Equation (50)

I think we have an issue of clarity, which actually comes from the equation above, eq (49). Here, the meaning of the i index is unclear. Because g is a function of all components, i, the \sum_{i} refers to a sum over components, which is most clearly seen with the $\sum_{i} \mu_{i}^{\Theta} c_{i}$ term. In the next term, because κ is indexed by i and j, they take on meaning of the coordinate directions there. However, there should still be concentration gradient terms from each component, i. A more clear way to write this equation is

$$
\begin{equation*}
g=\bar{g}\left(\left\{g\left(c_{i}\right)\right\}\right)+\sum_{i}\left(\mu_{i}^{\Theta} c_{i}+\frac{1}{2} \sum_{j} \sum_{k}\left(\partial_{j} \tilde{c}_{i}\right) \kappa_{j k}\left(\partial_{k} \tilde{c}_{i}\right)\right) \tag{1}
\end{equation*}
$$

where i indexes components and j and k index directions and the partial derivative with respect to direction j is denoted ∂_{j}.

Then, when we want the chemical potential of a particular component ℓ, we have that

$$
\begin{equation*}
\frac{\partial g}{\partial c_{\ell}}=\frac{\partial \bar{g}}{\partial c_{\ell}}+\frac{\partial}{\partial c_{\ell}} \sum_{i} \mu_{i}^{\Theta} c_{i}=\frac{\partial \bar{g}}{\partial c_{\ell}}+\mu_{\ell}^{\Theta} \tag{2}
\end{equation*}
$$

Then, when we differentiate with respect to the gradient of c_{ℓ}, we have

$$
\begin{equation*}
\frac{\partial}{\partial \boldsymbol{\nabla} c_{\ell}}=\frac{1}{c_{\ell}^{\Theta}} \frac{\partial}{\partial \boldsymbol{\nabla} \tilde{c}_{\ell}} \tag{3}
\end{equation*}
$$

The only term in g which contains gradients of c (or \tilde{c}) is the final term, and when $\ell \neq i$, the derivative is zero, so the differentiation selects only the ℓ th component. Then, what we will end up with (explanation of the factor of 2 follows below) is

$$
\begin{equation*}
\frac{\partial g}{\partial \boldsymbol{\nabla} c_{\ell}}=\frac{1}{c_{\ell}^{\Theta}} \sum_{k} \kappa_{j k} \partial_{k} \tilde{c}_{\ell} \tag{4}
\end{equation*}
$$

which is a rank- 1 tensor indexed over directions by j. Then

$$
\begin{equation*}
-\boldsymbol{\nabla} \cdot \frac{\partial g}{\partial \boldsymbol{\nabla} c_{\ell}}=-\frac{1}{c_{\ell}^{\Theta}} \boldsymbol{\nabla} \cdot \sum_{k} \kappa_{j k} \partial_{k} \tilde{c}_{\ell} \tag{5}
\end{equation*}
$$

and replacing ℓ with i,

$$
\begin{align*}
\mu_{i}-\mu_{i}^{\Theta} & =\frac{\partial \bar{g}}{\partial c_{i}}-\nabla \cdot \sum_{k} \kappa_{j k} \partial_{k} \frac{\tilde{c}_{i}}{c_{i}^{\Theta}} \tag{6}\\
& =\frac{\partial \bar{g}}{\partial c_{i}}-\sum_{j} \sum_{k} \partial_{j} \kappa_{j k} \partial_{k} \frac{\tilde{c}_{i}}{c_{i}^{\Theta}} \tag{7}
\end{align*}
$$

which is similar to what is in the paper, albeit with more clear summations distinguishing between species and directions.

Equation (57)

It would be a reasonable to replace this with

$$
\begin{equation*}
\xi=\frac{c-c_{A}}{c_{B}-c_{A}} \tag{8}
\end{equation*}
$$

and this might have been a more appropriate choice for the paper. Nevertheless, whether ξ varies between 0 and 1 or 0 to -1 is not particularly important to the results. The primary goal of that section was to demonstrate the similarity between the developed model and the more familiar notation of an Allen-Cahn style equation. So yes, the negative of the term proposed might make more sense, but the results are identical.

Equation (60)

This seems to be a typesetting error that slipped by us. The arXiv print is correct on this one. The last term in the correct equation should be

$$
\begin{equation*}
-\frac{\kappa}{c_{s}} \nabla^{2} \tilde{c} \tag{9}
\end{equation*}
$$

not

$$
\begin{equation*}
-\frac{\kappa}{c_{s}} \tilde{\nabla}^{2} \tilde{c} \tag{10}
\end{equation*}
$$

Equation (75)

The second term on the right hand side is incorrect. The equation should be

$$
\begin{equation*}
c_{0} k_{B} T \ln a_{+}=W \tilde{c}+k_{B} T\left(\ln \tilde{c}_{+}+1\right)-\frac{\partial \varepsilon_{p}}{\partial \tilde{c}_{+}}|\nabla \phi|^{2} \tag{11}
\end{equation*}
$$

Equation (85)

This should be the stress-free strain

$$
\begin{equation*}
\tilde{\mu}=\ln \frac{\tilde{c}}{1-\tilde{c}}+\tilde{\Omega}(1-2 \tilde{c})-\tilde{\kappa} \tilde{\nabla}^{2} \tilde{c}-\tilde{\sigma}: \tilde{\varepsilon}^{0} \tag{12}
\end{equation*}
$$

