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Abstract This chapter provides an introduction to a certain class of
nonlinear electrokinetic phenomena, where the applied electric field
acts on its own induced-charge in an electrolytic solution near a po-
larizable surface. Many applications are discussed, such as colloidal
particle dynamics (induced-charge electrophoresis) and microfluidic
mixing and pumping (induced-charge electro-osmosis), while em-
phasizing the basic physics of each phenomenon. A Standard Model
for these situations is introduced and analyzed in simple cases. Sim-
ilarities and differences are noted with other electrokinetic phenom-
ena, such as classical linear (fixed-charge) electrokinetics in elec-
trolytes and electrohydrodynamics in leaky dielectrics.

1 Introduction

Electrokinetic phenomena (electrically driven fluid flow and particle mo-
tion) in liquid electrolytes have been studied for well over a century in
colloid science (Hunter, 2001; Lyklema, 1995; Anderson, 1989), but much
recent interest in this classical subject has been triggered by the develop-
ment of microfluidics (Stone et al., 2004; Squires and Quake, 2005; Laser
and Santiago, 2004; Squires, 2009; Schoch et al., 2008). In electrolytes,
electrokinetic phenomena are associated with thin electric double layers on
charged surfaces, and as a result they have favorable scaling with miniatur-
ization, with increasing surface to volume ratio. Electrokinetic phenomena
also offer other unique advantages for “lab-on-a-chip” systems, such as low
hydrodynamic dispersion, no moving parts, electrical actuation and sensing,
and easy integration with microelectronics. Beyond microfluidics, it is be-
coming increasingly recognized that electrokinetic phenomena can play an
important role in the dynamics of electrified interfaces in other fields such as
biology (e.g. vesicle motion, membrane fluctuations, electroporation) and
electrochemistry (e.g. porous electrode charging, desalination dynamics,
dendritic growth).
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Until recently, almost all studies of electrokinetic phenomena have as-
sumed linear response in the applied voltage, based on the hypothesis of
fixed surface charge (or fixed “zeta potential” relative to the bulk solution).
This assumption is reasonable for most insulating or dielectric surfaces, but
not for metallic or ion-conducting surfaces. For applications in microflu-
idic systems, linear electrokinetic phenomena have a number of possible
drawbacks: Direct current (DC) must be passed to sustain electric fields;
it is difficult to produce vortices for mixing; and large voltages must be
applied along centimeter or greater distances to achieve the necessary field
strengths, giving little direct control over local fields and flows within mi-
crochannels. Related to these issues, there are also well known drawbacks of
linear electrokinetic phenomena in colloid science, e.g. that electrophoresis
cannot separate particles with fixed, uniform zeta potential by size or shape
in free solution. This is the reason that electrophoretic separation of DNA
or other large molecules is usually done in a gel, rather in free solution,
to take advantage of entropic effects of trapping rather than differences in
electrophoretic mobility.

As shown in Figure 1, much richer dynamics are possible with nonlin-
ear electrokinetic phenomena at polarizable surfaces, which are the focus of
this chapter. For recent reviews, see Bazant et al. (2009b), Squires (2009)
and Bazant and Squires (2010). The development of this subject in mi-
crofluidics began with the discovery by Ramos et al. (1999) of alternating-
current electro-osmotic flow (ACEO) over microelectrodes, which Ajdari
(2000) showed could be exploited for low-voltage microfluidic pumping us-
ing asymmetric arrays of inter-digitated electrodes. These breakthroughs,
supported by the early experiments of Green et al. (2000a); González et al.
(2000); Green et al. (2002); Brown et al. (2000); Studer et al. (2004) and
others, focused attention on nonlinear AC electrokinetics in microfluidics.
This work clearly demonstrated that electrokinetic phenomena can derive
from non-uniform, transient charge on an electrode surface, controlled more
by the applied voltage than by chemical equilibrium.

Bazant and Squires (2004) pointed out that the underlying physical
mechanism of an electric field acting on its own induced charge near a
polarizable surface is more general and coined the term “induced-charge
electro-osmosis” (ICEO) to describe it (Squires and Bazant, 2004). Through
a variety of examples, such as those in Fig. 1, they argued that ICEO flows
can occur around any polarizable (metal or dielectric) surface in the pres-
ence of any (DC or low-frequency AC) electric field – i.e. not exclusively
over electrodes whose voltage is directly forced to oscillate at a certain fre-
quency, as in ACEO. The same fundamental physical process, sketched in
Figure 2, thus unifies ACEO and travelling-wave electro-osmosis (TWEO)
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Figure 1. Experimental photographs of induced-charge electro-osmosis, im-
aged by streaks of tracer particles. (a) Nonlinear flow around a 500 µm
spherical ionite particle driven by a weak 10 V/cm, 80 Hz background AC
electric field, by V. A. Murtsovkin (courtesy of A. S. Dukhin); (b) AC
electro-osmosis at a pair of titanium electrodes applying a 2 V 100 Hz AC
voltage by Green et al. (2002); (c) DC electrokinetic jet at a dielectric mi-
crochannel corner by Thamida and Chang (2002); (d) one roll of quadrupo-
lar ICEO flow around a 100 µm cylindrical gold post in a 100 V/cm 300 Hz
electric field and (e) fixed potential ICEO flow around a gold post connected
to one electrode supplying the background AC field by Levitan (2005). (Re-
produced from Bazant (2008b).) 3



(Cahill et al., 2004; Ramos et al., 2005) over micro-electrode arrays (Fig. 2d),
with other seemingly unrelated phenomena, such as DC electrokinetic jets
at dielectric microchannel corners (Thamida and Chang, 2002) (Fig. 2c),
AC electrohydrodynamic interactions and self-assembly of dielectric col-
loids on electrodes (Trau et al., 1997; Yeh et al., 1997; Nadal et al., 2002;
Ristenpart et al., 2003), and hydrodynamic interactions among polarizable
particles (Gamayunov et al., 1986; Murtsovkin, 1996) (Fig. 2a).

The latter effect was apparently the earliest example of “ICEO” re-
ported in the literature, from the pioneering work of V. Murtsovkin, A. S.
Dukhin and collaborators in the 1980s on polarizable colloids, as reviewed
by Murtsovkin (1996), long before analogous ICEO flows were observed in
a microfluidic device by Levitan et al. (2005). The quadrupolar ICEO flow
around an ideally polarizable sphere in a uniform electric field, and the re-
sulting relative motion of two spheres, were first predicted by Gamayunov
et al. (1986). Murtsovkin and collaborators proceeded to observe these flows
around mercury drops (Murtsovkin and Mantrov, 1991) and metallic par-
ticles (Gamayunov et al., 1992). For larger particles, the flow was in the
opposite direction of the theory, which was conjectured to be due to the
onset of Faradaic reactions at large induced voltages, consistent with recent
experiments on millimeter scale metal objects by Barinova et al. (2008).

The development of microfabrication technology has led to unprece-
dented control over the geometries of particles and channels, so a major
focus of recent research has been on the design of polarizable structures and
particles to control, enhance, optimize induced-charge electrokinetic phe-
nomena. The original ACEO micropumps tested in experiments by Brown
et al. (2000) and Studer et al. (2004) involved 2D planar arrays of inter-
digitated electrodes. Bazant and Ben (2006) predicted that faster flows are
possible with non-planar stepped electrodes, and such “3D ACEO” designs
have since been reduced to practice (Urbanski et al., 2006a,b; Huang et al.,
2010). The concept of ICEO mixing by applying electric fields around fixed
3D metal microstructures (Bazant and Squires, 2004; Levitan et al., 2005)
is now beginning to be reduced to practice as well (Harnett et al., 2008;
Wu and Li, 2008b). ICEO flows around simple 2D metal structures also
offer the chance to precisely test the standard model of electrokinetics, as
recently shown by Pascall and Squires (2010). Asymmetric geometries of
channels and particles also give rise to some surprising phenomena from the
classical colloidal standpoint. Bazant and Squires (2004) predicted that an
anisotropic particle subjected to a DC or AC field (below the frequency of
double-layer charging) will generally translate and/or rotate by “induced-
charge electrophoresis” (ICEP), while a fixed anisotropic object will pump
the fluid by ICEO (Yariv, 2005; Squires and Bazant, 2006). These nonlinear
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Figure 2. Examples of nonlinear electrokinetic phenomena driven by in-
duced charge (+, −)in the diffuse part of the electrochemical double layer
at ideally polarizable, blocking surfaces, subject to an applied electric field
E or voltage V . (a) Induced-charge electro-osmosis (ICEO) around a metal
post (Bazant and Squires, 2004; Squires and Bazant, 2004; Levitan et al.,
2005) or particle (Gamayunov et al., 1986; Murtsovkin, 1996), (b) induced-
charge electrophoresis (ICEP) of a metal/insulator Janus particle (Squires
and Bazant, 2006; Gangwal et al., 2008), (c) a nonlinear electrokinetic jet
of ICEO flow at a sharp corner in a dielectric microchannel (Thamida and
Chang, 2002; Yossifon et al., 2006), and (d) AC electro-osmosis (ACEO)
over a symmetric pair of microelectrodes (Ramos et al., 1999; Ajdari, 2000;
Green et al., 2002). (Reproduced from Bazant et al. (2009b).)
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phenomena are very different from classical electrophoresis with surfaces of
constant charge and are also beginning to be observed in experiments (Rose
and Santiago, 2006; Gangwal et al., 2008).

In this chapter, we survey recent progress in induced-charge electroki-
netics and teach the basic physical concepts, theoretical models, and ex-
perimental observations. Along the way, we also highlight various open
questions for future research.

2 Background

Before discussing nonlinear induced-charge electrokinetic phenomena in elec-
trolytes, we briefly review linear and nonlinear electrokinetic phenomena in
weakly conducting liquids, as well as linear (“fixed charge”) electrokinetic
phenomena in electrolytes. The latter subject was mainly developed in col-
loid science over the past century, and there are excellent books available,
e.g. by Levich (1962), Dukhin and Derjaguin (1974), Lyklema (1995) and
Hunter (2001). Recent application-specific reviews are also available, such
as Anderson (1989) and Delgado et al. (2007) on electrophoresis of col-
loids and Kirby and Hasselbrink (2004) and Tandon and Kirby (2008) on
electro-osmosis in microfluidic devices.

2.1 Electrohydrodynamics in dielectric liquids

The term “electrokinetic phenomena” refers to electrically driven fluid
flow or particle motion, but it is often used more narrowly, as we do here, to
describe fluid or particle motion in electrolytes, consisting of large numbers
of dissolved ions in a solvent, typically water. In contrast, the term “elec-
trohydrodynamics” is often used more narrowly to refer to electrokinetic
phenomena in low-conductivity dielectric liquids (Melcher and Taylor, 1969;
Saville, 1997). A simple example of the latter is the electrophoretic motion
of a charged particle in a non-conducting dielectric liquid in a uniform, con-
stant, electric field, as shown in Fig. 3(a). The reader may be familiar with
R. Millikan’s famous oil-drop experiment, which first measured the electron
charge e a century ago by showing the quantization of the charge Q = ne
inferred from the velocities of oil drops suspended in air between capacitor
plates, based on the following simple analysis. To calculate the drop veloc-
ity U , the electric force fe = QE is balanced by the viscous drag force,
approximated by Stokes’ formula for a sphere, fd = 6πηRU , where R is the
radius and η the fluid viscosity. This force balance yields the scaling of the
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Figure 3. (a) Sketch of the electrophoretic motion of a particle of fixed
charge in a non-conducting liquid in a uniform electric field, which drags
fluid along with it, analogous to sedimentation under gravity; streamlines
are shown in the fixed lab frame of reference. (b) The analogous situation
for a charged solid particle in a (conducting) electrolyte, where a thin double
layer screens the charge; since the net charge on the interface is zero, no
motion results if the fluid velocity is continuous across the interface, as in
the Leaky Dielectric Model for liquid drops (Saville, 1997). Instead, particle
motion does occur, due to electro-osmotic flow in the double layer, which
leads to an effective slip (or velocity discontinuity) over the surface, shown
below in Fig. 4.

drop velocity

U ∝ Q

ηR
E (electrophoresis in a dielectric liquid) (1)

which is proportional to the electric field and the (fixed) charge, and in-
versely proportional to the drop size. This is perhaps the simplest example
of a “linear” electrohydrodynamic phenomenon, where U ∝ E.

There can also be nonlinear electrohydrodynamic phenomena in non-
conducting liquids. The most familiar example is “dielectrophoresis” (DEP)
of polarizable solid particles in non-uniform electric fields (Pohl, 1978; Ramos
et al., 1998). The applied field induces a dipole moment on the particle,
p = α

(
4π
3 R

3
)
εE, proportional to its volume and the field, where α is the

Maxwell-Wagner factor which depends on electrical properties and, for an
AC field, also the frequency. The induced dipole is then pulled by the field
gradient toward regions of higher or lower field intensity. The electrostatic
force, fe = p · ∇E, is again balanced by viscous drag fd to yield a steady
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translational velocity which scales as

U ∝ εR2

η
∇E2 (dielectrophoresis) (2)

The velocity varies with the square of the applied field intensity, and thus
survives in an AC field. In uniform DC or AC field, a polarizable particle
can also rotate to align its induced dipole with the field axis, in response to
the electrical torque, p×E, but it cannot translate or rotate continuously.

For weakly conducting liquids, including many oils and non-aqueous so-
lutions, the theory must also account for bulk current and charge accumu-
lation at interfaces. This alters the analysis of electrophoresis and dielec-
trophoresis and also leads to some new electrohydrodynamic phenomena, di-
rectly tied to a non-zero conductivity. Taylor (1966) first described the non-
linear deformation of oil drops in electric fields, using what is now called the
“Leaky Dielectric Model” (Melcher and Taylor, 1969; Saville, 1997). The
applied field drives a small current which induces a charge on the fluid/fluid
interface. Although, by symmetry, the drop cannot move, the interfacial
induced charge is pulled by the electric field to produce counter-rotating
quadrupolar vortices, both inside and outside the drop, while maintaining
a continuous fluid velocity at the interface. The flow scales as

u ∝ εRE2

η
(flow around a leaky dielectric drop) (3)

which generally arises in electrohydrodynamics from the balance of electric
body force ρeE ∝ and the viscous force η∇2u ∝ ηu/R2, using Poisson’s
equation for a linear dielectric response, ρe = ∇ · εE ∝ εE/R. Outside
the deformed drop, the steady flow resembles the quadrupolar ICEO flow
around a solid polarizable particle, in Figs. 1(a) and 2(a). Indeed, below
we will encounter the same scaling (3) for ICEO flow around a polarizable
particle, but this is clearly a different phenomenon. If Taylor’s liquid drop
were replaced by a solid particle, the Leaky Dielectric Model would predict
no fluid motion, because the tangential velocity is assumed to be continuous
across the interface.

