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I. PHENOMENOLOGICAL THEORY OF

ELECTROSTATIC CORRELATIONS

Let G = Gel + Gchem, where Gel is the electro-
static energy and Gchem =

∫

V drg is the chemical (non-
electrostatic) part of the free energy. Suppose that Gchem

is known, and focus on electrostatic correlation effects in
Gel.

The electrostatic potential, φ, is the free energy per ion
(free charge). The electrostatic energy cost for adding a
charge δρ in the bulk liquid volume V or δqs on the metal
surface S is,

δGel =

∫

V

drφ δρ +

∫

S

drφ δqs. (1)

The charge is related to the displacement field D via
Maxwell’s “first” equation,

∇ · D = ρ ⇒ δρ = ∇ · δD. (2)

The corresponding boundary condition for an ideal metal
surface (where D = 0) is,

[n̂ · D] = n̂ · D = −qs ⇒ δqs = −n̂ ·D. (3)

Substituting these expressions into (1) and using Gauss’
theorem, along with the definition of the electric field,
E = −∇φ, we recover the standard electrostatic free en-
ergy equation [1],

δGel =

∫

V

drE · δD. (4)

In the linear response regime (for small external elec-
tric fields), we have

D = ε̂E, (5)

where ε̂ is a linear operator, whose Fourier transform ε̂(k)
encodes how the permittivity depends on the wavelength

2π/k of the k-Fourier component of the field, due to dis-
crete ion-ion correlations, as well as any non-local dielec-
tric response of the ions, such as exponentially decaying
Debye correlations in ionic plasma, as well as correlations
in polarization flucutations due to any other molecules if

they are present in the liquid. We can then integrate (4)
over δD through a charging process that creates all the
charges in the bulk and surface from zero to obtain

Gel =
1

2

∫

V

drE ·D. (6)

For a given distribution of charges ρ and qs, with asso-
ciated displacement field D, the physical electric field E

is the one that minimizes Gel, subject to the constraint of
satisfying Maxwell’s equations (2)-(3). Since E = −∇φ
to enforce ∇×E = 0, we can minimize Gel with respect
to variations in φ, using Lagrange multipliers λ1 and λ2

to enforce the constraints,

Gel[φ] =

∫

V

dr

[

1

2
E ·D + λ1 (ρ −∇ ·D)

]

+

∮

S

drs λ2 (qs + n̂ ·D) . (7)

To calculate the extremum, we use the Fréchet functional
derivative:

δGel

δφ
= lim

ǫ→0

Gel[φ + ǫφ0δǫ] − Gel[φ]

ǫφ0

(8)

where δφǫ = φoδǫ(r, r
′) is a localized perturbation of the

potential (with compact support), which tends either to
a 3D delta function in the liquid (r ∈ V ) or to a 2D delta
function on the surface (r ∈ S) as ǫ → 0, and φ0 is an
arbitrary potential scale for dimensional consistency. By
setting δGel/δφ = 0 for both surface and bulk variations,
we find λ1 = λ2 = φ. Finally, using vector identities, we
arrive at a general functional for the electrostatic energy,

Gel[φ] =

∫

V

dr

(

ρφ +
1

2
∇φ · D

)

+

∮

S

drs qsφ (9)

to be minimized with respect to φ, once we know the
relationship between D and E = −∇φ.

To model the field energy in an ionic liquid, we assume
linear dielectric response of the molecules with constant

permittivity ε plus a non-local contribution for ion-ion

correlations. Here, the permittivity ε describes the elec-
tronic polarizability of the ions.

gfield = −1

2
∇φ·D =

ε

2

(

E(r)2 +

∫

V

dr′K(r, r′)ρ̄(r)ρ̄(r′)

)

(10)
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where

ρ̄ = ε∇ ·E = −ε∇2φ, (11)

is the “mean-field charge density”, which would pro-
duce the electric field in the dielectric medium without
accounting for ion-ion correlations. Suppose that the
non-local kernel K(r, r′) decays over a length scale ℓc,
bounded below by the finite ion size a and above by the
Bjerrum length ℓB, which sets the scale for electrostatic
correlations among point charges. For charge variations
over scales larger than ℓc (corresponding to small pertur-
bation wavenumbers, ℓc|k| ≪ 1), we obtain a gradient
expansion for the non-local term

gfield ∼ ε

2

[

|∇φ|2 +

∞
∑

n=0

αn

(

ℓn−1
c

ε
∇nρ̄

)2
]

(12)

where αn are dimensionless coefficients, which implies

Gel[φ] ∼
∫

V

dr

{

ρφ − ε

2

[

|∇φ|2 +

∞
∑

n=2

αn−2(ℓ
n−1

c ∇nφ)2

]}

+

∮

S

drs qsφ (13)

Equation (1) in the main text results from the first term
in the gradient expansion of the non-local electrostatic
energy with the choice α0 = 1 (after suitably rescaling
ℓc), where the overall negative sign of this term is chosen
to promote over-screening.

