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Interfacial dynamics in transport-limited dissolution
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Various model problems of “transport-limited dissolution” in two dimensions are analyzed using time-

dependent conformal maps. For diffusion-limited dissolution (reverse Laplacian growth), several exact solu-
tions are discussed for the smoothing of corrugated surfaces, including the continuous analogs of “internal
diffusion-limited aggregation” and ‘“diffusion-limited erosion.” A class of non-Laplacian, transport-limited
dissolution processes is also considered, which raises the general question of when and where a finite solid will
disappear. In a case of dissolution by advection-diffusion, a tilted ellipse maintains its shape during collapse, as
its center of mass drifts obliquely away from the background fluid flow, but other initial shapes have more

complicated dynamics.
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The analysis of interfacial dynamics using conformal
maps (“Loewner chains”) is a classical subject, which is
finding unexpected applications in physics [1-3]. For dy-
namics controlled by Laplacian fields, there is vast literature
on continuous models of viscous fingering [4,5], and sto-
chastic models of diffusion-limited aggregation (DLA) [3,6]
and fractal curves in critical phenomena [1,2]. Conformal-
map dynamics has also been formulated for a class of non-
Laplacian growth phenomena of both types [7], driven by
conformally invariant transport processes [8]. For growth
limited by advection-diffusion in a potential flow, the con-
nection between continuous and stochastic growth patterns
has been elucidated [9], and the continuous dynamics has
also been studied in cases of freezing in flowing liquids
[10-13].

In all of these examples, the moving interface separates a
“solid” region, where singularities in the map reside, a
“fluid” region, where the driving transport processes occur
and the map is univalent. (In viscous fingering, these are the
inviscid and viscous fluid regions, respectively.) Most atten-
tion has been paid to problems of “transport-limited growth,”
where the solid region grows into the fluid region, since the
dynamics is unstable and typically leads to cusp singularities
in finite time [14-16] (without surface tension [4]). Here, we
consider various time-reversed problems of “transport-
limited dissolution” (TLD), where the solid recedes from the
fluid region, e.g., driven by advection-diffusion in a potential
flow. These are stable processes, so we focus on continuous
dynamics, without surface tension.

Stochastic diffusion-limited dissolution (DLD), some-
times called “diffusion-limited erosion” (DLE) or “anti-
DLA,” has been simulated by allowing random walkers in
the fluid to annihilate particles of the solid upon contact
[17,19-21], rather than aggregating as in DLA [18]. Outward
radial DLE on a lattice, or “internal DLA” (IDLA), where
the random walkers start at the origin and cause a fluid cavity
to grow in an infinite solid, has also been studied by math-
ematicians, who proved that the asymptotic shape is a sphere
in any dimension [22].

We begin our analysis by summarizing some exact solu-
tions for continuous DLD, which could help one to under-
stand fluctuations and the long-time limits of DLE and
IDLA. Although these solutions are known in somewhat dif-
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ferent forms for Laplacian growth [14—-16], it is instructive to
summarize them prior to considering the problems of TLD
by advection-diffusion, to highlight the effects of fluid flow.

Dissolution of surface corrugation. Let G(w,t) be a con-
formal map from the left half plane to the fluid region, where
steady (Laplacian) diffusion with uniform flux at — drives
dissolution of the solid. The interfacial dynamics is given by
the (dimensionless) Polubarinova-Galin (PG) equation [3,5],

Re(aG,)=1 on Rew=0. (1)
An exact solution has the form
G(w,t) =w+h(t) +log[1 + a(t)e"] (2)

with |a(f)] <1/2 (real) where

Ce™ 3 .
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dh l+a-d* B
—=———— h~t+Cle=1)+ -, (4)
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and C=a(0)[1-a(0)?]*. This solution, shown in Fig. 1, de-
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FIG. 1. The diffusion-limited dissolution of a corrugated surface
from left to right, for #(0)=0, a(0)=0.3, t=0,0.25,0.50, ...,2.50 in
Eq. (2).
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scribes the decay of surface corrugations in electropolishing
[20,21,23,24] or the displacement of an inviscid fluid by an
immiscible viscous fluid in a Hele-Shaw cell [4,17,19], and
closely resembles simulations of “mean-field DLE” (Fig. 2
of Ref. [19]).

The linear stability of a flat interface in DLD is contained
in the long-time limit of Egs. (2)—(4). With the dimensions
restored (w— wk, G+ Gk, and r— kut), the interface’s shape
becomes sinusoidal,

x(y) ~ vt + Ce™™" cos(ky), (5)

for a Fourier mode of wave number k£ and mean interfacial
velocity v. We thus recover the classical result [19,21,23]
that kv is the exponential decay rate of mode k, as observed
in the experiments [24].

