >> kT , the first-passage time for each 
transition is given by Kramers’ formula [8], and the difference in the frequencies 
of the forward and backward jumps, or the net frequency of crack length jumps, is  
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where C f =
νσ 2Va

EkT
e−Q0 / kT ,  T = absolute temperature, k = Boltzmann constant, Va 

corresponds to some effective crack length α, and ν  is a characteristic attempt 
frequency for the reversible transition (e.g.  kT/h, where h = Planck’s constant, 
which can be set by a shift of the activation free energy).   
 
The failure of the atomic lattice occurs when the nano-crack propagates from its 
original length a0 to a critical length ac. In other words, the crack experienced 
many length jumps, i.e. n jumps, where the frequency of each jump is given by 
Eq. 2. At the atomic level, it is generally assumed that the each jump is 
independent (the frequency of the jump is independent of the particular frequency 
of breaks and restorations that brought the nanocrack to the current size). Since 
the probability is proportional to the frequency of quasi-stationary process, the 
failure probability of the atomic lattice block can be written as: 
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The last expression is an approximation for small stress σ, which is justified by 
the fact that only the left far-out tail of cdf of strength matters [1, 2, 4]. More 
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specifically, we require ΔQ << kT << Q0 or σ << EkT /Va . It is essential that the 
tail of strength distribution at nanoscale follows a power law and that the stress 
threshold is zero.  
 
 
3. Strength and Lifetime Distribution at Structural Scale 
 
The transition from the atomic scale to the RVE scale may be statistically 
described by a model consisting of a hierarchy of elements coupled in parallel and 
in series [1, 2]. The parallel couplings reflect the fact that a passage from one 
scale to the next higher scale involves strain compatibility conditions, and the 
series couplings reflect the equilibrium conditions, in the sense of the weakest-
link chain model, reflect damage localization into microcracks. It has been shown 
that the parallel coupling raises the tail exponent in an additive manner and 
drastically shortens the reach of power-law tail, and series coupling preserves the 
tail exponent while extending the reach of power-law tail. It has been 
demonstrated [2] that the RVE must be statistically modeled by a hierarchical 
model consisting of bundles (or parallel couplings) of only 2 long sub-chains, 
each of them consisting of sub-bundles of 2 or 3 long sub-sub-chains of sub-sub-
bundles, etc., until the nano-scale of atomic lattice is reached. The power-law cdf 
tail is transmitted through all the scales from nano to macro while its exponent is 
gradually raised from 2 on the atomistic scale to a value equal, on the RVE scale, 
to the Weibull modulus of strength distribution (typically between 10 and 50). 
 
The consequence of the hierarchical model is that the strength cdf for one RVE 
must have a very broad Gaussian core, onto which a power-law tail of an 
exponent equal to the Weibull modulus is grafted at the failure probability about 
10−3 to 10−4. Numerical simulations reveal that the transition from Weibull cdf to 
Gaussian cdf occurs smoothly but over a relatively short segment of cdf. 
Therefore, for the sake of simplicity, we may consider a Weibull cdf to be grafted 
from the left onto a Gaussian cdf, with only the cdf value and its slope being 
continuous at the grafting point [1, 2]: 
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where Pgr = grafting probability, m, s0 =  Weibull modulus and scale parameter 

for the Weibull tail, rf = normalizing parameter such that 1d)(
0
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∞
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 fp  (pf  is 

the corresponding probability density function (pdf)). μG, δG = mean and standard 
deviation of the Gaussian distribution. Hence, in total, there are 6 statistical 
parameters in the model, with two constraints (the normalizing condition and the 
continuity of pdf at the grafting point). Four parameters are needed to define the 
cdf uniquely.  
 



 5

It is postulated that, when an RVE is subjected to a certain load history, the 
randomness in its lifetime is related to the randomness in its strength. In this study, 
we focus on the simplest loading history, which is the case of creep- rupture. 
Consider two loading cases: 1) the load rapidly increases at a constant rate until 
the failure, which defines the strength of RVE, 2) the load rapidly increases till a 
certain level which then sustained until the failure, which defines the lifetime. The 
relationship between the strength and lifetime can be obtained through the 
concept of the growth of subcritical crack on the RVE level. 
  
Consider an RVE with some dominant subcritical crack a0. Under certain loading 
history, the crack grows to its critical length ac and then the RVE fails. It is 
assumed that this process can be described by Evans’ law [9, 10, 11, 12]: 
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where n = constant, KI = stress intensity factor, which can be written as 
)/( DakDK I σ= . By separation of variables, one can integrate the foregoing 

equation for the two cases mentioned above and obtain the relationship between 
the strength and lifetime of the RVE: 
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Note that the RVE strength σN is random in nature. Its distribution is described by 
Eqs. 4 and 5.  With Eq. 7, one obtains the lifetime distribution for one RVE: 
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Weibull modulus for lifetime distribution for the creep rupture case is much lower 
than it is for the strength distribution. Compared to the strength distribution, the 
core of lifetime distribution does not follow Gaussian distribution, but it can be 
analytically derived from the Gaussian core of strength distribution by using Eq. 9.  
 