By settting δGel/δφ = 0 for bulk and surface pertur-
bations in (13), we recover Maxwell’s equations (2)-(3),
with D = ε̂E, where the permittivity operator has the
following gradient expansion,

ε̂ = ε

(

1 −
∞
∑

n=1

αn−1ℓ
2n
c ∇2n

)

(14)

and corresponding small-k expansion of the Fourier
transform,

ε̂(k) = ε

[

1 +

∞
∑

n=1

αn−1(−1)n−1(ℓck)2n

]

(15)

∼ ε
[

1 + α0(ℓck)2
]

(16)

which grows with k at small wavenumbers in the case
where correlations promote overscreening, α0 > 0. Note
that it is well known that such an expansion only holds
at small k. At larger k, ε̂(k) diverges, becomes negative
on the other side of the singularity, then diverges again
to −∞ at another point, and becomes positive after the
second divergence; see Refs. [2, 3].

II. CHARGE PROFILES AND VERIFICATION

OF OVER-SCREENING

In the main text we show charge density profiles for
a specific set of parameters. The charge density profiles

in the text are presented in spatial coordinates scaled by
the ion size. However, the natural length scale for the
dimensionless problem is the Debye length. The solu-
tions to the equation in dimensionless form depend upon
the applied voltage, the correlation length scale δc, and
the volume fraction γ. In Fig. 1 we show the charge
density as a function of distance (normalized by the De-
bye length) for increasing values of δc. To convert these
ion profiles to dimensional form, the x-axis need only be
scaled by the value of λD/a as given by the physical pa-
rameters of the problem. Fig. 1 shows that the strength
of the over-screening is a strong function of δc.

To prove that our simple continuum model predicts
over-screening by the first, condensed layer of counteri-
ons, in Fig. 2 we plot the integrated charge density up
to position x from the surface versus x. The integrated
charge is then normalized by the total charge in the dou-
ble layer, as in Ref. [4]. This graph provides a quantita-
tive characterization of the strength of over-screening in
the first layer.

III. LOW-VOLTAGE ANALYTICAL SOLUTION

The solution to the equations must be calculated nu-
merically. However, at low voltage we can obtain an an-
alytical solution. At low voltage, we have the approxi-
mation that,

(

δ2

c

d4φ̃

dx̃4
− d2φ̃

dx̃2

)

= −φ̃. (17)

The analytical solution to this equation depends on
whether δc is greater than, equal to, or less that 1

2
. Since

δc is presumed large in case of ionic liquids, we present
the analytical solution for δc > 1

2
,

φ̃(x) = Ṽ e−k1x (cos(k2x) + A sin(k2x)) , (18)

where

k1 =

√
2δc + 1

2δc
, k2 =

√
2δc − 1

2δc
, A = −

√
2δc + 1(δc − 1)√
2δc − 1(δc + 1)

.

The total charge in the diffuse double layer can be eval-
uated from

q = −
∫

∞

0

φ̃dx̃ = δ2

c

∂3φ̃

∂x̃3

∣

∣

∣

∣

∣

x̃=0

− ∂φ̃

∂x̃

∣

∣

∣

∣

∣

x̃=0

= −Ṽ

√
2δc + 1

δc + 1
.

The diffuse layer capacitance in the limit when δc is large
is approximately C̃d =

√

2/δc. The diffuse layer capaci-
tance is less than the classical theory without correlations
and decreases with the square root of δc.

IV. HIGH-VOLTAGE COMPOSITE

APPROXIMATION

In ionic liquids, the parameter γ is on the order of unity
and excluded volume effects are significant. At voltages
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FIG. 1: Charge density profiles for γ = 1 and δc = 2, 10, and 50, as indicated. The solid curves are calculated from our model
while the dashed curves are calculated for the case where δc = 0 and there are no correlations. Solutions are shown for applied
voltages of Ṽ = 1, 10 and 100 measured in units of kBT/e ≈ 25 mV. Similar results are obtained for different values of the
volume fraction, γ.

0 5 10 15 20 25
0

0.5

1

1.5
δ

c
=2

x/λD

q(
x
)

0 10 20 30 40 50
0

1

2

3

4
δ

c
=10

x/λD

q(
x
)

0 20 40 60 80 100
0

5

10

15

20
δ

c
=50

x/λD

q(
x
)

FIG. 2: Cumulative charge density profiles as a function of distance from the electrode. The charge is integrated cumulatively
in space and normalized by the total double layer charge; namely q(x) =

R

x

0
ρ(x̂)dx̂/

R

∞

0
ρ(x̂)dx̂. Solutions are shown for γ = 1

and δc = 2, 10 and 50, as indicated. Applied voltages are Ṽ = 1, 10 and 100 measured in units of kBT/e ≈ 25 mV. These
cumulative profiles clearly show over-screening.

beyond the linear response we find that a condensed layer
of counter-ions forms near the wall. In this condensed
region close the wall we could solve,

(

δ2

c

d4φ̃

dx̃4
− d2φ̃

dx̃2

)

= ρ̃max

where we assume that the charge density is a constant,
ρ̃max, and has reached the maximum value defined by
the value of γ; i.e. ρ̃max = 1/γ if we apply a negative
voltage. In order to further simplify the approximation,
we can assume that in ionic liquids, δc is typically large
and we solve as an approximation,

δ2

c

d4φ̃

dx̃4
= ρ̃max, (19)

in the wall region.