2.2 Electrokinetics in electrolytes

The situation is fundamentally different in an electrolytic solution con-
taining large numbers of dissolved ions. Besides the high conductivity of the
bulk electrolyte, ions can easily move to the interface to screen the surface
charge, so that the net interfacial charge (for the surface plus its diffuse ionic
screening cloud) is zero, as sketched in Figure 3(b). The length scale for this
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screening process, where electrostatic attraction is balanced by diffusion, is
the Debye screening length,

λD =

√
εkBT∑
i(zie)2c0

(4)

where ε is the permittivity, kB is Boltzmann’s constant, T is the abso-
lute temperature, zie are the ionic charges, and c0 is the bulk neutral salt
concentration. In aqueous solutions, the double layers have a tiny extent
λD = 0.5 − 100 nm, which is typically much smaller than any geometrical
scale L, such as the particle size or microchannel thickness. Such a “thin
double layer” with λD � L, resembles a capacitor skin on the surface.

In electrolytes with thin double layers, the charge density (per volume) is
zero everywhere, including the interface, so how can there be any electroki-
netic effects? Indeed, the Leaky Dielectric Model would predict no motion,
since there can be no force on an interface of zero net charge. The model also
assumes continuity of the velocity field across the interface, which precludes
relative motion of the two sides. Electrokinetic effects are readily observed
at solid surfaces, however, so clearly an electrolyte is not a standard leaky
dielectric.

The flaw in these arguments is that the interface in an electrolyte is a
double layer, equivalent to a sheet of dipoles, which experiences a nonzero
torque in a tangential electric field. The electrostatic torque accelerates
the fluid on one side relative to the other (fluid or solid) phase, until it is
balanced by an opposing viscous torque. In a quasi-steady Stokes flow, this
process is instantaneous, and the tangential field produces a steady electro-
osmotic slip, or velocity discontinuity between the fluid and the surface.
This is how Helmholtz (1879) fresolved the paradox of electrophoresis in
electrolytes with thin double layers, many years after Reuss first observed
the electrophoresis of clay particles in water in 1808.

By modeling the double layer as a thin capacitor with a voltage drop ζ
from the surface to the bulk solution, Helmholtz derived a simple formula
for effective slip across the double layer given by

us = −εζ
η

E‖ (electro-osmotic slip in an electrolyte) (5)

where ε is the permittivity and η the viscosity of the electrolyte, and E‖ is
the tangential electric field, which is continuous across the interface. This
phenomenon of “electro-osmotic flow” forms the basis for electrokinetic phe-
nomena in electrolytes (Hunter, 2001; Lyklema, 1995). In particular, the
electrophoresis of a particle with thin double layers in an infinite fluid can
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Figure 4. (a) A charged solid surface in an electrolyte attracts a “screening
cloud” of excess counter-ions (of the opposite sign) to form a capacitor-like
“double layer”. An applied tangential electric field acts on the screening
charge to drive electro-osmotic flow parallel to the surface, which builds
from no-slip on the walls to an effective nonzero slip velocity outside the
double layer. (b) If a particle with thin double layers is freely suspending
in an electrolyte, the velocity discontinuity from electro-osmotic flow in
an electric field leads to a net swimming motion termed ”electrophoresis”.
(Reproduced from Squires and Bazant (2004).)

be understood as a phenomenon of “force-free” motion (akin to swimming)
in the direction of the applied field due to electro-osmotic slip. Similar
phoretic motion can also be driven by gradients in temperature and salt
concentration, which also produce tangential gradients in osmotic pressure
within the double layer (Anderson, 1989).

Smoluchowski (1905) extended the theory of electro-osmotic flow for dif-
fuse screening charge in the double layer and showed that Eq. (5) holds more
generally whenever the fluid permittivity and viscosity are constant across
the double layer (using the classical continuum electrokinetic equations).
As shown in Fig. 4(a), the tangential fluid velocity builds up exponentially
across the diffuse part of the double layer from zero on the surface (assuming
no hydrodynamic slip) to us outside the double layer. In Smoluchowski’s
theory, the zeta potential corresponds to the potential difference between
the hypothetical “shear plane” at the inner edge of the diffuse layer and the
neutral bulk solution, just outside the double layer, although this need not
be the case in more general theories (Bazant et al., 2009b). If the zeta po-
tential is small compared to the thermal voltage, kBT/e (= 26 mV at room
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temperature), then the diffuse double layer has a constant capacitance (per
area), CD ∼ ε/λD, as expected for charged parallel plates separated by
the screening length (Bazant et al., 2004). In that case, we can recast the
electro-osmotic slip formula (5) as

us ∼ −
λDq

η
E‖, if |eζ| � kBT (6)

since CD = q/ζ.
Smoluchowski also considered the motion of colloidal particles with thin

double layers (λD � R) driven by electro-osmotic flow in applied electric
fields, as shown in Fig. 4(b). He showed that a particle with uniform zeta
potential (or surface charge) in an infinite fluid translates at a velocity,

U =
εζ

η
E∞ (electrophoresis in an electrolyte) (7)

where E∞ is a uniform background electric field, applied “at infinity”. It
can be shown that this result is independent of the shape and size of the
particle, assuming thin double layers and uniform ζ, since in the case, the
fluid velocity is proportional to the electric field everywhere, u ∝ E, as
shown in Fig. 5(a).

For the same reason, a colloid of many such particles will experience zero
hydrodynamic interactions (Morrison and Stukel, 1970; Anderson, 1989), as
shown in Fig. 5(b). In other words, all the particles will move at the same
velocity (7), regardless of the sizes, shapes or concentration. Of course, this
can pose a problem for electrophoretic separations of like-charged particles,
such as DNA molecules, which explains why DNA electrophoresis is done
in a gel in order to exploit entropic (i.e. trapping), rather than purely
electrokinetic, effects.

The inability to separate like-charged particles is related to other surpris-
ing features of linear electrokinetic phenomena involving surfaces of constant
surface charge (or zeta potential) in electrolytes with thin double layers. A
porous medium with the these physical properties exhibits the same lin-
ear relationship (7) between the mean fluid velocity 〈u〉 = −U and the
electric field, regardless of the microstructure. This can be understood as
the same effect, if the porous medium is a packed bed of particles held in
place, driving flow in the opposite direction of electrophoresis.) The cru-
cial microscopic principle behind these results is that electro-osmotic flow
is irrotational, ∇ × u = 0, in the limit of thin double layers and constant
zeta potential, because the fluid velocity is proportional to the electric field,
u ∝ E, everywhere in the bulk electrolyte. This is no longer the case if any
of these assumptions break down, and it is generally possible to produce
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Figure 5. Electrophoresis of particles with thin double layers and constant,
uniform surface charge (or zeta potential). (a) The fluid flow in the frame
of the moving particle, driven by electro-osmotic slip, is proportional to the
electric field, everywhere. (b) As a result, a colloid consisting of many such
particles will move at the same velocity as a single particle, regardless of
the sizes and shapes of the particles.

vortices by electro-osmosis. In particular, we shall now discuss nonlinear
ICEO flows involving polarizable surfaces, whose charge is not fixed.

3 Principles of Induced-Charge Electrokinetics

3.1 Flows around metal surfaces

The simplest example of ICEO involves a metal sphere (Gamayunov
et al., 1986) or cylinder (Bazant and Squires, 2004) in an electrolyte with
thin double layers, suddenly subjected to a uniform electric field, sketched
in Figure 6. As a first approximation, the sphere is “ideally polarizable”,
meaning that its potential is held constant without any Faradaic electron-
transfer reactions occurring. Conceptually, there are two steps in the dy-
namics: (1) electrochemical relaxation of the surface charge in response to
the applied field, and (2) electro-osmotic flow around the particle, driven
the induced charge.

1. Induced surface charge. When the field is turned on, electrons on the
metal surface immediately drift toward one pole to induce a dipole
moment, in order to make the surface equipotential (Figure 6a). In a
non-conducting dielectric liquid this could be the steady state, but this
is an unsteady configuration in an electrolyte. Since the field drives an
ionic current, any normal component transports charge in or out of the
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Figure 6. Physical mechanism for induced-charge electro-osmosis around
an ideally polarizable metal cylinder in a suddenly applied electric field. (a)
When the field is turned on, electronic charges relax to make the surface
an equipotential, but the normal current drives double-layer charging. (b)
After charging, the field lines are expelled by a nonuniform distribution of
induced double-layer charge. (c) The tangential field acts on the induced
charge to drive quadrupolar ICEO flow around a neutral cylinder. (d) If
the cylinder has a nonzero total charge, then the dipolar flow of linear elec-
trophoresis is superimposed on the quadrupole. (Reproduced from Bazant
and Squires (2004)).
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diffuse layer. Neglecting surface conduction through the double layer
(for thin double layers) and Faradaic reactions passing current through
the particle (at low voltage), the normal current locally charges double
layer, like a capacitor. This process continues until all the field lines
are expelled in steady state (Figure 6b). As first noted by Simonov
and Shilov (1977), the basic time scale for this process is the RC time
for the equivalent circuit of the bulk resistance (through the solution
around the equator) coupled to the diffuse-layer capacitances (on the
surface near the poles):

τ0 =
RCD
σ

=
λDR

D
(8)

where σ and D are the bulk conductivity and diffusivity, and R is
the particle radius. In more general situations, R is a length scale
characterizing the distance between oppositely polarized surfaces, such
as an electrode separation (Ramos et al., 1999), as reviewed by Bazant
et al. (2004). In microfluidic devices, the typical double-layer charging
time τ0 (≈ ms) is much larger than the Debye relaxation time ε/σ =
λ2
D/D, for bulk ionic screening (≈ µs) and much smaller than the

diffusion time L2/D for the relaxation of bulk concentration gradients
(≈ s) . For nano-channels or nano-particles, however, all of these time
scales can be comparable (≈ µs).

2. Induced electro-osmotic flow. The tangential field acts on the non-
uniform induced-charge (or ζ) distribution to produce quadrupolar
ICEO flow, sucking fluid at the poles and ejecting it at the equator
(Figure 6c). The scaling of the flow can be easily understood as
follows. Capacitive charging transmits a non-uniform voltage to the
double layer of order ER. If (5) holds, then ICEO flow scales as

u(r) ∝ u0 =
εRE2

η
(ideally polarizable surface) (9)

which is the same, generic electrohydrodynamic scaling arising in Tay-
lor’s flow around a leaky dielectric drop, Eq. (3), as noted above. Un-
like linear electro-osmosis, ICEO flow is rotational and depends on the
geometry via the size R as well as the shape of the particle (see below).
In response to a DC voltage step, the flow approaches the steady state
over the RC time scale τ0. For AC field of frequency ω, the steady
state flow decays above the RC frequency as [1 + (ωτ0)2]−1 (Squires
and Bazant, 2004).
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From these simple physical arguments, we expect similar flows to be
produced around any polarizable object in any electric field, but any broken
symmetry will generally lead to fluid flow past the object, if it is held fixed,
or motion by “induced-charge electrophoresis” (ICEP), if it is freely sus-
pended (Gangwal et al., 2008). If the object has a nonzero total charge Q,
as in the case of a charged metal colloidal particle, then the ICEO flow is su-
perimposed on the familiar streaming flow of linear electrophoresis (Figure
6d). Whenever (5) holds, the two effects are additive, since the total charge
corresponds to a constant ζ offset, relative to the background potential.

In fixed-potential ICEO, the potential of a polarizable object is con-
trolled so as to induce total charge in phase with a (steady or oscillating)
background field (Squires and Bazant, 2004). This effect is essentially an AC
generalization of the “flow field effect transistor” (Schasfoort et al., 1999;
van der Wouden et al., 2005), similar to the work of van der Wouden et al.
(2006). The effective length R above is then set by the distance between
the object and the electrodes supplying the background field. As a result,
fixed-potential ICEO flow can be much faster than locally produced (e.g.
quadrupolar) ICEO flow and has a different frequency response.

Other broken symmetries include irregular shapes (e.g. rods, polyhe-
dra, etc.), non-uniform surface properties (e.g. partial dielectric or metallic
coatings), and non-uniform background electric fields (Squires and Bazant,
2006). In each case, net pumping of the fluid by ICEO results if the object
is held fixed, which requires a certain force and torque. Conversely, if the
object is a colloidal particle, then broken symmetries cause it to translate
and rotate by ICEP, as described below.

3.2 Flows around dielectric surfaces

The canonical example above assumes an ideally polarizable surface,
where the double layer charges capacitively to sustain the entire voltage
applied to the object, but the phenomenon of ICEO is more general and
occurs at any polarizable surface, to varying degrees (Squires and Bazant,
2004). For example, if the metal object described above has a thin dielectric
coating of width hS and permittivity εS , then both the time scale (8) and
the flow scale (9) are multiplied by a factor Λ = (1 + δ)−1, where

δ =
CD
CS

=
ε

εS

hS
λD

(10)

is the ratio of the dielectric-layer capacitance to the diffuse-layer capac-
itance, which are placed in series in an equivalent circuit for the double
layer. This shows that dielectric coatings thicker than the Debye length can
substantially reduce ICEO flows at metal surfaces. In the limit of a purely
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dielectric object of characteristic length scale, R � λD , ICEO flow scales
as

u =
εSλDE

2

η
(dielectric surface) (11)

which is smaller than for an ideally polarizable object by a factor δ � 1.
Although often small, ICEO flows at dielectric surfaces need not be

negligible in microfluidic devices, since there can be large local electric fields
at sharp geometrical features. As shown in Figure 1(c), an electric field
passing around a sharp corner in a dielectric microchannel can drive a strong
nonlinear electrokinetic jet of ICEO flow due to the corner field singularity
(Thamida and Chang, 2002; Yossifon et al., 2006). In very simple terms,
illustrated in Fig. 2(c), this phenomenon can be understood as half of the
quadrupolar flow around a polarizable particle, where the jet corresponds
to the outward flow at the equator in Figure 6(c).

