
Electrokinetic motion of polarizable particles 

Synonyms 
Dielectrophoresis, induced-charge electrophoresis, electrophoresis of the second kind. 

Definition 
The electrokinetic motion of polarizable particles results from electro-osmotic flow (induced-
charge electrophoresis) of the first of second kind, in addition to electrostatic forces 
(dielectrophoresis). 

Overview 
The classical theory of electrophoresis (particle motion due to electro-osmotic flow) assumes 
that surface charge remains fixed at its equilibrium value, when electric fields (or other 
perturbations) are applied (1). For thin electrical double layers, the assumption of “fixed 
charge” implies that particles of uniform composition all have the same electrophoretic 
mobility b (velocity/field) 
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regardless of their sizes and shapes. This naturally poses problems for electrophoretic 
separation and has led to the use of capillaries or gels to exploit additional effects. 
 
In equation [1], the “zeta potential” ζ can be viewed as simply expressing the mobility in units 
of voltage, after factoring out the permittivity ε and viscosity η of the bulk solution. In 
Smoluchowski’s original theory, still widely a century later, the zeta potential is equal to the 
voltage 
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"  of the “slip plane” (atomically close to the surface) relative to the nearby bulk 
solution (just outside the diffuse part of the double layer), and, through the double-layer 
capacitance, it also measures the surface charge. The assumption of fixed charge thus becomes 
equivalent to that of constant zeta potential, and the mobility [1] reduces to a coefficient of 
linear response, 
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Since all materials are polarizable to some degree, the surface charge is generally not fixed. 
This leads to a broad class of nonlinear electrokinetic phenomena, where bulk electric fields 
interact with induced diffuse charge in solution to produce nonlinear electrophoretic motion, 
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addition to the purely electrostatic effect of dielectrophoresis (DEP) in low-frequency AC 
fields (< 100 kHz), where there is enough time for diffuse-charge relaxation around the 
particle within each period. ICEP is a complex phenomenon, which can lead not only to 
nonlinear mobility (in the field direction) but also to rotation and motion in arbitrary 
directions, even in uniform fields.  
 
At still lower frequencies (< 1 kHz), the passage of current through a particle, either by 
Faradaic reactions, surface conduction, or selective ionic conduction, can produce bulk salt 
concentration gradients and coupled effects of diffusiophoresis. If a superlimiting current is 
reached (typically in the DC limit), then electrophoresis of the second kind can occur, driven 



by extended space charge. Understanding all of these effects and exploiting them in 
microfluidic devices is an active field of research.  

Basic Methodology 
The theoretical description of nonlinear electrokinetic phenomena is challenging and not yet 
fully developed. In most of our examples below, we focus on the motion of an ideally 
polarizable particle, which maintains uniform potential 
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without passing any direct current; we also neglect surface conduction and specific adsorption 
of ions. Under these conditions, induced-charge electro-osmotic flows are strongest, and a 
general mathematical framework has been developed (2-5) for the “weakly nonlinear” limit of 
thin double layers where the bulk salt concentration (and conductivity 
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constant.  
 
The calculation goes as follows for the motion of an isolated particle of arbitrary shape, 
subjected to a non-uniform, time-dependent electric field at infinity for 
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t > 0. The bulk 
electrostatic potential satisfies Laplace’s equation, 
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where  
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 is the uniform component of the background field,   
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 is the field-gradient tensor, 

etc. (Note that the constant “background voltage” has been set to zero.) The “RC” boundary 
condition is applied on the particle, just outside the double layer, 
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where 
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C(")  is the differential capacitance of the diffuse part of the double layer, as a function 
of its voltage drop 
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where δ is a parameter controlling how much of the total double-layer voltage ends up across 
the compact layer (the ratio of the diffuse-layer and compact-layer capacitances at  the point of 
zero charge). The particle’s potential 
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(t)  relative to the background is set by the constraint 

of constant total charge (2,4), 
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This condition simplifies considerably if 
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C " constant, e.g. for small voltages 
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around the point of zero charge: The diffuse-layer voltage (and zeta potential) then 
redistributes without changing its surface average (3,5) 
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but it is important to remember that this assumption breaks down for large induced voltages 
and/or highly charged particles, since generally 
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dC d" # 0 . (See below.) 
 
In the weakly nonlinear regime, the electrochemical and fluid mechanical problems decouple, 
except that the former provides the slip velocity driving the latter. The bulk fluid velocity 
satisfies the Stokes equations of viscous flow,  
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(keeping the unsteady term for time-dependent applied fields) subject to vanishing velocity at 
infinity. The boundary condition on the particle surface (just outside the double layer) 
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describes electro-osmotic slip in the moving frame translating and rotating with the particle. 
Assuming constant permittivity and viscosity, the slip velocity is given by Smoluchowski’s 
formula, 
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where   
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r ,t)  acts as the local zeta potential. Finally, as in classical electrophoresis and 

dielectrophoresis (effects which are both included here, along with ICEP), the translational and 
rotational velocities,   
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torque, respectively, 
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since viscous dissipation suppresses acceleration. In [10], the stress tensor includes viscous 
and electrostatic contributions 
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and the integrals are over any surface containing the particle because the fluid is in mechanical 
quasi-equilibrium.  
 