Outward dissolution of cloverlike shapes. Next we con-
sider the continuous analog of IDLA:DLD in a radial geom-
etry driven by a constant diffusive flux from the origin. This
could model quasisteady melting of an infinite solid around a
point source of heat, or the injection of a viscous fluid into a
Hele-Shaw cell, displacing an inviscid fluid. The radial PG
equation is [3,5]

Re(w_g’g,) =1 onlw|=1, 6)

where z=g(w, 1) is a univalent mapping of the interior of the
unit disk. A tractable case is the cloverlike (N—1)-fold per-
turbation of a circle,

gw,0) = a (Ow +an(Hw", ()

first analyzed by Meyer for the (time-reversed) Hele-Shaw
problem [14]. For a;(0)=1 and 0 <c=a,(0) <1/N (real), the
solution has the implicit form,

a?+Nay=1+Nc*+2t and dYay=c. (8)

Since a,(¢) increases to o from a;(0)=1 and ay(r) decreases
to 0 from ay(0)=c<1/N<1, the following recursion con-
verges very quickly,

M), )

and yields an asymptotic approximation upon recursive sub-
stitution. An example shown in Fig. 2 illustrates the rapid
smoothing of a four-leafed clover shape.

From Egs. (8) and (9) we see that the (N—1)-fold radial
perturbation decays as a power-law, a2, in contrast to
the exponential decay of perturbations of a flat interface. We
conjecture that the stochastic interface in IDLA is asymptotic
to the continuous DLD solution above, up to small logarith-
mic fluctuations [25], where w is the smallest perturbation
in the initial cluster shape. In general, the continuous dynam-
ics of DLD may also accurately approximate the ensemble-
averaged stochastic dynamics of IDLA, which is not the case
for DLA and other unstable aggregation processes [9].

An explicit solution is possible for N=2. In that case, Eq.
(8) reduces to a depressed cubic [26], a3+3pa,=2g, solved
by the formula of Cardano and dal Ferro,

a,= \"/2t+ 1+Nc(1 - afz

3 [ 3/ i
ay =g+ \g*=p + Vg - g’ - p, (10)
where p=—(t+c?>+1/2)/4 and g=—c/4.
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FIG. 2. Outward radial diffusion-limited dissolution driven by a
point sink at the origin for an initial four-lobed perturbation of a
circle. This exact solution is given by Egs. (7)—(9) with N=5, ¢
=0.15, and r=0,0.2,0.4,...,1.0.

Inward dissolution of starlike shapes. Next we briefly
consider inward DLD with a constant diffusive flux at infin-
ity, which simply is the time-reverse of Laplacian growth in
a radial geometry [5]. Now the map in Eq. (6) must be uni-
valent outside the unit disk, |w|=1 with a Laurent expan-
sion, g(w,t)==!___a (1)w". There are well-known solutions
for (N+1)-fold perturbations [15,16],

gw.0)=a,(Ow +a_py(t)w™  for |w| =1, (11)

where, without loss of generality, a,(0)=1 and a_y(0)=c
<1/N is real. Again, the Laurent coefficients satisfy a pair of
nonlinear equations, which is most easily solved as a fixed-
point iteration,

a1=\e"1—2t+ch(afN—1) and a_y=ca). (12)

The only qualitative difference with outward DLD is that the
solid collapses to a point in a finite time, 7.=(1-Nc?)/2. For
N=1, an ellipse (0<c<1) or circle (c=0) maintains its
shape during collapse,

g(w,t)=\/1—5<w+i>. (13)

¢

For N> 1, the shape approaches a circle prior to collapse,
according to the asymptotic formula,

a(t) ~\2(t.—t) + N*[2(t. - )]V (14)

with a_y(t)=ca,(1)N. The collapse of a four-pointed shape
(N=3) is shown in Fig. 3.

Advection-diffusion-limited dissolution. The dynamics of
dissolution become more interesting when driven by non-
Laplacian (but conformally invariant [8]) transport processes
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FIG. 3. Inward radial diffusion-limited dissolution driven by a
sink at « for a four-pointed shape. This exact solution is given by
Egs. (11) and (12) with N=3, ¢=03, and =0,0.04,
0.08,...,0.36,0.3649; the collapse occurs at 7.=0.365.

[7], where the right-hand side of the PG equation (6) is re-
placed by the nonuniform, time-dependent flux to the inter-
face, o(w,r). An important example is dissolution by
advection-diffusion in a potential flow, e.g., the erosion of
rock by flowing water, the evaporation of a fiber coating in a
flowing gas, or the melting of a solid column in a flowing
liquid. The time-reversed growth problem has been studied
extensively in the contexts of freezing [10-13] and
advection-diffusion-limited aggregation [7,9], but it seems
that dissolution—which leads to collapse in finite time—has
not been analyzed. For a given initial shape and background
flow, when and where will collapse occur?

Consider a finite solid of constant concentration and arbi-
trary shape in a two-dimensional potential flow of zero con-
centration and uniform velocity far away. The relative impor-
tance of advection to diffusion is measured by the Péclet
number, Peq=UL/D, for a background fluid velocity U, dif-
fusivity D, and length L. The time-dependent Péclet number,
Pe(t)=Peya (1), is defined by the conformal radius, a,(z).
When the solid dissolves [a;(r)— 0], diffusion eventually
dominates, so it is natural to focus on the low-Pe limit.