As noted above, dielectric objects also experience electrostatic forces,
leading to DEP motion of freely suspended particles. The uniform compo-
nent of a background electric field induces a dipole on the object, which then
feels a torque to align it with the field. A field gradient applies a force to the
induced dipole. Higher-order multipoles in the background field can like-
wise cause forces and torques by acting on higher-order induced multipole
moments on the object. In the case of colloidal dielectric particles, these
forces and torques (balanced by hydrodynamic drag) produce translational
velocity u ∼ εR2∇E2/η and rotational velocity Ω ∼ εE2/η of DEP, respec-
tively. The theory of DEP has mostly been developed for dielectric liquids,
but in electrolytes ICEO flows also occur, with the very same scalings with
field and particle size (Squires and Bazant, 2006). The net electrokinetic
motion of polarizable particles in non-uniform fields results from a compe-
tition between DEP and ICEP, originally termed “dipolophoresis”, which
was first analyzed for colloidal spheres by Shilov and Simonova (1981).

4 Standard Model for thin double layers

The mathematical description of ICEO flows began with the pioneering work
of Murtsovkin (1996) on metallic colloids and Ramos et al. (1999) and Aj-
dari (2000) on AC pumping of liquids by micro-electrode arrays. Bazant and
Squires (2004) unified these theories in a simple “Standard Model”, deriv-
able from the full Poisson-Nernst-Planck (PNP) equations of ion transport
and Navier Stokes equations of viscous fluid flow in the asymptotic limit of
thin double layers (DL), compared to geometrical length scales. The model
is based on the assumption of “linear” or “weakly nonlinear” charging dy-
namics (Bazant et al., 2004), which further requires that the applied volt-
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age is small enough not to significantly perturb the bulk salt concentration,
whether by double-layer salt adsorption or Faradaic charge-transfer reac-
tion currents. By neglecting Faradaic reactions, we focus on “blocking” or
“ideally polarizable” metal surfaces. In the same limit, surface conduction
through the diffuse part of the double layers can also be neglected (Chu and
Bazant, 2007; Khair and Squires, 2008), unless there is a large pre-existing
fixed charge, upon which a small perturbation is induced, as described by
Murtsovkin (1996).

With these assumptions, the problem is greatly simplified, and the elec-
trokinetic problem decouples into one of electrochemical relaxation, similar
to Leaky Dielectric Model (Saville, 1997), and another of viscous flow, driven
by electro-osmotic slip. Although this model can be rigorously justified only
for very small voltages, ΨD � kT/e, in a dilute solution (González et al.,
2000; Squires and Bazant, 2004), it manages to describe many features of
ICEO flows at much larger voltages. Extensions of the model for large volt-
ages are reviewed by Bazant et al. (2009b) and discussed at the end of this
chapter.

4.1 Electrochemical relaxation

The first step in the Standard Model is to solve Laplace’s equation for
the electrostatic potential across the bulk resistance,

∇ · J = ∇ · (σE) = 0 ⇒ ∇2φ = 0 (12)

assuming Ohm’s Law with a constant conductivity σ. For a blocking po-
larizable surface, which cannot pass a normal current, a capacitance-like
boundary condition closes the equivalent RC circuit:

dq

dt
= n̂ · J ⇒ C

dΨ
dt

= σ n̂ · ∇φ, (13)

where −q is the total surface charge (equilibrium + induced), q is the screen-
ing charge, Ψ = φ0−φ is the local double-layer voltage drop from the metal
surface at φ0 to the bulk solution just outside the double layer at φ, and C
is the total differential capacitance of the double layer, also assumed to be
constant. A simple and important special case of (13) is the low-frequency
or DC limit, n̂·∇φ = 0, where the surface behaves like an insulator since the
double layer is fully charged and cannot sustain any normal current (since
we neglect surface conduction and Faradaic reactions).

The potential of the surface φ0 is either controlled externally, in the case
of an electrode, or determined self-consistently by the condition of fixed
total charge Q integrated over the surface, in the case of a freely suspended
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colloidal particle:

Q =
∮
S

dr

∫ Ψ(r)

0

C(ψ)dψ (14)

where we allow for nonlinear response of the double layer, via a voltage-
dependent capacitance, C(Ψ) . Examples of such nonlinear extensions of
the Standard Model are discussed below and reviewed by Bazant et al.
(2009b). In the limit of linear response with a constant capacitance, valid
for small voltages |eΨ| � kBT , the total charge is proportional to the
surface-averaged double-layer voltage

Q ∼ C
∮
S

drΨ(r) (15)

which implies
φ0 ∼ φ̄0 + 〈φ〉 (16)

where φ̄0 = Q/CA is the surface potential assuming a constant capacitance
over the area A =

∮
S
dr and 〈φ〉 =

∮
S
drφ(r)/A is the surface-averaged

potential in the solution, just outside the double layer. In symmetric prob-
lems involving uncharged colloids (Q = 0), it is common to set φ0 = 〈φ〉,
but this is only valid for linear response to a small induced double-layer
voltage. More generally, Equation (14) is a nonlinear integral constraint,
which self-consistently determines the potential of a metal particle, φ0.

4.2 Fluid flow

After solving for the electrostatic potential φ, the second step in the
Standard Model is to solve for the fluid velocity u satisfying the unsteady
Stokes Stokes equations for creeping flow,

ρm
∂u

∂t
= −∇p+ η∇2u, ∇ · u = 0, (17)

where ρm is the mass density. The unsteady term is only important to
describe transient flows at high frequencies, where momentum diffusion be-
comes comparable with mass diffusion. For steady AC response or low
frequency transients, this term is generally neglected.

Since it is assumed that the bulk electrolyte remains quasi-neutral with
constant conductivity, there is no body force on the fluid in (17). Instead,
coupling to the electrochemical problem only arises through the Helmholtz-
Smoluchowski boundary condition (5) of effective fluid slip outside the dou-
ble layer,

us = u−U − r ×Ω = −εΨD

η
E‖ (18)
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where E‖ is the tangential field and ΨD is the voltage from the “shear plane”
(where the velocity vanishes) to the bulk solution (Lyklema, 1995). The slip
velocity represents a tangential velocity discontinuity between u, the fluid
velocity just outside the double layer, and U +r×Ω, the velocity of the solid
surface, where U and Ω are the local translational and rotational velocities,
which are either prescribed or determined by mechanical constraints, as
described below. The assumption of uniform bulk salt concentration allows
us to neglect tangential osmotic pressure gradients, which modify the slip
formula with a term for diffusio-osmotic flow (Rubinstein and Zaltzman,
2001; Zaltzman and Rubinstein, 2007).

To close the model, following Green et al. (2002), it is common to as-
sume that only a constant fraction Λ ≤ 1 of the double-layer voltage falls
across the diffuse screening cloud: ΨD = ΛΨ. The simplest model of ICEO
flow assumes Λ = 1, i.e. all of the double-layer voltage drop contributes
to the induced zeta potential. In that case, the theory has no adjustable
parameters, but it tends to over-estimate ICEO flows, sometimes by or-
ders of magnitude compared to experimental data. As shown in Fig. 7,
some experimental data can be fitted fairly well by allowing Λ to be an ad-
justable parameter. See Table 1 of Bazant et al. (2009b) for a summary of
Λ values extracted from a wide range of experiments on different induced-
charge electrokinetic phenomena and a discussion of the limitations of this
approach.

The great simplification of the Standard Model is that the full nonlinear
Poisson-Nernst-Planck/Navier-Stokes equations are replaced by two linear
boundary-value problems, which are amenable to analytical solutions in
many cases and more convenient for numerical solutions. First, the potential
φ is obtained by solving the linear problem (12)-(13), and this allows the slip
velocity profile (18) to be calculated. The fluid velocity u and pressure p are
then obtained by solving another linear problem (17)-(18). This procedure
avoids solving a nonlinear problem because the slip boundary condition
(18) is linear in u and only nonlinear in φ, which can be solved separately,
without knowing u in advance.

4.3 Particle motion

The total mechanical force F and torque T acting on any body are
related to the electric field and fluid velocity profiles via integrals over an
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Figure 7. Early tests of the Standard Model for ICEO flows around metal
objects in AC electric fields. (a) ICEO flow around a tin colloidal particle
(photograph above); experimental data by Gamayunov et al. (1992) for the
fluid velocity sampled at different points around the particle (top) versus
the field strength, which demonstrated the quadratic scaling of Eq. (9),
but not any details of the flow profile. (b) The velocity profile around a
100 µm platinum cylinder in a microchannel, simulated by the Standard
Model (above) and compared with measurements by micro-particle-image
velocimetry (below) by Levitan et al. (2005); a horizontal slice of the velocity
profile 5 µm above the wire at different voltages shows good data collapse
with the scaling (9); a reasonable fit is obtained with Λ = 1/(1 + 1.5) = 2/5
using (26), and a better fit (without accounting for ion adsorption) can be
obtained using a constant-phase-angle impedance model. (Reproduced from
Bazant (2008b).)
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enclosing surface S,

F =
∫
S

dr n̂ · σ (19)

T =
∫
S

dr r × (n̂ · σ) (20)

of the stress tensor,

σij = −p δij + η

(
∂uj
∂xi

+
∂ui
∂xj

)
+ ε

(
EiEj −

1
2
E2δij

)
(21)

where δij is the unit tensor. The first term in (21) is the isotropic pressure
tensor; the second is the viscous stress tensor for a Newtonian fluid; and the
third is the Maxwell stress tensor for a linear dielectric medium of constant
permittivity. In the case of steady state flow (or time-averaged periodic
flow, described below), the Stokes equation (17) expresses local mechanical
equilibrium,∇·T = 0, so the bounding surface S can be deformed arbitrarily
to any convenient shape to calculate the force and torque integrals. For
example, for a bounded collection of colloidal particles in an infinite fluid,
it is usually best to deform S to infinity.

For fixed geometries in microfluidic devices, the translational and rota-
tional velocities U and Ω of solid boundaries are set to zero. The integrals
(20) and (20) then give the force F and torque T exerted by the fluid on
the solid, which are equal and opposite to the force and torque needed to
hold the solid in place, respectively.

For a freely suspended colloidal particle, the situation is more subtle.
In a quasi-steady Stokes flow, the translational and rotational velocites, U
and Ω, are determined implicitly by the constraints that there be no net
force, F = 0, and no net torque, T = 0, exerted on the particle by the fluid,
since there is negligible translational and angular acceleration, respectively.
This assumes that viscous dissipation is strong enough to neglect the inertial
term, u·∇u, and fast enough (compared to other relaxation times or the AC
period) to neglect the unsteady term, ∂u/∂t, in the Navier-Stokes equations.

In practice, the translation and rotational dynamics of a particle can be
calculated as follows (Kilic and Bazant, 2007). In the Standard Model, the
linearity of the bulk Stokes flow (outside the double layers) allows us to
express the fluid velocity as a superposition of two flows:

1. the electro-osmotic flow (us, ps) resulting from the slip profile (18)
around a fixed particle with U = Ω = 0, which exerts a force F s and
torque T s on the particle;
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2. the purely viscous flow (uv, pv) with E = 0 resulting from the parti-
cle’s motion U and Ω, which exerts F v and T v on the particle.

These flows are subject to the constraints, F = F s + F v = 0 and T =
T s+T v = 0, which implicitly determine U and Ω. In nontrivial geometries
involving asymmetric particles or nearby channel walls, there is generally a
coupling between translation and rotation due to viscous flow, which can
be expressed as (

F v

T v

)
= M−1

v

(
U
Ω

)
(22)

where F v and T v are the force and torque exerted by the fluid on the parti-
cle, due only to its motion, and Mv is a mobility tensor, taking into account
viscous dissipation in the instantaneous geometry. The inverse tensor M−1

v

is a generalization of the drag coefficient, e.g. 6πηRI for a sphere in an
infinite fluid, and can be calculated by solving Stokes equations with no slip
on a moving and rotating particle and then performing the integrals (20)
and (20) for the force and torque.

Armed with the particle’s mobility tensor, M , the particle motion can
then be determined from(

U
Ω

)
= −Mv

(
F s

T s

)
(23)

where F s and T s are the force and torque on the particle (electrostatic +
viscous) in response to the slip profile around a fixed particle in the same
position. In a numerical simulation, these equations can be iterated to self
consistency in an implicit scheme, or Mv, F s, and T s can be calculated
once using E, U and Ω from the previous time step, or by interpolation to
the new time step, in an explicit scheme.

4.4 Symmetric geometries

For certain symmetric geometries, the reciprocal theorem for Stokes flow
can be used to avoid having to actually solve the Stokes equations, if one
only wants to calculate the motion of the solid body. For a spherical par-
ticle with an arbitrary slip distribution us(r) on its surface, Stone and
Samuel (1996) showed that the translational velocity is equal and opposite
to surface-averaged the slip velocity:

U = −
∮
S
dr us(r)∮
S
dr

(24)
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while the rotational velocity is given by

Ω = −
∮
S
dr r̂ × us(r)

2
∫
V
dr

(25)

where V is the volume of the particle. Squires and Bazant (2006) pointed
out that the same relations also hold for cylindrical geometries, in spite
of various subtleties of two-dimensional Stokes flows. (Note that we have
written (25) in a different form, which clarifies this connection.) These
results make it much easier to solve for the motion of inhomogeneous par-
ticles with symmetric shapes (and variable surface properties), rather than
for homogeneous particles with asymmetric shapes. As in many mathemat-
ical problems, complicated boundary conditions are more tractable than
complicated geometries.

An analogous result to (24) also holds for fluid pumping in a parallel-
plate microchannel with arbitrary slip distributions on both surfaces. The
total flow rate through the channel is the same as that of a linear shear flow
driven by the surface-averaged slip on the two walls, or, equivalently, a plug
flow uplug = −U driven by the overall average slip (over both walls) from
(24). This property was noted by González et al. (2000) in the context of
a Fourier analysis of AC electro-osmotic pumping with periodic slip, but
it holds more generally for any slip profile, as shown by Squires (2008).
Most theoretical studies of slip-driven microfluidic pumping have used this
property to calculate the time-averaged flow rate, without having to solve
for the time-averaged velocity field, but it can only be applied to flat plate
geometries. For three-dimensional electrodes, as discussed below, one must
solve the full Stokes flow to obtain the flow rate.