This basic methodology can be extended to more complicated situations, as outlined in the 
article on nonlinear electrokinetic phenomena. For example, if the particle is not ideally 
polarizable or has a dielectric coating, then Laplace’s equation must also be solved for the 
electrostatic potential inside the particle, with appropriate matching conditions (3). Channel 
walls can be described by replacing the conditions at infinity with appropriate electrostatic 
boundary conditions, including possible double-layer relaxation [3] and ICEO slip [9] on fixed 
metal structures or electrodes; multiple particles can also be described, usually with numerical 
methods. A greater complication is to allow the particle to selectively conduct ions or pass a 
Faradaic current and/or to adsorb significant salt from the bulk in its double layers. The 
resulting gradients in bulk salt concentration require solving the full Poisson-Nernst-Planck 
equations for the electrochemical relaxation (6) and allowing for bulk electroconvection in the 
fluid equations (7). Concentration gradients also lead to diffusiophoresis, which adds a term 



proportional to 
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" || logc to the “first kind” slip formula [9], and, if strong enough to produce 
bulk space charge, also to electrophoresis of the second kind (8,18). 
 

Key Research Findings 
Field-dependent mobility 
A well-known prediction of the classical theory of electrophoresis is that the mobility [1] only 
depends on the total charge (or average zeta potential), in the limits of thin double layers, small 
charge, and weak fields (1). This remarkable result holds for any size or shape, even if the 
particle is polarizable and acquires a non-uniform charge (or zeta) profile in response to the 
applied field. It is not widely appreciated, however, that this follows from the assumption of 
constant double-layer capacitance, which reduces [5] to [6]. 
 
In the 1970s, SS Dukhin’s group was perhaps the first to recognize that the electrophoretic 
mobility of polarizable particles must generally depend on the electric field (9). In a series of 
Russian papers, which have yet to gain widespread attention, they predicted perturbations of 
the mobility as 
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come to call the Stotz-Wien effect. For the case of a steady weak field applied to an ideally 
polarizable sphere of radius a, AS Dukhin derived an expansion for the mobility,  
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which holds for any model of the electrical double layer (10). The same result can be derived 
from the general formalism above by expanding [5] for 
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[6], and large fields, non-spherical shapes, and AC forcing could also be considered. In 
principle, any field dependence of the mobility, regardless of its true cause, can be exploited to 
separate particles using an unbalanced AC field, which cancels the linear response (since 
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E = 0 ) while amplifying mobility corrections (since 
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E
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" 0) (9,11).  

Induced-charge electrophoresis 
Mobility perturbations for spherical particles, however, only hint at the rich phenomena that 
can arise in the electrokinetic motion of polarizable particles.  Murtsovkin and co-workers 
were the first (and to date, the only ones) to experimentally observe nonlinear electrokinetic 
motion in a uniform AC field in directions oblique to the field axis (12). They studied irregular 
quartz particles moving in water near the wall of a cuvette in surprising directions apparently 
set only by the particle shape. If a particle rotated enough by Brownian motion when the field 
was off, it could be seen to reverse direction when the field was turned back on. The velocity 
scaled with the square of the field amplitude and increased with the particle size. No theory 
was proposed for this phenomenon, in part since it was only observed near the wall and not in 
the bulk solution. 
 
Bazant and Squires recently predicted that polarizable particles in the bulk can undergo 
essentially arbitrary translation and/or rotation by ICEP in a uniform electric field, as long as 
they possess appropriate broken symmetries (2,4), such as non-spherical shapes and/or non-
uniform surface properties (e.g. due to coatings of different polarizability or compact-layer 
capacitance). The former cases begin to explain Murtsovkin’s early observations and beg for 
new experiments to test a variety of specific theoretical predictions, discussed below. The 



latter cases, which had not previously been observed, are described in a companion article on 
electrokinetic motion of heterogeneous particles. 
 
For homogeneous particles, the canonical example is that of an uncharged, ideally polarizable 
particle of irregular shape in a weak, uniform DC field. In that case, the basic velocity scale for 
ICEP is  
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where a is a characteristic radius (2). Using the low-voltage model [6-11] (with C=constant), 
Yariv derived general expressions for the translational and rotational velocities, respectively, 
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where C is a dimensionless tensor and D a pseudo-tensor, each expressible as surface integrals 
involving the bulk potential, just outside the double layer. Squires and Bazant treated a number 
of specific examples by solving [6-11] directly using perturbation methods for nearly 
symmetric objects and discovered some simple principles to predict the motion of a particular 
shape (4).   
 