The general solution for the potential in the wall region
becomes a fourth order polynomial. Using the boundary
conditions that we have fixed voltage Ṽ at x = 0, along
with ∂3φ̃/∂x̃3 = 0 at the wall, our solution for the po-

tential has a simple form,

φ̃(x) =
ρ̃max

24δ2
c

x̃4 + Bx̃2 + Cx̃ + Ṽ

This polynomial solution which is valid near the wall
can be matched to the low voltage solution provided in
the previous section. Ensuring continuity of the poten-
tial, the charge density, and all the derivatives allows us
to solve for the unknown constants of integration. The
resulting analysis yields a quartic equation for the size of
the condensed layer. Once the size of the condensed layer
is known, all the constants for the matching are easy to
obtain. The approximate composite model was found to
match the full numerical simulation as long as the voltage
was low enough that a second condensed layer of opposite
charge did not begin to form (see Fig. 1c at Ṽ = 100).

While this analysis may be useful, the resulting quartic
equation does not provide a simple form for the double
layer capacitance. A much simpler form of this compos-
ite solution emerges if we make the additional approx-
imation that all of the voltage drop occurs across the
condensed layer and, after the condensed layer, the po-
tential and all its derivatives go to zero. While this is not
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Ṽ

C̃

γ=1
δ

c
=0

δ
c
=50

b) 10
−2

10
0

10
2

10
−1

Ṽ
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FIG. 3: (a) Capacitance of the diffuse double layer, nor-
malized by the Debye value, as a function of voltage for
δc = 0, 2, 10, and 50 while holding γ = 1. Numerical
solutions (solid curve) are compared with the low-voltage
and moderate voltage approximations in Eqs. (7) and (8)
of the main text (dashed lines) and the high-voltage scaling,

C̃d ∼

q

2/γṼ (dash-dot line). We show only the diffuse layer

capacitance to highlight the different scaling laws. (b) Total
capacitance of the double layer for δc = 10 and γ = 1; the
inner layer is included in series with diffuse layer.

true, it is found from the numerical solutions to provide
a reasonable prediction of the capacitance at ”interme-
diate voltages”, where a condensed layer forms, but not
so high that a second condensed layer of opposite charge
forms due to over-screening. While this assumption does
not yield complete charge density profiles, it does provide
a useful approximation for the potential in the condensed
layer and thus the capacitance.

Returning to the general solution and using the
simpified boundary conditions, φ̃(x̃ = L) = 0 and

∂φ̃/∂x̃
∣

∣

∣

x̃=L
= 0, we find,

φ̃(x̃) =
−1

24γδ2
c

(x̃4 − L3x̃) +

(

Ṽ

L2
+

L2

8γδ2
c

)

(x̃2 − Lx̃) + Ṽ

(

1 − x̃

L

)

.

Setting the second derivative to zero at x̃ = L yields the
size of the condensed layer,

L = (Ṽ γδ2

c8)
1

4 .

Solving for the total charge q = ∂φ̃
∂x̃

∣

∣

∣

x̃=0

, we obtain a

simple approximation for the diffuse layer differential ca-
pacitance (C̃d = dQ̃/dṼ ),

C̃d ∼ 8/3

(8δ2
cγṼ )

1

4

(20)

The scaling presented above is essentially valid at large
δc and moderately large voltages. At high voltage, cor-
relations become irrelevant, since “crowding beats over-
screening”, and the capacitance is determined by the
excluded volume effects only and has a scaling Cd ∼
√

2/γṼ as previously discovered.

The transitions between these three regimes are evi-
dent in Fig. 3 where we compare the numerical solution
for the capacitance to the simple scaling laws derived
above. The range of validity of the intermediate volt-
age expression simply comes from the intersection of the
three regimes. In Fig. 3a we show the diffuse layer ca-
pacitance only to clearly show the results of the simple
scaling laws. At δc = 10 we find a short transition regime
where the V −1/4 scaling appears, and for δc > 50 the
scaling is valid over a wide range. All the capacitance
curves appear to converge to the δc = 0 solution at high
voltages, as expected from our analysis. When δc is large,
however, the voltages where the capacitance curves con-
verge are quite extreme, so this limiting behavior may
have limited applicability. Perhaps it could be used to
validate simulations.

In Fig. 3b we show the total capacitance (inner layer
and diffuse layer in series) for δc = 10 and γ = 1. Here
we find that the simple scaling laws are useful for under-
standing the capacitance computed from the numerical
solution of our model.
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