5 Double-layer models

A microscopic model of the double layer is required to predict how the
capacitance C and voltage ΨD (or Λ) in the Standard Model depend on
experimental conditions, such as the bulk salt concentration and the in-
terfacial chemistry. Most studies of ICEO flow have adopted the classical
two-part model of the double layer (Bockris and Reddy, 1970), which adds a
molecular-scale “compact part” described by boundary conditions between
the surface and the outer “diffuse part” described by continuum equations
for mobile ions. It is typically assumed that the electrokinetic (zeta) poten-
tial ΨD is the same as the diffuse-layer potential drop from the edge of the
compact layer to the bulk solution. This sharp partitioning of the double
layer into two distinct regions is convenient for mathematical modeling, but
not precisely defined. In principle, many features of the molecular compact
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Figure 8. Sketch of the double layer near a blocking electrode at high
voltage. Solvated counterions (green) are crowded in the inner region and
smoothly transition across the outer diffuse region to a dilute solution with
solvated anions (orange). An ion can break free from its solvation shell and
adsorb on the surface (black), thereby moving from the outer Helmholtz
plane (OHP) to the inner Helmholtz plane (IHP). (Reproduced from Bazant
et al. (2009b).)

layer can be reproduced by more realistic continuum models of the diffuse
layer accounting for ion-specific effects, such as steric volume constraints,
dielectric saturation, and the viscoelectric effect Bazant et al. (2009a,b).

The concept of the compact layer was introduced by Stern (1924) to
account for the finite solvated ion size in the simplest possible way, by
positing a distance of closest approach of solvated ions to the surface hS ,
at the “outer Helmholtz plane” (Bockris and Reddy, 1970) shown in Fig. 8.
After separating a layer of thickness hS from the continuum region, it is also
convenient to assign it a reduced permittivity εS < ε to describe dielectric
saturation (aligning of solvent dipoles) in the large normal field in the inner-
most portion of the double layer. Stern’s model effectively adds capacitance
CS = εC/hS in series with the diffuse-layer capacitance CD. The concept
of a “surface capacitance” in series with the bulk solution is quite general
and not limited to a Stern monolayer of algined solvent molecules. It could
also describe a thin dielectric coating on the surface, such as an oxide layer,
contaminant film, self-assembled polymer monolayer, etc.

The resulting simple model,

C

CD
= Λ =

1
1 + δ

(Stern layer or dielectric coating) (26)

has only one fitting parameter δ = CD/CS in (10) to describe the the
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physical properties of double layer (Ajdari, 2000; Green et al., 2002; Bazant
et al., 2004; Levitan et al., 2005; Olesen et al., 2006). Note that the time
scale (8) for double-layer charging is generally reduced by the same factor
as the capacitance, τ/τ0 = C/CD. This model has been widely applied to
ICEO flows, but it is unable to fit detailed experimental measurements in
microfluidic devices without some additional modification of the boundary
conditions, as shown in Fig. 7. It also fails to predict the strong decay
of ICEO flow with increasing concentration and various flow reversals that
can occur at large voltage and/or large frequency (Bazant et al., 2009b).
It is becoming clear that the simplest version of the Standard Model (26)
is incomplete, but simple extensions are being developed that improve the
agreement with experiments, at least in the regime of small diffuse-layer
voltages where the Standard Model has theoretical justification.

Another important role of the compact layer is to mediate the adsorp-
tion/desorption of ions, which react with ionizable sites on the surface and
thus regulate the surface charge. The storage of charge by specific adsorp-
tion of ions introduces an effective “chemical” capacitance of the double
layer in parallel with its “physical” capacitance due to purely electrostatic
effects (van Hal et al., 1996). In the case of deprotonization reactions in
water, the surface effectively buffers the pH of the solution, so this parallel
capacitance is sometimes called the “buffer capacitance” (van der Wouden
et al., 2006). We will more generally refer to it as the “adsorption capaci-
tance” CA.

Pascall and Squires (2010) recently showed that including the adsorption
capacitance is essential to fit experimental data for ICEO flows over metal
electrodes with silica coatings, as shown in Figures 9 and 10. In their
version of the Standard Model, CA is in parallel with CD, and the pair is
in series with CS :

C

CD
=

1 + β/δ

1 + δ + β
, Λ =

1
1 + δ + β

, (ion adsorption on dielectric) (27)

where β = CA/CS is a second dimensionless parameter, taken to be constant
in a given experiment. This model is reasonable for their experiments where
CA represents the deprotonization of silanol groups on the silica coating,
SiOH↔ SiO−+ H+ and CS represents a dielectric layer, much thicker than
the molecular scale, inserted between the surface and the electrolyte.

For bare metal surfaces, however, the situation is different, as sketched in
8. In that case, CA describes desolvated ions adsorbed on the surface at the
“inner Helmholtz plane”, while CS represents the dielectric response of the
Stern solvent monolayer up to the first layer of solvated ions at the “outer
Helmholtz plane” (OHP) (Bockris and Reddy, 1970). In that case, the
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Figure 9. Experimental setup of Pascall and Squires (2010) to measure
ICEO flows at high throughput with different surfaces. A planar gold strip
(50µm) sits perpendicular to a PDMS microchannel (a), along which an
AC field is applied, driving two counter-rotating ICEO rolls in aqueous KCl
solutions, as simulated by the Standard Model (b). Micro-PIV velocity mea-
surements just above the strip (c) recover the predicted ICEO slip velocity
varying linearly with distance from the strip center (d). (Reproduced from
Pascall and Squires (2010))
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Figure 10. Experimental validation of the Standard Model of ICEO flow
using the setup of Figure 9. Measurements over gold strips “controllably
contaminated” with SiO2 films for 987 conditions of varying thickness (33-
100 nm) and frequency ω show poor agreement with a theory that ignores
the SiO2 (a), improved agreement when the known surface capacitance of
the film is included via δ = CD/CS (b), and remarkable collapse when the
adsorption capacitance of SiOH deprotonization is included via β = CA/CS
(c). (Reproduced from Pascall and Squires (2010))
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Stern layer does not separate the adsorbed ions from the surface, as shown
in Fig. 8, so it is more reasonable to place the adsorption capacitance CA in
parallel with the total physical capacitance of CD and CS in series, leading
to

C

CD
=
β

δ
+

1
1 + δ

, Λ =
1

1 + δ
(ion adsorption on bare metal) (28)

in place of (27). It appears that this simple model with constant δ and β
has not yet been applied to ICEO flows, but more sophisticated models of
potential-dependent ion adsorption have recently been developed by Suh
and Kang (2008) and successfully fit to the ACEO pumping data of Green
et al. (2002) by Suh and Kang (2009).

It is important to note that the capacitance of the double layer generally
depends on the interfacial voltage, due to the nonlinear electrochemical re-
sponse of ions in the diffuse layer, as well as adsorption and reaction kinetics
in the compact layer. See Bazant et al. (2009b) for a recent review, in the
present context of induced-charge electrokinetics. For example, long ago,
Grahame (1947) showed that the total differential capacitance of mercury
drop electrodes in aqueous solutions can be well described using the Gouy-
Chapman model for the nonlinear differential capacitance of the diffuse layer
in a dilute symmetric binary electrolyte,

CD(ΨD) =
ε

λD
cosh

(
zeΨD

2kBT

)
(29)

placed in series with a (fitted) nonlinear compact-layer capacitance, which
depends only on the state of charge, but not the bulk salt concentra-
tion (Bockris and Reddy, 1970). The Gouy-Chapman-Stern model as-
sumes a constant compact layer capacitance in series with CD(ΨD) from
(29), so that C(Ψ) = (C−1

S + CD(ΨD)−1)−1 in the RC boundary condi-
tion (13). Such nonlinear effects have also been included in some Standard
Model calculations as the first correction to the linear response theory, but
the most common approximation is a constant capacitance C for the dou-
ble layer, although this can only be rigorously justified for small voltages,
|zeΨD| � kBT .

6 AC forcing

6.1 The complex potential

It is common to study ICEO flows under alternating current (AC) con-
ditions at driving frequency ω. In that case, the Standard Model with con-
stant double-layer capacitance can be placed in a simple time-dependent
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form, following González et al. (2000) and Levitan et al. (2005). We neglect
transient vorticity diffusion within each period and focus only on deriving
the time-averaged flow profile 〈u〉 in a periodic steady state, which satisfies
the steady Stokes equations,

∇p = ∇2〈u〉, ∇ · 〈u〉 = 0 (30)

due to the linearity of the unsteady equations.
We begin by switching to dimensionless variables. We scale length to

the geometrical scale R and time to the RC charging time τ = (C/CD)τ0 in
Eq. (8). The dimensionless frequency is ωτ . For an applied field amplitude
E, we scale the potential to ER, and velocity to Λu0 in Eq. (9). These
scalings contain all the information about the chemical and physical prop-
erties of the system using the definitions above, leaving only one parameter
in the equations, the dimensionless frequency, ωτ . In the remainder of this
section, we abuse notation and use the same variables to represent their
dimensionless counterparts, to keep the presentation simple.

For constant double-layer capacitance, the electrochemical relaxation
problem is linear, so the response to any periodic forcing is simply a lin-
ear superposition of the response to individual Fourier modes at frequency
ω. To solve for a particular Fourier mode, we introduce the dimensionless
complex potential amplitude, Φ, defined by

φ(r, t) = Re
{

Φ(r)eiωt
}

(31)

The real part of the complex amplitude, ReΦ, represents the response which
is in phase with the forcing, while the imaginary part, ImΦ is the out-of-
phase response. Both parts are harmonic functions,

∇2Φ = 0 (32)

subject to the boundary conditions n̂ ·∇Φ = 0 on an insulating surface and

iω(Φ− Φ0) = n̂ · ∇Φ (33)

on an ideally polarizable surface at complex potential Φ0.
More generally, we should write

Φ− Φ0 = Z(ω) n̂ · ∇Φ (34)

where Z(ω) is the (dimensionless) impedance of the double layer (Bar-
soukov and Macdonald, 2005). Our simple capacitor model corresponds
to Z = (iω)−1. Green et al. (2002) and Levitan et al. (2005) have also

29



considered “constant-phase-angle impedance”, Z = (iω)p, with a fitted ex-
ponent p < 1. This model was found to improve the fit of their experimental
data for bare metal surfaces, as shown in Fig. 7(b) (where p = β), and also
helped to fit independent cell impedance measurements. It is difficult to
interpret the data unambiguously, however, since the microscopic justifica-
tion of constant-phase-angle impedance is controversial, and other effects,
such as ion adsorption (see below), were neglected.

Once the time-independent linear boundary-value problem (32)-(33) is
solved for Φ(r), we can solve the linear Stokes equations (30) for the time-
averaged velocity profile, 〈us〉, subject to no-slip on the insulating surfaces
and a time-averaged ICEO slip boundary condition,

〈us〉 = −1
4
∇‖|Φ− Φ0|2 (35)

on the polarizable surfaces, which is linear in the unknown velocity, but
nonlinear in the known potential. Levitan et al. (2005) derived Eq. (35)
with Φ0 = 0 for a symmetric geometry with a cylindrical metal wire at
potential. For the general case of an electrode or metal structure with
Φ0 6= 0, the (dimensionless) oscillating slip velocity is

us = −ΨDE⊥ = Re
{

(Φ0 − Φ)eiωt
}

Re
{
∇⊥Φeiωt

}
(36)

Using Rez = (z + z)/2 and averaging over a time period, we find

〈us〉 =
1
4
[
(Φ0 − Φ)∇⊥Φ + (Φ0 − Φ)∇⊥Φ

]
(37)

The desired result (35) follows for a metal surface whose potential is constant
in space (but not time), so that ∇⊥Φ0 = 0.

6.2 Analytical example: Metal sphere in an AC field

To demonstrate the ease of applying the our general mathematical frame-
work, we derive the formula of Murtsovkin (1996) for the frequency-dependent
flow around an ideally polarizable colloidal sphere in a uniform AC field
(neglecting surface conduction). Many other examples appear in the litera-
ture cited above and in recent reviews (Bazant et al., 2009b; Squires, 2009;
Bazant and Squires, 2010), but this canonical example serves to illustrate
the basic steps in any analysis of ICEO flow with the Standard Model.

We work with dimensionless variables in spherical coordinates (r, θ, ϕ)
with length scaled to the sphere radius R and voltage scaled to E∞/R,
where E∞ is the uniform field strength far from the sphere. By symmetry
the solution depends only on (r, θ), and we can set the sphere potential to
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zero Φ0 = 0 relative to the background applied potential. The solution to
Laplace’s equation (32) satisfying the far field boundary condition,

E = −∇Φ ∼ cosωt ẑ, r →∞ (38)

has the form
Φ(r, θ) = −r cos θ

(
1 +

p

r3

)
(39)

where the first term represents the uniform background field and the second
the induced dipole on the particle and its screening cloud. The (dimension-
less) complex induced dipole moment,

p =
1− iω
2 + iω

, (40)

is obtained by imposing the RC boundary condition (33). Consistent with
the simple physical arguments in Fig. 6, the metal particle behaves like a
bare conductor at high frequency, limω→∞ p = −1, and like an insulator at
low frequency, limω→0 p = 1/2, due to complete screening by the induced
double layer. The former is due to electron charge separation in the particle,
required to make the particle an equipotential surface with a normal electric
field, while the latter is the result of ionic charge relaxation in the double
layers, which fully expels the normal electric field.

The complex dipole moment (40) captures the time-dependent polar-
ization of the particle and its screening cloud in response to the AC forc-
ing (Dukhin and Shilov, 1980). The real part is the in-phase polarization,

Re p =
2− ω2

4 + ω2
(41)

which transitions from 1/2 at low frequency to −1 at high frequency, and
passes through zero at ωc =

√
2. At this critical frequency, only the uniform

background electric field remains, as if the particle were “invisible” in phase
with the AC forcing. The out-of-phase polarization

Im p = − 3ω
4 + ω2

(42)

is reaches a maximum at ωc, due to capacitive charging of the double layers
on opposite sides of the particle, carried by ionic currents passing through
the bulk electrolyte resistance to complete an equivalent RC circuit (Si-
monov and Shilov, 1977). These time-dependent polarization phenomena
are also seen in more complicated geometries, as illustrated in Fig. 11 below.
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The time-averaged electro-osmotic slip profile on the sphere is easily
calculated from (35) as

〈uθ(1, θ)〉 =
(

9
4

)
sin 2θ
4 + ω2

= Us(ω) sin 2θ (43)

which drives a quadrupolar Stokes flow with angular and radial components

〈uθ(r, θ)〉 =
Us(ω) sin 2θ

r4
(44)

〈ur(r, θ)〉 =
Us(ω)(1 + 3 cos 2θ)

2

(
1
r4
− 1
r2

)
(45)

respectively.
As in Fig. 6, the long-ranged part of the ICEO flow, decaying as r−2, is a

radial flow that sucks fluid in toward the poles of the sphere and ejects fluid
away from the equator. The flow has a longer range than classical electro-
osmotic flow, decaying as r−3, although still a shorter range than forced
electrophoresis (Fig. 3(a)), decaying as r−1. Gamayunov et al. (1986) first
calculated this flow for ω = 0 and noted how the long-range part dominates
the interaction between two polarizable colloidal particles, causing them to
move together (or apart) if aligned parallel (or perpendicular) to the field
axis. The same anisotropic hydrodynamic interactions due to ICEO flow
are also evident in the Brownian-dynamics simulations of Saintillan et al.
(2006a) and the experiments of Rose and Santiago (2006) for rod-like metal
particles in a uniform electric field.