The basic mechanism of ICEP for irregular particles is shown in Figure 1. As shown in (a) and 
described in the article on nonlinear electrokinetic phenomena, the ICEO flow around a 
symmetric particle is quadrupolar (2,3), drawing fluid in along the field axis and ejecting it 
radially. If the particle has broken left/right symmetry as shown in (b), then the radial flow is 
stronger on one side than the other, leading to ICEP motion perpendicular to the field. 
Similarly, breaking only fore/aft symmetry produces ICEP motion along the field axis, and 
combinations of these asymmetries can cause motion in an arbitrary direction.  
 
ICEP can also contribute to the rotation of polarizable particles with elongated shapes 
(2,4,5,15), as illustrated in Figure 2a. It is well known that DEP causes such particles to align 
with the axis of a uniform field, due to electrostatic torque on the induced dipole. At low AC 
frequency (or in the DC limit), if the field persists in one direction long enough for ICEO flow 
to occur, then ICEP causes a rotational velocity with a basic scale that is independent of the 
particle size but sensitive to its shape, 
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This scale happens to be the same as that of the DEP rotational velocity, so ICEP rotation is 
easily overlooked and mistakenly interpreted as DEP. It is possible, however, to clearly 
distinguish the two effects, as recently demonstrated by experiments (14) and simulations (15) 
involving rod-like, metal particles in uniform AC fields. (See Figure 3.) 
 
More complicated asymmetric particles can undergo essentially arbitrary ICEP motion, even in 
a uniform field. Even in the context of the simple model above, these effects have not yet been 
fully analyzed, but some general principles have been identified (4). A striking example is 
shown in Figure 2b, which illustrates how arrow-like particles of slightly different shapes can 
move in perpendicular directions in a uniform field, depending on their broken symmetries: On 
the left, a “short, fat arrow” rotates to align its long axis with the field and then moves 



perpendicular to the field, toward its pointed end; on the right, a “long, thin arrow” also rotates 
to align its long axis, but then moves parallel to the field, toward its blunt end. Such 
predictions are quite recent, however, and remain to be tested experimentally. 
 
A telltale sign of ICEP is the presence of non-uniform ICEO flow around the particle, which 
leads to complex hydrodynamic interactions with other particles and walls. For example, the 
basic quadrupolar flow in Figure 1a causes two symmetric particles to move toward each other 
along the field axis and then push apart in the normal direction (13,15). A finite cloud of such 
particles would thus become squashed into a disk-like “spreading pancake” perpendicular to 
the field axis (3). The same flow field can also cause particles to be repelled from insulating 
walls (perpendicular to the field) (16) or attracted toward electrodes (normal to the field), but 
these are only guiding principles. Broken symmetries in particle shape or wall geometry, 
however, can cause different motion due to combined effects of DEP and ICEP, even opposite 
to these principles, and the interactions of multiple particles can also be influenced strongly by 
walls. Such effects have not yet been fully explored in experiments or simulations. 

Low-frequency dielectrophoresis  
In the 1970s, Shilov and Estrella-Lopis first recognized that electrohydrodynamics (what we 
now call “ICEO”) can contribute to the motion of particles in low-frequency, non-uniform 
electric fields (17), in addition to the classical effect of DEP, although the effect has not been 
studied much in theory or experiment. Shilov and Simonova analyzed the problem of an 
ideally polarizable sphere in a uniform field gradient and made the remarkable prediction that 
the particle does not move. Due to equal and opposite motions by DEP and ICEP, the sphere 
levitates in the field while driving a steady ICEO flow, but this is a unique case.  
 
Squires and Bazant recently showed that broken symmetries in the field gradient and/or the 
particle shape generally cause a particle to move, due to subtle imbalances between ICEP and 
DEP (4). Both effects have the same basic scaling, 
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Moreover, as illustrated in Figure 3, the DEP force and ICEP velocity tend to act in opposite 
directions, at least for the case of an ideally polarizable particle with thin double layers in a 
non-uniform electric field (of arbitrary complexity). Similar to the case of rotational motion 
discussed above, ICEP can be easily overlooked and the observed translational motion 
attributed solely to DEP, if it is along the field gradient. Experiments clearly separating ICEP 
and DEP effects are still lacking, and an opportunity exists to exploit these combined effects 
for manipulating polarizable colloids, once the effects are better understood. 