The flux profile o, Pe) on the absorber has been studied
extensively, and very accurate asymptotic approximations
are available [27]. (A numerical code in MATLAB is also at
http://advection-diffusion.net.) From the low-Pe approxima-

tion,
P
- I()(Pe) ePe cos Q—Pe cos 0+f edt el cos HM
Ky(Pe/2) 0 t )

(15)

which is uniformly accurate in angle 6 up to Pe=10"!, let us
keep only the leading terms,
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FIG. 4. Inward advection-diffusion-limited dissolution of a tilted
elliptical solid in a uniform background flow from left to right (¢
=0.5i, b=0.8, t=0,0.04,0.08, ...,0.36,0.3749). The major axis of
the ellipse remains oriented at 77/4, while its center of mass moves
at an angle of /6 relative to the background flow. At time z,
=0.375, the solid disappears at the point a(z,)=0.4+0.2i.

1+ Pecos 6

~ 2T pecos 6, 16
T log(Petd) -y % (16)

where y=0.577215... is Euler’s constant.

In the final stage of collapse where —log Pe> v, the inter-
face is asymptotically circular, g(w,7)~a;(#)w. From Eq.
(16), the radius in this regime satisfies, ada,/dt~
—1/log ay, and thus has the asymptotic form,

A(f —
a ~ Unl?) 1 Can

log

—loglo + -
t—1t, 808, _ t.

To describe the dynamics starting at small Pe and ending
just prior to collapse, it is reasonable to further set log Pe
~constant. In this intermediate regime, the interfacial

dynamics is given by (for a suitable choice of units),
Re(wg'g)=—1+ba,(t)cos & forw=e'’,  (18)

which is interesting to study in its own right, as the simplest
case of a nonuniform flux profile (here, due to fluid flow).
The cos 6 term has the effect of exciting new modes in the
shape of the dissolving solid, which are not present in the
initial condition. We will see that a circle, g(w,0)=w, trans-
lates away from the flow, g(w,)=w+ag(t), as its upstream
side dissolves more quickly prior to collapse. It can also be
shown that an (N+ 1)-fold perturbation of a circle (11) will
translate and develop an N-fold perturbation, g(w,?)
=a,(Ow+ag(t) +a_y  w N +ay(t)w™.  Higher  Fourier
modes in o(w,?) excite additional terms in the Laurent ex-
pansion of the shape, g(w,?).
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Collapse of a tilted ellipse in a uniform flow. To illustrate
these principles, let us consider a solid ellipse, g(w,0)=w
+c/w (c<1), which is tilted at an angle ¢=(argc)/2 with
respect to a background flow in the positive x direction. Dur-
ing dissolution, the shape remains an ellipse, but its center of
mass, ay(f), moves. An example is shown in Fig. 4.

The Laurent expansion is given by g(w,f)=a,(t)w+a(t)
+a_,(t)/w, where a,(z) is real, but ay(r) and a_,(¢) are com-
plex. Substituting into Eq. (18) and integrating shows that
the conformal radius has a square-root singularity,

t 1—|cf
l-—, t.=
t 2

a,(1) = ; (19)

since the area decreases linearly to zero (in the approxima-
tion of constant total flux): A(z)=A(0)-2t, where A(0)
=m(1-|c[?). The collapse time depends on the initial shape
through |c|. The slowest collapse, ¢,=1/2, occurs for a circle,
c=0, while the collapse time tends to zero for a very elon-
gated ellipse, |c|— 1, regardless of orientation.

For a constant total flux, the collapse time ¢, does not
depend on the bias introduced by the flow velocity (through
b), although the flow affects the time scale through the initial
Péclet number, Pe,. This is a consequence of the conformal
invariance of the transport process [7], which causes the total
flux (Nusselt number) to depend only on the conformal ra-
dius [27]. Physically, dissolution is enhanced upstream just
as much as it is reduced downstream, causing any shape to
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collapse in the same time as a circle (of the same conformal
radius).

During dissolution, the ellipse keeps its shape and its ori-
entation with respect to the flow direction since a_;(z)
=ca,(t). However, the center of mass moves away from the
flow, but also away from the end of the ellipse which pro-
trudes upstream. The velocity of the center of mass is con-
stant and in the 1+c¢ direction,

b(1
ao(f) = % (20)

Note that the center of mass does not move along the major
axis of the ellipse at angle ¢, but instead at an oblique angle
6 given by sin 6=|c|sin(2¢— 6). The final collapse occurs at
the point, ay(t,)=b(1+c)/2. In the simplest case, ¢=0, a
circle maintains its shape while its center of mass translates
away from the flow at (dimensionless) velocity b until col-
lapse occurs at x=b/2 at time t.=b/2.

For general transport-limited dynamics [7], predicting the
collapse seems like an interesting open question. A non-
trivial, but possibly tractable, first problem would be to cal-
culate the time and place of collapse for the model in Eq.
(18). It would also be interesting to compare exact solutions
of such models to experiments, e.g., on melting, corrosion, or
electro-dissolution in a Hele-Shaw cell.

The author thanks J. Propp for an introduction to IDLA.
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