6.3 Numerical example: Metal cylinder in a microchannel

Microfluidic devices involved bounded channel geometries, which make
analytical progress difficult in most cases. (Exceptions include simple ge-
ometries in two dimensions, amenable to conformal mapping analysis fol-
lowing Yossifon et al. (2006).) Nevertheless, the formalism above, based
on the Standard Model with AC forcing, is still useful to reduce the full,
time-dependent, nonlinear equations to a relatively simple time-independent
form, involving only the linear Laplace and Stokes equations. Aside from
dealing with the non-standard boundary conditions, it then becomes straight-
forward to solve the problem using well known algorithms or common soft-
ware packages.

An example of the numerical solution of the model using the Finite
Element Method is shown in Figure 11, using the package, FEMLAB, a
precursor of COMSOL Multiphysics. The simulations describe the ICEO
flow around an ideally polarizable metal cylinder lying on the floor of a flat
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Figure 11. Finite-element numerical solution of the Standard Model for
AC forcing from Section 6.1 for the experimental geometry of Levitan et al.
(2005), consisting of a 100-micron diameter metal cylinder in a straight
microchannel with an longitudinal applied field. Top row: electric field
lines in phase with the AC forcing (gradient of the real part of the complex
potential). Middle row: field lines 90◦ out of phase with the forcing (gradient
of the imaginary part). Bottom row: streamlines of the time-averaged ICEO
flow. Left column: Zero frequency (DC, steady state). Right column: Unit
dimensionless frequency ωτ = 1, where the AC period equals the “RC time”
of the equivalent circuit. A slice of the computed flow profile in this figure
is compared to experimental data in Figure 7(b) above. (Simulations by Y.
Ben from Levitan et al. (2005).)
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microchannel, whose height is twice the cylinder’s diameter. An AC elec-
tric field is applied along the microchannel, perpendicular to the orientation
of the cylinder. This is the geometry of the experiments of Levitan et al.
(2005), which were the first to demonstrate ICEO flow around an electri-
cally floating object (whose voltage is not controlled as an electrode) in a
microfluidic device. This study was also able to make the first quantita-
tive comparison of the theoretical flow profile, computed numerically, with
experimental data, taken by particle-image velocimetry, as shown in Fig. 7.

The simulations in Fig. 11 nicely illustrate the physical principles in
Fig. 6 and show similar frequency-dependent behavior as the analytical
solution of the previous section:

• At low frequency (ωτ � 1), the AC period is long enough to allow
complete charging of the double layer in phase with the forcing. As a
result, the in-phase electric field (Re∇Φ) resembles that of an insulator
in a DC field, going around the cylinder, while the out-of-phase field
(Im∇Φ) is negligible. The time-averaged ICEO flow is directed from
the poles of the cylinder toward the equator, but due to the nearby
no-slip wall, only half of the quadroplar flow for an isolated cylinder
(Fig. 6) is visible. The bounded geometry also causes the flow to
recirculate in two counter-rotating vortices.

• At the transition frequency (ωτ = 1), the AC period is in resonance
with the relaxation of the double layer. As a result, the in-phase elec-
tric field is almost unaffected by the presence of the cylinder, and the
out-of-phase field lines show the induced dipole with two lobes emanat-
ing from the cylinder. The time-averaged flow now shows the appear-
ance of secondary, small vortices completing a quadrupolar structure,
due to incomplete charging of the double layers, which has not had
enough time to proceed between the poles and the wall.

• At high frequency (ωτ � 1, not shown), there is not enough time for
double-layer charging, and the in-phase field resembles that of a per-
fect conductor in a DC field, where the cylinder remains an equipoten-
tial surface, even outside the double layers. Since there is little charge
relaxation, the out-of-phase field and ICEO flow are negligible.

These three frequency regimes are generally present for all ICEO flows
around a polarizable surface, driven by a weak AC field in the electrolyte.
More complicated microfluidic geometries can lead to a distribution of charg-
ing time scales, and thus additional frequency regimes, where ICEO flows
develop in different locations for different ranges of frequencies.
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Figure 12. Field-depenent electrophoretic velocity U of an ideally polar-
izable, charged sphere of radius R with thin double layers in a background
field E. (a) In small fields, the mobility µep = U/E is a constant, set by the
uniformly distributed double-layer charge. (b) In large fields, E � kT/eR,
the dipolar induced charge overwhelms the pre-existing uniform charge and
alters the mobility, µep(E), if cations and anions do not condense at the
same density and must redistribute to conserve total charge. (Reproduced
from Bazant et al. (2009b).)

7 Electrophoresis of ideally polarizable particles

7.1 Field-dependent mobility and aperiodic electrophoresis

A well-known prediction of the classical theory of electrophoresis is that
the mobility (7) only depends on the total charge (or average zeta potential),
in the limits of thin double layers, small charge, and weak fields (Hunter,
2001; Anderson, 1989). This remarkable result holds for any size or shape,
even if the particle is polarizable and acquires a non-uniform charge (or
zeta) profile in response to the applied field. It is not widely appreciated,
however, that this follows from the assumption of linear response of the
double layer with a constant capacitance, which reduces (14) to (16)

In the 1970s, S. S. Dukhin’s group was perhaps the first to recognize that
the electrophoretic mobility of polarizable particles must generally depend
on the electric field (Dukhin and Dukhin, 2005). In a series of Russian
papers, which have yet to gain widespread attention, they predicted pertur-
bations of the electrophoretic mobility as, ∆µep ∝ E2, and thus nonlinear
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electrokinetic motion, ∆U ∝ E3, which they have come to call the “Stotz-
Wien effect”.

One general mechanism for nonlinear electrophoresis in steady DC fields,
first predicted by A. S. Dukhin (1993), is a voltage-dependent double-layer
capacitance. In the limit of weak applied electric fields, E � kT/eR, he
showed that an ideally polarizable sphere with equilibrium zeta potential ζ0
and radius R has a field-dependent DC electrophoretic mobility,

µep(E) =
U(E)
E
∼ ε

η

(
ζ0 −

3
8
C ′D(ζ0)
CD(ζ0)

(ER)2 + . . .

)
(46)

where ζ0 is the surface averaged diffuse layer voltage, 〈ΨD〉. This result
follows directly from the Standard Model formalism developed above, by
applying perturbation methods to Eq. (14). The same equations could be
used to analyze the frequency dependence and shape dependence of this
effect, but apparently this has not yet been done.

Dukhin’s correction (46) has mainly been applied in the context of
the Gouy-Chapman model, Eq. (29), which predicts decreased mobility,
∆µep < 0 since dCD/dψ > 0 for ζ0 > 0. It has also recently been derived
as the small field limit of a general formula for thin double layers with the
Gouy-Chapman model by Yariv (2008). The same formula was also derived
by Bazant et al. (2009b) as the dilute limit of a still more general theory
that also accounted for the significant influence of finite ion sizes at high
voltage (see below).

The basic physics of this nonlinear effect is illustrated in Fig. 12. If the
double-layer voltage varies enough to cause spatial variations in its differen-
tial capacitance, then counterions aggregate with varying density (per area)
around the surface of the particle upon polarization by the applied field,
and this nonlinearity breaks symmetry in polarity with respect to the mean
voltage. For example, if the positively charged part of the diffuse layer (rel-
ative to the mean charge) is less dense (e.g. due to larger or less charged
cations than anions), it will cover more of the surface than the negatively
charged part; cations are then more likely to dominate in regions of large
tangential field near the equator and thus make an enhanced contribution
to the electrophoretic mobility of the particle, regardless of its true surface
charge.

Dukhin and Dukhin (2005) have proposed a general means to exploit of
field-dependent mobility of colloidal particles for separations by “aperiodic
electrophoresis”. The basic idea is to use an “unbalanced AC field”, whose
time-average is zero, 〈E〉 = 0, but whose higher moments are nonzero.
(The same concept, without reference to a particular mechanism for field-
dependent mobility, apparently first appeared in a 1992 U.S. patent of Chi-
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UICEP

Figure 13. (a) Induced-charge electro-osmotic (ICEO) flow around a sym-
metric, uncharged, ideally polarizable particle (from Bazant and Squires
(2004)); (b) An example of ICEO flow and the resulting induced-charge
electrophoretic (ICEP) velocity for an asymmetric shape (from Ref. 4).
Due to broken left-right symmetry, the unbalanced ICEO flows cause the
particle to move perpendicular to the electric field, which would not be
possible due to electrostatic forcing alone. (Reproduced from Squires and
Bazant (2006).

menti, Ser. No. 5,106,468.) If 〈E3〉 6= 0, then Dukhin’s first correction to
the mobility (46) survives time averaging and leads to separation of parti-
cles with different polarizabilities. An example of such an unbalanced field
is

E = E1 sin(ωt) + E2 sin(2ωt+ ϕ) (47)

where ϕ is a phase shift, which can be conveniently varied to control the
time-averaged motion of a particle. Analyzing and exploiting this effect in
practical separations would be an interesting direction for research.

7.2 Induced-charge electrophoresis

Mobility perturbations for spherical particles only hint at the rich phe-
nomena that can arise in the electrokinetic motion of polarizable particles.
Murtsovkin (1996) and co-workers were the first (and to date, perhaps the
only ones) to experimentally observe the nonlinear electrokinetic motion of
homogeneous particles in a uniform AC field in directions oblique to the
field axis. They studied irregular quartz particles moving in water near the
wall of a cuvette in surprising directions apparently set only by the particle
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Figure 14. (a) Mechanism for ICEP torque on a rod-like, polarizable par-
ticle in a uniform electric field, which enhances dielectrophoretic (DEP)
torque. (b) Possible ICEP velocities for asymmetric shapes, once their long
axes have aligned with the field.

shape. If a particle rotated enough by Brownian motion when the field was
off, it could be seen to reverse direction when the field was turned back
on. The velocity scaled with the square of the field amplitude and increased
with the particle size. No theory was proposed for this phenomenon, in part
since it was only observed near the wall and not in the bulk solution.

Bazant and Squires (2004) recently predicted that polarizable particles
in the bulk can undergo essentially arbitrary translation and/or rotation
by “induced-charge electrophoresis” (ICEP) in a uniform electric field, as
long as they possess appropriate broken symmetries (Squires and Bazant,
2006), such as non-spherical shapes and/or non-uniform surface properties,
e.g. due to coatings of varying polarizability. The former cases begin to
explain Murtsovkins early observations and beg for new experiments to test
a variety of specific theoretical predictions, discussed below. The latter
cases, first observed by Gangwal et al. (2008), are described in the next
section on heterogeneous particles.

For homogeneous particles, the canonical example is that of an un-
charged, ideally polarizable particle of irregular shape in a weak, uniform
DC field. In that case, the basic velocity scale U0 is given by Eq. (9),
where R is a characteristic radius scale. Using the Standard Model (with
constant double-layer capacitance), Yariv (2005) general expressions for the
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translational and rotational velocities, respectively,

Ei = U0

∑
jk

CijkEiEj (48)

Ωi =
U0

a

∑
jk

DijkEjEk (49)

where C is a dimensionless tensor and D a pseudo-tensor, each expressible as
surface integrals involving the bulk potential, just outside the double layer.
Squires and Bazant (2006) treated a number of specific examples by solving
the Standard Model equations analytically using boundary perturbation
methods for nearly symmetric objects, and they developed simple principles
to predict the motion of a particular shape.

The basic mechanism of ICEP for irregular particles is shown in Fig-
ure 13. As shown in (a) and described above, the ICEO flow around a
symmetric particle is quadrupolar, drawing fluid in along the field axis and
ejecting it radially. If the particle has broken left/right symmetry as shown
in (b), then the radial flow is stronger on one side than the other, leading
to ICEP motion perpendicular to the field. Such unusual motion cannot
result from electrostatics alone, since there is no charge distribution which
can experience an electrostatic force transverse to a uniform electric field.
Similarly, breaking only fore/aft symmetry produces ICEP motion along
the field axis, and combinations of these asymmetries can cause motion in
an arbitrary direction.

ICEP can also contribute to the rotation of polarizable particles with
elongated shapes, as illustrated in Figure 14(a). It is well known that
DEP causes such particles to align with the axis of a uniform field, due to
electrostatic torque on the induced dipole. At low AC frequency (or in the
DC limit), if the field persists in one direction long enough for ICEO flow
to occur, then ICEP causes a rotational velocity with a basic scale U0/R
that is independent of the particle size but sensitive to its shape,

Ω ∝ εE2

η
(50)

This scale happens to be the same as that of the DEP rotational velocity,
so ICEP rotation is easily overlooked and mistakenly interpreted as DEP.
It is possible, however, to clearly distinguish the two effects, as recently
demonstrated by experiments of Rose and Santiago (2006) and simulations
of Saintillan et al. (2006a) involving rod-like, metal particles in uniform AC
fields. See Figure 15(a).
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(c)

Figure 15. Experiments on cylindrical silver particles (.318µm diameter,
6µm length) sedimenting in de-ionized water by gravity alone (a) and in a
100 Hz, 100 V/cm AC field aligned with gravity (b). (Reproduced from Rose
and Santiago (2006).) The experimental distribution of angles in different
fields is well described by the Standard Model, taking into account both
ICEP rotation and DEP electrostatic torque. (c) Brownian-dynamics simu-
lations show the suspension of sedimenting rods can be stabilized by ICEO
flows upon increasing the field strength (H). (Reproduced from Saintillan
et al. (2006b).)