In the context of softening damage and failure of a structure, RVE must be 
defined as the smallest material volume whose failure causes the failure of the 
structure [2]. Therefore, by the virtual of the joint probability theorem, the failure 
probability of the structure can be written as: 
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where αi = dimensionless stress distribution parameter describing the stress at the 
center of the ith  RVE. Here, it is useful to introduce the concept of equivalent 
number of RVEs, Neq, for which a chain of Neq elements subjected to a uniform 
stress σN gives the same cdf: 

eqN
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Note that Neq is independent of strength σN for the Weibull portion of P1(σN), 
while it is a function of σN for the Gaussian portion of P1(σN). Consider now a 
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large size structure (Neq→ ∝); the structure fails at very small stress, or for a short 
lifetime, so what matters is the tails of the strength and lifetime cdfs of one RVE, 
which are power laws. Obviously, for large-size structures, both the strength and 
lifetime cdfs approach Weibull distribution. 
 
 
4. Optimum Fitting of Strength and Lifetime Histograms 
 
Extensive efforts have been devoted to investigate by histogram testing the 
strength and lifetime distributions of various quasibrittle materials, such as 
concrete, ceramics and fiber composites. The two-parameter Weibull model has 
been widely used to fit these histograms, however, often the fit has not been close.  
 
Fig. 3 shows the optimum fits of the strength histograms of various engineering 
ceramics by the present theory and by the two-parameter Weibull distribution [4]. 
It is clear that, in the Weibull scale, the strength histograms exhibit a kink which 
separates the entire distribution into two segments, and the two-parameter 
Weibull distribution is not able to fit both segments simultaneously. In contrast, 
the present theory can fit the both segments with the location of the kink very well. 
Within the framework of the present theory, the existence of the kink indeed 
reflects the quasibrittleness of the structure.  
 
Fig. 4 presents the optimum fits of the lifetime histograms of Kevlar 49 fiber 
composite [13]. The specimens were tested in high temperature environment 
(100°C to 110°C) to accelerate the failure. Similar to the strength histograms, in 
the Weibull scale, there exists a kink separating the histogram into two segments. 
The present theory gives perfect fits of the histograms. From the fitting, the 
Weibull modulus of lifetime distribution is estimated to be around 2.3 to 3, which 
is significantly lower than the typical value of Weibull modulus of strength 
distribution of Kevlar 49, which is around 40.  
 
 
5. Size Effect on Mean Structural Strength and Lifetime 
 
Knowing the size effects on the strength and lifetime cdfs, one can compute the 
size effects on the mean strength and lifetime. For small structure sizes, both size 
effect curves deviate from the power-law size effect of Weibull theory, due to 
quasibrittleness of the structures. It has been shown that the calculated mean size 
effect on structural strength agrees well with the experimental observations of the 
size effect on the structural strength of concrete [14], as well as the predictions of 
several models such as nonlocal Weibull theory [15, 16], non-local damage model 
[17], crack-band model [18], and cohesive crack model [18, 19]. Though the 
analytical expression for the mean size effect on strength is impossible, it can be 
approximated via asymptotic matching [19]: 
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where N is the equivalent number of RVEs represented by the number of elements 
in the weakest-link model of the structure, and Na, Nb, m, s are constants to be 
found from four asymptotic matching conditions. It is shown that the m-value 
must be the same as the Weibull modulus of the material. To obtain the remaining 
three parameters, one may solve three simultaneous equations expressing three 
asymptotic matching conditions: [ ] 1→NNσ , [ ] 1d/d →NN Nσ , and [ ] ∞→N

m
N N /1σ . 

 
The size effect on structural lifetime can be derived from Eq. 7 since the lifetime 
is related to strength via Eq. 7. Hence, one has: 
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where m = Weibull modulus of strength cdf, n = exponent of Evans’ crack growth 
law. Parameters Ca, Cb, and s can be obtained by three asymptotic matching 
conditions similar to those for Eq. 12.  It is clear that the size effect on structural 
lifetime under constant loads is much stronger than the size effect on structural 
strength.  
 
 
6. Conclusion 
 
The present theory improves the previous explanation [1, 2] of the derivations of 
strength histograms of quasibrittle materials, and extends this explanation to 
similar deviations in the histograms of lifetime. Both the types of strength and 
lifetime distributions are size- and geometry- dependent, and there exists strong 
size effects on both the mean structural strength and the lifetime. Furthermore, it 
is shown that the Weibull moduli of the strength and lifetime distributions are 
related through the exponent of Evans’ crack growth law. 
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Fig. 1 Fracture of atomic lattice 

 
 
 
 

 
Fig. 2 Load displacement curve of atomic lattice block 
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Fig. 3 Optimum fits of strength histograms for industrial ceramics 

 
 

 
 

 
 

Fig. 4 Optimum fits of lifetime histograms for organic fibrous composites 