Electrophoresis of the second kind 
As described in the article on nonlinear electrokinetic phenomena, electro-osmosis of the 
second arises when the bulk salt concentration goes to zero at a surface passing a diffusion-
limited current. Under conditions of super-limiting current, the density of counterions in the 
electrical double layer loses its classical quasi-equilibrium profile and a region of dilute space 
charge extends into the solution to the point where the bulk salt concentration becomes 
appreciable. In spite of the small counter-ion concentration, the expulsion of co-ions from the 
space charge layer leads to significant charge density and, in the presence of a tangential 
electric field, electro-osmosis of the second kind (7).  
 



If a particle is able to sustain a super-limiting current, then such flows can cause it to move by 
electrophoresis of the second kind, as first noted by S. S. Dukhin in the 1980s. As shown in 
Figure 5, second-kind electrophoresis has been observed experimentally for large (>10 µm) 
particles composed of cation-selective porous materials, and the flow structure has been 
studied in detail (8). Due to the complexity of the phenomenon, however, the theory has 
mainly been limited to scaling arguments and heuristic boundary-layer approximations (18), 
but there is hope that the rigorous mathematical study of second-kind flows (7) could soon be 
extended to second-kind electrophoresis. Effects of walls, multiple particles, and broken 
symmetries should also eventually be studied.  
 

Future Directions for Research 
Compared to the vast literature on linear electrophoresis, the study of nonlinear electrokinetic 
motion is still its early stages. As indicated above, much remains to be done, both in making 
theoretical predictions and systematically testing them (or discovering new effects) in 
experiments. Modern mathematical methods and computational power now allow more 
sophisticated analysis, going beyond linear and weakly nonlinear approximations, as well as 
large scale simulations of interacting colloidal particles. Similarly, the advent of microfluidics 
provides new opportunities to observe and exploit nonlinear electrokinetic phenomena, since 
polarizable particles can now be fabricated with complicated shapes and material properties 
and electric fields controlled with submicron precision. 
 
Applications of nonlinear electrokinetic motion are still largely unexplored. Aperiodic 
electrophoresis and other ICEP phenomena could be used to separate polarizable particles 
based on shape, size, and/or surface properties, in ways that cannot be accomplished using 
linear electrophoresis. Sorting, trapping, and assembling particles interacting via ICEP and 
DEP in microfluidic devices could be used to engineer new materials with anisotropic 
electrical, mechanical, or optical properties. Polarizable particles can also be attached to 
biological molecules or cells and manipulated by ICEP and DEP for separation, 
characterization, or labeling. 

Cross-references 
AC electro-osmotic flow 
Aperiodic Electrophoresis (def) 
Dielectrophoresis 
Dielectrophoretic Motion of Particles and Cells 
Diffusiophoresis 
Electrical Double Layers 
Electrokinetic Motion of Heterogeneous Particles 
Electroosmotic Flow 
Electrophoresis of the second kind (def) 
Electrophoresis 
Induced-charge electrophoresis (def) 
Nonlinear electrokinetic phenomena 
Space charge (def) 
Stotz-Wien effect (def) 
Super-limiting current (def) 
Unbalanced AC field (def) 
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Figure Legends 

Figure 1 
(a) Induced-charge electro-osmotic (ICEO) flow around a symmetric, uncharged, ideally 
polarizable particle (from Ref. 3); (b) An example of ICEO flow and the resulting induced-
charge electrophoretic (ICEP) velocity for an asymmetric shape (from Ref. 4). 

Figure 2 
(a) Mechanism for ICEP torque on a rod-like, polarizable particle in a uniform electric field, 
which enhances dielectrophoretic (DEP) torque. (b) Possible ICEP velocities for asymmetric 
shapes, once their long axes have aligned with the field.  

Figure 3 
Experiments on cylindrical silver particles (.318µm diameter, 6µm length) sedimenting in de-
ionized water by gravity alone (a) and in a 100 Hz, 100 V/cm AC field aligned with gravity 
(b). The experimental distribution of angles in different fields (c) agrees well with theoretical 
curves (solid) which take into account both ICEP rotation and electrostatic torque. (from Ref. 
14) 

Figure 4 
An ideally polarizable cylinder subjected to a non-uniform DC electric field in an 
electrolyte with thin double layers: (a) Field lines and the DEP force, typically directed 
down the field gradient. (b) Streamlines of ICEO flow and the ICEP velocity, which 
always directed opposite to the DEP force. (from Ref. 4). 

Figure 5 
Experiments on electrophoresis of the second kind for cationite KU-2-8 particles in 10-4 M 
NaCl. (a) Velocity versus time for particles diameters 0.42mm (1), 0.33mm (2), and 0.21mm 
(3) with sketches of the observed flow fields. (b) Scaling of velocity with applied field for 
diameters 0.31mm (1), 0.28mm (2), and 0.26mm (3). (from Ref. 8) 
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