More complicated asymmetric particles can undergo essentially arbitrary
ICEP motion, even in a uniform field. Even in the context of the simple
model above, these effects have not yet been fully analyzed, but some general
principles have been identified by Squires and Bazant (2006). A striking
example is shown in Figure 14(b), which illustrates how arrow-like particles
of slightly different shapes can move in perpendicular directions in a uniform
field, depending on their broken symmetries: On the left, a short, fat arrow
rotates to align its long axis with the field and then moves perpendicular
to the field, toward its pointed end; on the right, a long, thin arrow also
rotates to align its long axis, but then moves parallel to the field, toward
its blunt end. Such predictions are quite recent, however, and remain to be
tested experimentally.

A telltale sign of ICEP is the presence of non-uniform ICEO flow around
the particle, which leads to complex hydrodynamic interactions with other
particles and walls. For example, the basic quadrupolar flow in Figure
13(a) causes two symmetric particles to move toward each other along the
field axis and then push apart in the normal direction, as first shown by
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Gamayunov et al. (1986). A finite cloud of such particles would thus become
squashed into a disk-like spreading pancake perpendicular to the field axis
(Squires and Bazant, 2004). Hydrodynamic interactions between particles
due to ICEO flows are also able to stabilize a suspension of sedimenting
rods, above a critical field strength, as shown in Fig. 15(c) from the work
of Saintillan et al. (2006b).

The basic ICEO flow field can also cause particles to be repelled from
insulating walls (perpendicular to the field), as noted by Zhao and Bau
(2007a), or attracted toward electrodes (normal to the field), but these
are only guiding principles. Broken symmetries in particle shape or wall
geometry, however, can cause different motion due to combined effects of
DEP and ICEP, even opposite to these principles, and the interactions of
multiple particles can also be influenced strongly by walls. Such effects have
not yet been fully explored in experiments or simulations.

7.3 Dipolophoresis

In the 1970s, Shilov and Estrella-Lopis first recognized that electrohydro-
dynamics (what we now call ICEO) can contribute to the motion of particles
in low-frequency, non-uniform electric fields (Simonova et al., 2001), in ad-
dition to the classical effect of DEP, although the effect has not been studied
much in theory or experiment. Shilov and Simonova (1981) analyzed the
problem of an ideally polarizable sphere in a uniform field gradient and
made the remarkable prediction that the particle does not move. Due to
equal and opposite motions by DEP and ICEP, the sphere levitates in the
field while driving a steady ICEO flow, but this is a unique case.

Squires and Bazant (2006) showed that broken symmetries in the field
gradient and/or the particle shape generally cause a particle to move, due
to subtle imbalances between ICEP and DEP. Both effects have the same
basic scaling (2). Moreover, as shown in Figure 16, the DEP force and ICEP
velocity tend to act in opposite directions, at least for the case of an ideally
polarizable particle with thin double layers in a non-uniform electric field
(of arbitrary complexity). Similar to the case of rotational motion discussed
above, ICEP can be easily overlooked and the observed translational motion
attributed solely to DEP, if it is along the field gradient. Experiments clearly
separating ICEP and DEP effects are still lacking, and an opportunity exists
to exploit these combined effects for manipulating polarizable colloids, once
the effects are better understood.
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(a) (b)

(c) (d)

(e) (f)

Figure 16. Analytical solutions of the Standard Model for dipolophoresis
in two dimensions. Electric fields (a,c,e) and ICEO flows (b,d,f) are shown
around ideally polarizable cylinders in inhomogeneous elds. Regardless of
the complexity of the multipolar background electric field distribution, the
DEP force and ICEO velocity are always in opposite directions, as indicated.
(Adapted from Squires and Bazant (2006).)
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8 Electrophoresis of heterogeneous particles

In the previous section, we considered homogeneous polarizable particles,
allowing for broken symmetries in the particle shape, which lead to induced-
charge electrophoretic motion. In this section, we also allow for nonuniform
surface properties. In order to appreciate the nonlinear effects of ICEP due
to variable polarizability, we first review the possible types of linear response
of heterogeneous particles with fixed surface charge.

8.1 Linear electrophoresis

The electrokinetic motion of colloidal particles and molecules in solution
in response to applied electric fields can be rather complicated, so many
approximations have been made in theoretical treatments. The classical
theory of electrophoresis, dating back over a century to Smoluchowski, con-
siders homogeneous particles, which are (i) non-polarizable, (ii) spherical,
(iii) uniformly charged, (iv) rigid, (v) much larger than the thickness of the
electrical double layer, (vi) in an unbounded fluid, very far from any walls
or other particles, and subjected to (vii) uniform and (viii) weak fields, ap-
plying not much more than the thermal voltage (kT/e=25mV) across the
particle in (ix) dilute electrolytes. Under these assumptions, the particles
velocity is linear in the applied electric field, U = µepE, where the elec-
trophoretic mobility, µep = εζ/η, as noted above. In Smoluchowski’s theory,
the zeta potential is equal to the voltage across the double layer, which is
proportional to the surface charge at low voltage.

Much less attention has been paid to the electrokinetic motion of het-
erogeneous particles, which have non-spherical shape and/or non-uniform
physical properties. By far the most theoretical work has addressed the case
linear electrophoresis of non-polarizable particles with a fixed, equilibrium
distribution of surface charge (Anderson, 1989). Some examples are shown
in Figures 17 and 18. In that case, relaxing only assumption (ii) leads to
the classical prediction that the mobility of a particle of uniform compo-
sition (uniform zeta) is independent of the shape and size of the particle.
Perhaps it was this insensitivity to geometry that led to the common be-
lief that the electrophoretic mobility measures some kind of average surface
charge, until Anderson (1984) was the first to clearly point out that this is
generally not the case. By carefully relaxing only assumption (iii), he pre-
dicted that a sphere of non-uniform zeta potential can move in a different
direction from the field and that its mobility is not simply related to its
total charge. Generalizing work of Fair and Anderson (1992) on doublet
particles, Long and Ajdari (1998) showed that relaxing both (ii) and (iii)
leads to even more complicated behaviour, including particles that rotate
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Figure 17. Linear electrophoretic motion of spherical heterogeneous par-
ticles with non-uniform fixed surface charge and thin double layers. (a)
A dipolar charge distribution will rotate to align its dipole with the field,
driven by both electrostatic torque and electro-osmotic flows (indicated).
(b) A quadrupolar charge distribution can translate either perpendicular or
parallel to the electric field, depending on its orientation.

continuously or translate perpendicular to a uniform DC field. Relaxing
assumption (iv), the electrophoresis of flexible heterogeneous particles has
also been studied, such as DNA molecules connected to beads (Long and
Ajdari, 1996).

It is tempting to think of the electrophoretic mobility of a heteroge-
neous particle as a measure of its average charge, when in fact it has a
nontrivial dependence on the spatial distribution of surface charge. This is
clearly demonstrated by a counter-example of Long and Ajdari (1996), mo-
tivated by chain-like polyelectrolytes, such as DNA molecules. Consider a
dumbbell-shaped particle consisting of two uniformly charged spheres with
electrophoretic mobilities µ1 and µ2 and hydrodynamic drag coefficients ξ1
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(a) (b)

Figure 18. Examples of unusual linear electrophoretic motion of heteroge-
neous particles with asymmetric shapes. (a) A dumbbell consisting of two
oppositely charged spheres of connected by a rigid rod rotates to align as
shown and moves in the direction of the electric field (positive mobility),
even though the total charge is negative, if the positive sphere is smaller.
(b) A particle of zero total charge with four-fold and eight-fold perturba-
tions in shape and surface charge, respectively, moves perpendicular to the
electric field, regardless of its orientation (Adapted from Long and Ajdari
(1998).)

and ξ2 , held together by an uncharged, rigid rod. As a first approximation,
the rod has negligible drag and is long enough that hydrodynamic and elec-
trostatic interactions between the spheres can be neglected. In a uniform
electric field, the dumbbell rotates to a stable configuration aligned with
the field axis, as shown in Figure 18(a) and moves a velocity, U = µepE,
where µep is the overall mobility. In order for each particle (i = 1, 2) to
move at the same velocity, the rod must exert a force, F i = ξi(U − µiE).
Force balance on the rod, F 1 = −F 2, then yields the mobility

µep =
ξ1µ1 + ξ2µ2

ξ1 + ξ2
∝ Q1

R1
+
Q2

R2
(51)

which is the drag-weighted average of the two mobilities. In the last step, we
have used Stokes formula, ξi = 6πηRi, and assumed that the local mobility
(slip coefficient) is proportional to the surface charge density, µi ∝ Qi/4πR2

i ,
where Qi is the total charge of each sphere. We see that, depending on the
geometry, the mobility can have either sign, regardless of the sign the total
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charge, Q1 + Q2. For example, as shown in Fig. 18(a), a small sphere of
charge Q > 0 connected to a larger sphere of charge −2Q can have a positive
mobility, even though its total charge is negative, as long as R2 > 2R1.

Variations in charge density and shape can lead to even more surpris-
ing transverse electrophoretic motion, which departs from the field axis. In
linear electrophoresis, a spherical particle of non-uniform surface charge (or
zeta potential) can move perpendicular to the field, but only for certain
orientations; it can also rotate, but only transiently to align its dipole with
the field axis. These behaviors are shown in Fig. 17. If both the surface
charge and the shape are perturbed, however, then these restrictions do not
apply, as noted by Long and Ajdari (1998). Figure 18(b) shows a cylindri-
cal particle of zero total charge, which always moves perpendicular to the
electric field, regardless of its orientation. It has four-fold shape perturba-
tion and eight-fold surface charge perturbation, such that each bump on
the surface has positive surface charge to the left and negative to the right.
By constructing appropriate chiral perturbations of the shape and surface
charge, it is also possible to design heterogeneous particles, which rotate
continuously around a particular axis without translating, for a particular
direction of the electric field.

8.2 Induced-charge electrophoresis

The preceding examples involve non-polarizable objects with fixed sur-
face charge distributions, which do not respond to the electric field. The
resulting electrophoretic motion is linear in the field amplitude and vanishes
for AC fields. The electrokinetic motion of polarizable particles, however,
has nonlinear field dependence due to the phenomenon of induced-charge
electro-osmosis (ICEO), where the field acts on induced diffuse charge in the
electrical double layer. At frequencies low enough for capacitive charging
of the double layer (typically < 10 kHz), the time-averaged motion in an
AC field is resembles that in a DC field. In the canonical example of an
uncharged metal sphere in a uniform field, the ICEO flow is quadrupolar,
drawing in fluid along the field axis and expelling it radially, but there is no
net motion.

Motivated by the examples from linear electrophoresis above, Bazant and
Squires (2004) pointed out that broken symmetry in ICEO flow generally
causes particle motion, and coined the term, induced-charge electrophore-
sis (ICEP). Examples of broken symmetries include particles with irregular
shapes and/or non-uniform physical characteristics, as well as non-uniform
applied fields. In the latter case, ICEP occurs at the same time as dielec-
trophoresis (DEP), although the combined effects of ICEP and DEP on
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Figure 19. Induced-charge electrophoresis of Janus particles, illustrated
for the case of metal partially coated with insulating thin films [from (9)].
(a) Stable orientation in a uniform field, showing induced charge and slip
velocities on the metallic side, resulting in motion toward the insulating
end, perpendicular to the field. (b) Streamlines of ICEO flow. (c) An ICEP
pinwheel, consisting of three Janus particles connected by rigid rods, which
tilts to align and then spins continuous around the field axis.

heterogeneous particles remain to be explored. Besides persisting in AC
fields, ICEP also depends much more sensitively on particle shape and sur-
face properties than does linear DC electrophoresis. Cases of non-spherical
particles with uniform polarizability are discussed above, so we now focus
on ICEP due to heterogenous surface polarizability.

The canonical example of Squires and Bazant (2006) is that of a Janus
particle with one metallic and one insulating hemisphere, using the stan-
dard low-voltage model for electrokinetic motion of polarizable particles.
In response to an applied electric field, the Janus particle rotates to align
the interface between the two hemispheres with the field axis, due to both
ICEP (electrohydrodynamics) and DEP (electrostatics). At the same time,
for any orientation, the particle translates in the direction of its insulating
end, propelled by ICEO flow on the metallic end, with a velocity

U =
9εΛRE2

64η
(52)

In particular, once the particle aligns in the field, it continues to move
perpendicular to the electric field, with an azimuthal angle set by its initial
orientation.

All the generic features of the dynamics still hold if the particles insulat-
ing end is smaller or larger than the metallic end, since it is determined by
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Figure 20. Experimental observation of induced-charge electrophoresis of
metallo-dielectric Janus particles in a uniform 10 kHz AC field. (a) Sequence
of micrographs demonstrating motion transverse to the field in the direction
of the dielectric (light) end propelled by the metallic (dark) end, where the
velocity increases with the particle size as in Eq. (52). (b) Velocity versus
field amplitude squared at different bulk concentrations of NaCl. (Adapted
from Gangwal et al. (2008).)

the broken symmetry. Motion transverse to a uniform AC field cannot have
any contribution from DEP, but it is easily understood by considering the
ICEO flow in Figure 19(a). After alignment in the field, part of the usual
quadrupolar ICEO flow is suppressed on the insulating end. The remain-
ing ICEO flow over the metallic end sucks in fluid along the field axis and
pushes it outward from the metallic pole, as shown in Figure 19(b), which
propels the particle toward the insulating pole.

This example suggests how to design particles that spin continuously
in a uniform field, as noted by Squires and Bazant (2006). Since a Janus
particle always translates towards its less polarizable end, a set of three
Janus particles connected by rigid rods can be set into continuous motion
like a pinwheel, if connected as shown in Figure 19(c). This ICEP pinwheel
responds to any DC or AC electric field (of sufficiently low frequency) by
tilting to align the particle plane perpendicular to the field and then spinning
around the field axis until the field is turned off. Perhaps such particles could
be used to sense electric fields or to apply torques to attached molecules or
cells.

Transverse ICEP motion of metallo-dielectric Janus particles in a uni-
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(c)

Figure 21. Wall interactions in induced-charge electrophoresis. Dominant
hydrodynamic interactions between a homogeneous ideally polarizable par-
ticle and (a) an insulating wall and (b) an unscreened, ideally polarizable
wall in a parallel electric field. (c) Theory by Kilic and Bazant (2007) of the
interaction of a metallo-dielectric Janus particle and a insulating wall, as in
the experiments of Gangwal et al. (2008). The particle rotates to align its
equatorial plane with the field, with an arbitrary azimuthal angle. Asteady
ICEO flow sucks in fluid along the field axis (perpendicular to the page) and
ejects it radially on the metallic side, which causes the particle to rotate to
face the wall, due to a (mostly) hydrodynamic torque T . Near the wall,
electrostatic torque can balance the viscous torque to enable motion par-
allel to the surface without contact, while maintaining a steady tilt angle.
(Adapted from Kilic and Bazant (2007).)
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form AC field has recently been observed by Gangwal et al. (2008). Consis-
tent with theoretical predictions in Figure 19, the particles align and trans-
late perpendicular to the field in the direction of the less polarizable (light)
end, as shown in Figure 20. Larger particles move faster than smaller ones,
as expected from Eq. (52), and the velocity scales like the field squared in
dilute NaCl solutions. The ICEP velocity decays at higher concentrations,
extrapolating to zero around 10 mM. The same concentration dependence is
also observed in AC electro-osmotic flow and other nonlinear electrokinetic
phenomena, which, although poorly understood, further reinforces that the
motion is indeed due to ICEP.

Current research is focusing on how heterogeneous particles undergoing
electrokinetic motion due to ICEP and DEP interact with walls and other
particles. An interesting feature of the experiments in Gangwal et al. (2008)
is that the Janus particles are attracted to nearby glass walls, and the
transverse motion is also observed close to the walls, where the theory of
Squires and Bazant (2006) does not strictly apply. This behavior is perhaps
surprising because, according to the Standard Model, homogeneous particles
should be repelled from insulating walls (and attracted to polarizable walls)
by ICEO flows (Zhao and Bau, 2007a). Kilic and Bazant (2007) show that
this attraction can be understood as a consequence of ICEP torque, which
redirects the Janus particle toward a nearby wall and causes it to tilt while
translating transverse to the field, as shown in Fig. 21

A major motivation to develop this subject is the possibility of new appli-
cations, opened by advances in microfluidics and nanotechnology. In prin-
ciple, heterogenous particles of specific irregular shapes and non-uniform
electrical and/or chemical properties can be designed and fabricated for
specific applications. The complex electrokinetic motion of these particles
could potentially be used for separation or sample concentration in chemical
or biological assays, self-assembly in the fabrication of anisotropic materials,
directional transport of attached cargo, electric-field sensing and applying
forces and torques to molecules or cells.

9 Induced-charge electro-osmotic mixing

Bazant and Squires (2004) proposed the use of ICEO flow around metal-
lic microstructures (posts, surface patterns, etc.) for microfluidic mixing,
switching, and pumping. The potential advantages of such elements in a mi-
crofluidic system include low power, programmability, and local flow control.
As shown in Fig. 22, the basic physics of ICEO flow immediately suggests
a number of designs involving metal posts or surface structures placed in
microchannels with applied electric fields. Theoretical work using the Stan-
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Figure 22. Simple microfluidic devices involving fixed metal posts or sur-
face structures (shaded areas) driven by weak AC or DC fields applied at
nearby microelectrodes (cross-shaded areas). Broken symmetries, such as
triangular shapes, can lead to transverse flows, and sharp corners can en-
hance local ICEO flows in electrokinetic jets. (Reproduced from Bazant and
Squires (2004).)

dard Model has shown that ICEO-based micro-mixing can be enhanced by
broken symmetries (Squires and Bazant, 2006) or by the introduction of
sharp corners in dielectric channel side walls (Yossifon et al., 2006).

In order to achieve rapid, programmable mixing of the fluid and any
suspended particles, temporal modulation of the applied field can be used
to produce chaotic streamlines (Zhao and Bau, 2007b). This concept is il-
lustrated in Fig. 23. The basic idea is to switch between different asymmet-
ric patterns to produce chaotic trajectories. Even if the underlying flows,
u(r, t), satisfy the linear Stokes equations and can be superimposed, the
trajectories of passive tracer particles, ri(t), generally satisfy a nonlinear
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Figure 23. Simulation of an ICEO chaotic mixer with four electrodes on
the side walls of a chamber (not shown) driving time-dependent ICEO flows
around an off-center metal post. Left: by applying the field either north-
south (top) or east-west (bottom), two different flows can be generated.
Right: by alternating between these flows, chaotic advection be achieved, as
evidenced by the stroboscopic plots (Poincaré section) of a particle, showing
the transition from a nearly periodic loop (top) to a chaotic streamline
(bottom) with increasing time. (Adapted from Zhao and Bau (2007a). )
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Figure 24. Experimental observation of induced-charge electro-osmotic
mixing by Harnett et al. (2008), consistent with the theoretical predic-
tions of Bazant and Squires (2004), sketched in Fig. 22c. Two colored fluid
streams of 0.1 mM KCl flowing at 0.1 µl/min from left to right undergo
convective mixing by an array of asymmetric metal posts in a transverse
AC field (6 Vpp, 100 Hz applied by electrodes above and below, separated
by the channel width 200µm). Images from experiments (a,c) and simula-
tions of advection-diffusion in ICEO flow in the same geometry (b,d) show
the distribution of red and green fluorescent beads after loading (a,b) and
during mixing (c,d). (Reproduced from Harnett et al. (2008))

ordinary differential equation,

dri
dt

= u(ri(t), t) (53)

which can have chaotic solutions, suitable for mixing. The same principle of
chaotic advection was originally developed for passive microfluidic mixing
by pressure-driven flows in grooved channels (Stone et al., 2004).

The first microfluidic demonstration of ICEO flow around a metal cylin-
der by Levitan et al. (2005) showed steady vortices, but did not study
mixing. In 2008, two groups reported the first experimental demonstra-
tions of microfluidic mixing by ICEO flow around metallic microstructures,
effectively reducing to practice the theoretical predictions of Ref. Bazant
and Squires (2004). (i) Harnett et al. Harnett et al. (2008) integrated
an array of gold-coated posts of triangular cross section in a microchan-
nel with electrodes applying a low-frequency AC field on the side walls,
as shown in Fig. 24. The post-array mixer was placed at the junction of
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two Y-channels, and programmable on/off mixing of two different streams
of dilute electrolytes was demonstrated. Good agreement with theoretical
predictions was noted, albeit with a correction factor of Λ = 0.25. (ii) Wu
and Li (2008b,a) reported simulations and experiments on ICEO mixing
in flow past pointed platinum “hurdles” (floating electrodes) and different
geometrical designs were compared. Further design improvements could
benefit from numerical optimization methods for ICEO flows developed by
Gregersen et al. (2009).

ICEO mixers can be used to enhance the transport of slowly diffusing
molecules to an active surface. In biomedical microfluidics, ICEO flows can
improve the sensitivity biological assays by passing probe molecules, such
as DNA or proteins, rapidly over a detection surface. In electrochemical
systems for water purification and desalination, ICEO mixers can enhance
the transport or salt and impurities to a membrane or porous electrode for
rapid removal, beyond diffusion limitation.

10 AC electro-osmotic pumping

10.1 Slip-driven microfluidic pumps

There are many strategies for microfluidic pumping, as reviewed by Laser
and Santiago (2004), Stone et al. (2004), Squires and Quake (2005). Pumps
based on fluid body forces, due to externally applied pressure gradients,
magnetic fields, electrothermal forces, etc., lose their efficiency with minia-
turization, due the overwhelming viscous drag at no-slip walls. On the
other other hand, the same viscous drag can be put to use in pumps that
generate flow by effective fluid slip on the walls, which only get more effi-
cient with miniaturization. This is the principle behind all electro-osmotic
micropumps, whether linear or nonlinear in the applied voltage.

The basic physics of slip-driven pumping are illustrated in Figure 25.
For any pump operating in the viscous regime of low- Reynolds number,
the flow rate decays linearly with the back pressure P according to

Q

Qmax
= 1− P

Pmax
(54)

where Qmax is the flow rate at P = 0 and Pmax is the back pressure that
yields Q = 0 and effectively stops the pump. By linearity, whenever the
pump operates against a hydraulic resistance, the slip-driven flow in the for-
ward direction is superimposed with a pressure-driven parabolic Poiseuille
flow profile in the opposite direction. The situation can be modeled by an
equivalent electrical circuit shown in the Figure 25, where the pump consists
of constant current Qmax in parallel with the back-flow resistance RB .
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Figure 25. Basic physics of slip-driven micropumps. The pump generates
a flow rate Q in a microchannel driven by fluid slip over a wall. If the
pump encounters a back pressure drop P , driving a back-flow through its
hydraulic resistance R, the net flow is given by the linear relation, Q−PR.
The maximum flow rate (at P = 0) is Qmax = Q, while the maximum
back-pressure which stops the pump (Q = 0) is Pmax = Q/R.

To estimate these quantities, consider a microchannel of rectangular
cross section with a wide floor of width W producing slip and a much
smaller height H � W , and solve for the resulting Stokes flow. The total
flow rate due to a mean slip velocity U over the bottom surface is

Qmax =
αHWU

2
(55)

where α ∼ 1− (1/2)(H/W )2 corrects for fringe flows in the limit H � W .
The back pressure required to stop the net forward flow is given by

Pmax = RBQmax =
UL

k
=

6ηαUL
H2

[
1 +

(
H

W

)2
]

(56)

k is the hydrodynamic Darcy permeability and L is the length of the mi-
crochannel.
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10.2 DC versus AC electro-osmotic pumps

This simple calculation shows that the hydraulic resistance to back flow,
and thus Pmax, can be increased by reducing the micro-channel height H.
This strategy has been used to boost the pressure of DC electro-osmotic
pumps by employing linear electro-osmotic flows in porous glass frits with
submicron pores (Yao and Santiago, 2003). Electro-osmotic micropumps
can achieve large head pressures, exceeding 50 atm, without any moving
parts, but they require large DC voltages up to kilo-Volts. Such large volt-
ages cause Faradaic reactions, such as water electrolysis, leading to hydro-
gen and oxygen gas production at the electrodes, which must be managed
carefully.

The large operating voltage and the need to manage reaction products
can hinder the application of DC electro-osmotic pumps in portable or im-
plantable lab-on-a-chip devices. Moreover, it is difficult to locally manipu-
late the fluid within the microchannels by applying an electric field across
the entire device. These drawbacks can be overcome using small AC volt-
ages applied at microelectrodes suitably distributed inside a microfluidic
system. The integration of electrodes in the channel limits the extent to
which the channel height H can be reduced, but useful pressures can still
be generated using small AC applied voltages, around 1 Volt (root mean
square), with greatly reduced Faradaic reactions.

As described above, classical electrokinetic phenomena are linear in the
applied voltage and thus cannot produce any net flow under alternating
current conditions. A variety of nonlinear electrokinetic phenomena, which
persist in AC fields, have been known for decades in colloid science, but the
focus has been on electrophoretic mobility and particle interactions. The
advent of microfluidics has stimulated interest in the use of electric fields to
drive fluid flows, without any moving parts. In this context, nonlinear elec-
trokinetics offers some unique advantages, such as the reduction of unwanted
electrochemical reactions (using AC voltages) and the ability to drive fast,
programmable flows at low voltages (using closely spaced micro-electrodes).

This area of research in nonlinear electrokinetics began with the dis-
covery of Ramos et al. (1999) of steady electro-osmotic flow over a pair of
micro-electrodes applying an AC voltage and dubbed the effect AC electro-
osmosis. Around the same time, Ajdari (2000) predicted ACEO flow over
periodic electrode arrays and showed how the effect could be used for long-
range pumping. As the performance of ACEO pumps has advanced (Huang
et al., 2010), ACEO has also been exploited, in conjunction with dielec-
trophoresis in different geometries to manipulate particles and cells in mi-
crofluidic devices (Green et al., 2000b; Wong et al., 2004; Wu, 2006).
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Figure 26. Equivalent RC circuit model for double-layer charging over a
pair of electrodes. The inner edges of the electrodes encounter less bulk
resistance (due to shorter current tubes) and thus charge more quickly than
the outer edges. (Reproduced from Ramos et al. (1999).)

10.3 Flows over ideally polarizable electrodes

ACEO is a phenomenon of induced-charge electro-osmosis, where flow
is generated by the action of an electric field on its own induced diffuse
charge near a polarizable surface. The main difference with other examples
of ICEO flows discussed above is that ACEO involves electrode surfaces,
which supply both the electric field and the induced screening charge, in
different regions at different times. For this reason, ACEO is inherently
time-dependent (as the name implies) and tied to the dynamics of diffuse
charge, as ions move to screen the electrodes.

Perhaps the easiest way to understand ACEO is to consider a pair of ide-
ally polarizable planar electrodes applying a sudden DC voltage (which is
analogous to ICEO flow around a polarizable particle in an sudden electric
field). As shown in Figure 26, charge relaxation can initially be described
by an equivalent RC circuit, where the diffuse layers act as capacitors, con-
nected to current tube resistors of varying length through the bulk solution.
Since the resistance is smaller (and the field larger) near the gap, the in-
ner portions of double layers on the electrodes charge more quickly than
the outer portions. As shown in Figure 27, this causes ICEO flow to oc-
cur, directed outward from the gap, only when the electrodes are partially
screened, as the tangential field from the unscreened outer portions acts on
induced charge on the inner portions. Note that the flow is independent of
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Figure 27. The basic physics of AC electro-osmosis. Electrochemical relax-
ation (top) and induced - charge electro-osmotic flow (bottom) in response
to a suddenly applied voltage across an electrode pair. (a) At first the
electric field has no tangential component on the electrodes, since they are
equipotential surfaces, and thus there is no electro-osmotic flow. (b) Ca-
pacitive double-layer charging begins near the gap where the initial normal
current is strongest and causes the unscreened field lines dip down and pro-
vide tangential components over the induced charge; the result is ICEO flow
directed away from the electrode gap. (c) After the charging time passes,
the electrodes are fully screened, leaving no electric field and thus no flow.
An AC voltage can drive a steady time-averaged flow, similar to (b), if
its period is comparable to the charging time. (Reproduced from Bazant
(2008a).)
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the sign of the applied voltage: If the polarity were reversed, then the field
and induced charges would both change sign, resulting in the same ICEO
flow.

Under AC forcing, the flow peaks when the oscillation period is com-
parable to the charging time (Fig. 27b). ACEO flow decays at higher
frequencies, since there is not enough time for charge relaxation (Fig. 27a).
It also decays at lower frequencies, since there is enough time to completely
screen the bulk electric field (Fig. 27c).

The theory of ACEO is mostly based on the Standard Model using the
complex potential for AC forcing, following González et al. (2000) as de-
scribed in Section 6. In this regime, the basic scaling of time-averaged
ACEO flow is

〈u〉 ∼ Λ(ω/ωc)2

[1 + (ω/ωc)2]2
εV 2

ηL
(57)

where V is the applied voltage amplitude and L is electrode spacing (roughly
from center to center). The basic velocity scale for ACEO is the same
as the electroviscous scale u0 for ICEO flow with the characteristic field,
E ∼ V/L, and induction length R = L. The frequency-dependent prefactor
is a Lorentzian spectrum peaking at the critical frequency,

ωc ∼
D

λDL

CD
C

(58)

which is the inverse of the RC time scale τ defined above.

10.4 Fluid pumping by micro-electrode arrays

Some useful general principles have been developed to guide the design
of ACEO pumps. The flows discovered by Ramos et al. (1999) over small
numbers of electrodes can be used for local fluid mixing or particle trapping
at stagnation points, but the flow decays quickly away from the electrode
surfaces. A symmetric, periodic array of many inter-digitated electrodes (of
alternating polarity at each moment in time) similarly produces an array
of counter-rotating convection rolls, but no net pumping of the fluid in one
direction. Instead, long-range pumping over an electrode array requires
broken symmetry within each spatial period to rectify the AC forcing.

There are several ways to design ACEO pumps by breaking symmetry
in a periodic electrode array. Ajdari (2000) originally suggested modulating
either the electrode capacitance via a dielectric coating (Figure 28a) or the
surface height (Figure 28b) with half the spatial period of the array, so that
the one side of each electrode drives stronger ACEO flow compared to the
other side and thus wins to produce net pumping over the array. In the first
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Figure 28. Sketches of local broken symmetries in a periodic electrode
array which lead to global time-averaged ACEO pumping: (a) non-uniform
surface coatings; (b) non-uniform surface height. (Reproduced from Ajdari
(2000).)

implementation of an ACEO pump, Brown et al. (2000) opted instead to
break symmetry by using planar electrodes of different widths and gaps, and,
until recently, this design was the only one studied experimentally (Studer
et al., 2004) or theoretically (Olesen et al., 2006). It has been shown to
generate velocities over 100 microns/sec, although it also exhibits poorly
understood flow reversals (see below).

The performance of ACEO pumps can be greatly enhanced by design-
ing appropriate non-planar electrode geometries. As recently predicted by
Bazant and Ben (2006), various 3D ACEO designs exhibit dramatically in-
creased flow rate without flow reversal, due to a special geometry in which
the non-uniform slip profile on the electrodes all contributes to flow in the
same direction. The basic idea is to create a fluid conveyor belt with elec-
trodes each having steps of two different heights: On each electrode, the
region of desired forward flow is raised up, while the region of reverse flow
is recessed below, so as to recirculate in a vortex aiding the forward flow
(rather than fighting it, as in planar designs). This can be accomplished
with electrodes having electroplated metal steps, as shown in Figure 29, al-
though other designs are possible, such as flat electrode steps deposited on
a grooved surface (without the vertical metal surfaces). Simulations predict
that 3D ACEO pumps are faster than planar pumps by more than an order
of magnitude, at the same voltage and minimum feature size, and thus can
achieve mm/sec velocities with only a few volts. This suggests using 3D
ACEO pumps to drive flows in battery-powered, portable or implantable
microfluidic devices.

Huang et al. (2010) recently reported the state-of-the-art in 3D ACEO
micropumps and demonstrated the first integration of ACEO (or ICEO) flow
control in a portable biomedical lab-on-a-chip device (Fig. 30). Their de-
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Figure 29. Top (a,b): Simulations of ACEO microfluidic pumps, showing
the time-averaged flow over a pair of micro-electrodes (dark regions) in one
spatial period of an interdigitated-electrode array. (a) A nearly optimal
planar design with different electrode sizes and gaps; the smaller electrode
has the largest local slip velocity, but the larger electrode wins in overall
pumping from left to right. (b) A more efficient 3D ACEO design with
stepped electrodes having a symmetric footprint and the same minimum
feature size; the reverse slip now recirculates in a vortex to create a fluid
conveyor belt for the raised pumping flow from left to right. (Reproduced
from Bazant and Ben (2006)). Bottom (a,b): Scanning electron microscopy
images of each design fabricated in gold on glass with minimum feature size
(gap) of 5 microns. (Courtesy of J. P. Urbanski and J. A. Levitan, using
methods of Urbanski et al. (2006b)). (c) Artist’s rendering of these flows.
(Reproduced from Choi (2007).)
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sign is based on (i) theoretically optimal electrode shapes for ultrafast flows
predicted by Burch and Bazant (2008) and (ii) long, serpentine microchan-
nels to dramatically boost the head pressure, by an order of magnitude over
previous devices. The latter effect takes advantage of the scaling of the head
pressure with length, Pmax ∼ L, in Eq. (56). With 1.06 Volt (rms) applied
at 1-10 kHz, the pump achieved pressures over 1% atm and mean veloci-
ties over 1 mm/sec in water, sufficient to drive flows for an on-chip DNA
micro-array assay. The current (mA) and power consumption (mW) are
easily provided by a small Li-ion battery, so this work opens new possibili-
ties for portable or implantable microfluidic systems. As with other ICEO
phenomena, however, ACEO pumps require dilute electrolytes, which may
be a fundamental limitation (Bazant et al., 2009b).

Simple scaling arguments show how to design serpentine ACEO pumps
with desired characteristics. The flow rate or pressure can be increased
by connecting multiple pumps in parallel or in series, respectively. For
example, since our prototype pump consists of only one thin layer (25 mm
(h) channels), its pressure can be increased by a factor of ten, exceeding
10% atm simply by stacking ten layers (for a total thickness below 1 mm).
Regardless of the channel layout, for a given device volume, there is always
trade-off between maximum flow rate and maximum pressure. We have
already noted that to maximize pressure, the channel height, H, should
be reduced as much as possible, given the electrode sizes and fabrication
methods, so this should be viewed as a constant when designing the channel
layout. To tune the flow rate, we can vary the channel width W .

Material and fabrication constraints limit the total device cross-sectional
area per channel A, which includes the surrounding walls and substrate
thickness, and is thus larger than the internal channel cross-sectional area
HW . The fabrication method thus sets the ratio β = HW/A. For a given
volume Ω, the total length of the channel can be estimated as L = Ω/A,
ignoring any corner effects in regions of the channel without a pumping
surface. Using Eq. (56), we find

PmaxQmax = βγ
U2Ω
H2

(59)

where γ < 1 is a constant, reflecting the hydraulic resistance of corners and
connections, compared to the pumping regions. For fixed velocity, volume,
and channel height, we see that the maximum pressure is inversely propor-
tional to the maximum flow rate. This formula also determines the required
volume for the pump, given target specifications of flow rate and pressure
for a given application.

Fluid pumping over electrode arrays can also be achieved by applying
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Figure 30. State-of-the-art ACEO micropumps by Huang et al. (2010),
using theoretical predicted optimal electrode shapes to create a “fluid con-
veyor belt” . (a) Fabrication schematic and SEM image of a 3D stepped
electrode array, close to the predicted optimal geometry. (b) Experimental
demonstration of ultra-fast (> 1 mm/sec) mean velocity over the pump for
water in a microfluidic loop with 1.06 Volt rms (3 Vpp), outperforming the
standard planar pump of Brown et al. (2000) shown below in Fig. 33(b).
The head pressure (> 1% atm) is increased by an order of magnitude using
long serpentine channels to hinder reverse pressure-driven flow. (Repro-
duced from Huang et al. (2010).)
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Figure 31. (a) Collection of E. Coli bacteria in tap water along the stag-
nation lines of ACEO flow on Au microelectrodes at low frequency (100 Hz)
and moderate voltage (1 V). (b) Preferential particle trapping by asymmet-
ric polarization ACEO on electrodes with positive DC bias at higher voltage
(> 3 V). (Reproduced from Wu (2006).)

a traveling wave of voltage. At low frequency, a similar induced-charge
electro-osmotic mechanism, which peaks at the RC frequency ωc, is respon-
sible for the flow (Cahill et al., 2004). At high frequency (or with a thick
dielectric coating on the electrodes), the classical Erlich-Melcher effect used
to pump dielectric liquids, which peaks at the Debye frequency, D/λ2

D, can
also be observed (Ramos et al., 2005). Although traveling-wave ACEO
seems to produce slower net flow than standing-wave ACEO with planar
electrodes, the possibility of designing suitable non-planar electrodes has
not yet been considered.

ACEO flows can also be used to manipulate colloidal particles and bio-
logical cells in microfluidic devices (Green et al., 2000b; Wong et al., 2004;
Wu, 2006). The basic strategy is to use ACEO flow to draw particles to
stagnation points on the electrodes, where they are trapped, presumably by
DEP (although the classical theory does not seem to predict this effect). By
increasing the voltage, the ACEO flow can be reversed, and particles are
observed to move away from the stagnation lines, overcoming any remain-
ing trapping force. In this way, it is possible to write and erase suspended
particles, bacteria, or micro-algae on microelectrodes, as shown in figure
7(a). This effect can be enhanced by added a DC bias voltage to the low-
frequency AC voltage (50-100 Hz) between adjacent electrodes, as proposed
by Wu (2006). Particles are observed to collect only on the positively biased
electrode, as shown in Figure 31(b). It has been suggested that opposing
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ACEO flows are produced by the competition between Faradaic charging on
one electrode (positive bias) and capacitive charging on the other (negative
bias), but a quantitative theory remains to be developed.

11 Beyond the Standard Model

In spite of many successes, the Standard Model has some serious shortcom-
ings, recently reviewed and analyzed by Bazant et al. (2009b). It generally
over-predicts fluid velocities compared to experiments, sometimes by orders
of magnitude. It also fails to capture key experimental trends, such as the
decay of ICEO flow with increasing salt concentration, flow reversals at high
voltage and/or high frequency, and ion-specificities. The reasons for these
discrepancies are not yet fully understood.

Bazant and Squires (2010) have reviewed various recent theoretical ad-
vances, which extend the Standard Model in the following ways: (i) thin-
double-layer approximations for large induced voltages based on the classical
Poisson-Nernst-Planck (PNP) equations of ion transport and Navier-Stokes
(NS) equations of fluid flow, (ii) thick-double-layer approximations for the
PNP/NS equations at low voltages, (iii) modified boundary conditions for
electrochemical processes, and (iv) modified PNP/NS equations for large
voltages and/or concentrated solutions. The reader is referred to the review
articles for details, and here we only mention one interesting new effect of
the latter type, related to (solvated) ion crowding in highly charged double
layers.

As shown in Fig. 32, when the surface potential relative to the bulk
solution greatly exceeds the thermal voltage kBT/e, ions inevitably become
crowded in the inner portion of the double layer, and this pushes apart the
diffuse screening cloud away from the surface, thus effectively separating
the two plates of the double layer capacitor. Since capacitance is inversely
proportional to the plate separation, the crowding of ions at high volt-
age causes the differential capacitance to decrease at large voltages, as the
square root of the voltage, once a condensed layer of uniform charge density
forms. In contrast, the classical Gouy-Chapman model of dilute-solution
theory predicts the opposite voltage dependence, an exponential growth of
capacitance with voltage, given by Eq. (29), since nothing stops point-like
ions from piling up at the surface (or Outer Helmholtz Plane). Using a sim-
ple mean-field theory of excluded volume effects for finite-sized ions, Kilic
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Figure 32. Solvated counterions (larger green spheres) and co-ions (smaller
orange spheres) near a polarizable surface. (a) At small induced voltages,
ΨD � Ψc, the neutral bulk is only slightly perturbed with a diffuse-charge
layer of excess counterions at the scale of λD. (b) At moderate voltages,
ΨD ≈ Ψc, the diffuse layer contracts, as described by Poisson-Boltzmann
(PB) theory. (c) At large voltages, ΨD � Ψc, the counterions inevitably
become crowded, causing expansion of the diffuse layer compared to the pre-
dictions of the classical Gouy-Chapman-Stern model, sketched in (d), which
is based Poisson-Boltzman theory for point-like ions with a minimum dis-
tance of approach, the “outer Helmholtz plane” (OHP), to model solvation
of the surface. (Reproduced from Bazant et al. (2009b).)
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Figure 33. Crowding of finite-sized ions (Fig. 8) and high-frequency flow re-
versal of planar ACEO pumps. (a) Experimentally observed velocity pump-
ing of 0.1mM KCl by the ACEO pump of Brown et al. (2000) around a
microfluidic loop versus AC frequency at different peak-to-peak voltages
(reproduced from Studer et al. (2004)). (b) Simulations of the same flow
using a modified electrokinetic equations with an effective hydrated ion size
a = 4.4 nm for a lattice gas in the mean-field local-density approximation;
similar results are obtained using a solvated ion diameter a ≈ 1 nm for hard
spheres with dielectric saturation in water (reproduced from Storey et al.
(2008)).

67



et al. (2007) derived a more general capacitance formula

CνD =
ε
λD

sinh( zeΨD

kBT
)

[1 + 2ν sinh2
(
zeΨD

2kBT

)
]
√

2
ν [1 + 2ν sinh2

(
zeΨD

2kBT

)
]

(60)

where ν = 2c0/cmax is the bulk volume fraction of ions (in a binary elec-
trolyte). Chapman’s formula (29) is recovered in the dilute solution limit,
ν → 0, or at low voltages. With this convenient analytical expression,
Storey et al. (2008) were able to predict the flow reversal of ACEO pumps
at high frequency and high voltage, in reasonable agreement with the exper-
iments of Studer et al. (2004), as shown in Fig. 33. At high voltage and low
frequency (or in the DC limit), Faradaic charge-transer reactions consume
normal current and can discharge the double layer, like a short circuit. At
high frequency, however, the polarity of the double layer changes too quickly
and solvated ions are squashed near the surface and then quickly removed,
prior to the onset of Faradaic reactions.

12 Conclusion

Induced-charge electrokinetic phenomena comprise an active and growing,
interdisciplinary field of research, which spans colloid science, microfluidics,
and electrochemical systems. ICEO flows occur to some degree at any in-
terface between an electrolyte and a polarizable surface, subject an applied
voltage or electric field. With the advent of microfabrication techniques,
ICEO flows can now be probed and exploited with high precision in mi-
crofluidic devices or designer colloidal particles. Beyond these engineering
opportunities, induced-charge electrokinetic phenomena raise profound sci-
entific questions about the structure and dynamics of highly-charge double
layers.
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