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Various model problems of “transport-limited dissolution” in two dimensions are analyzed using time-
dependent conformal maps. For diffusion-limited dissolution �reverse Laplacian growth�, several exact solu-
tions are discussed for the smoothing of corrugated surfaces, including the continuous analogs of “internal
diffusion-limited aggregation” and “diffusion-limited erosion.” A class of non-Laplacian, transport-limited
dissolution processes is also considered, which raises the general question of when and where a finite solid will
disappear. In a case of dissolution by advection-diffusion, a tilted ellipse maintains its shape during collapse, as
its center of mass drifts obliquely away from the background fluid flow, but other initial shapes have more
complicated dynamics.
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The analysis of interfacial dynamics using conformal
maps �“Loewner chains”� is a classical subject, which is
finding unexpected applications in physics �1–3�. For dy-
namics controlled by Laplacian fields, there is vast literature
on continuous models of viscous fingering �4,5�, and sto-
chastic models of diffusion-limited aggregation �DLA� �3,6�
and fractal curves in critical phenomena �1,2�. Conformal-
map dynamics has also been formulated for a class of non-
Laplacian growth phenomena of both types �7�, driven by
conformally invariant transport processes �8�. For growth
limited by advection-diffusion in a potential flow, the con-
nection between continuous and stochastic growth patterns
has been elucidated �9�, and the continuous dynamics has
also been studied in cases of freezing in flowing liquids
�10–13�.

In all of these examples, the moving interface separates a
“solid” region, where singularities in the map reside, a
“fluid” region, where the driving transport processes occur
and the map is univalent. �In viscous fingering, these are the
inviscid and viscous fluid regions, respectively.� Most atten-
tion has been paid to problems of “transport-limited growth,”
where the solid region grows into the fluid region, since the
dynamics is unstable and typically leads to cusp singularities
in finite time �14–16� �without surface tension �4��. Here, we
consider various time-reversed problems of “transport-
limited dissolution” �TLD�, where the solid recedes from the
fluid region, e.g., driven by advection-diffusion in a potential
flow. These are stable processes, so we focus on continuous
dynamics, without surface tension.

Stochastic diffusion-limited dissolution �DLD�, some-
times called “diffusion-limited erosion” �DLE� or “anti-
DLA,” has been simulated by allowing random walkers in
the fluid to annihilate particles of the solid upon contact
�17,19–21�, rather than aggregating as in DLA �18�. Outward
radial DLE on a lattice, or “internal DLA” �IDLA�, where
the random walkers start at the origin and cause a fluid cavity
to grow in an infinite solid, has also been studied by math-
ematicians, who proved that the asymptotic shape is a sphere
in any dimension �22�.

We begin our analysis by summarizing some exact solu-
tions for continuous DLD, which could help one to under-
stand fluctuations and the long-time limits of DLE and
IDLA. Although these solutions are known in somewhat dif-

ferent forms for Laplacian growth �14–16�, it is instructive to
summarize them prior to considering the problems of TLD
by advection-diffusion, to highlight the effects of fluid flow.

Dissolution of surface corrugation. Let G�w , t� be a con-
formal map from the left half plane to the fluid region, where
steady �Laplacian� diffusion with uniform flux at −� drives
dissolution of the solid. The interfacial dynamics is given by
the �dimensionless� Polubarinova-Galin �PG� equation �3,5�,

Re�G�Gt� = 1 on Re w = 0. �1�

An exact solution has the form

G�w,t� = w + h�t� + log�1 + a�t�ew� �2�

with �a�t���1/2 �real� where

a =
Ce−t

�1 − a2�3/2 � Ce−t +
3

2
C3e−3t + ¯ , �3�

dh

dt
=

1 + a − a2

1 − a2 , h � t + C�e−t − 1� + ¯ , �4�

and C=a�0��1−a�0�2�3/2. This solution, shown in Fig. 1, de-

FIG. 1. The diffusion-limited dissolution of a corrugated surface
from left to right, for h�0�=0, a�0�=0.3, t=0,0.25,0.50, . . . ,2.50 in
Eq. �2�.
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scribes the decay of surface corrugations in electropolishing
�20,21,23,24� or the displacement of an inviscid fluid by an
immiscible viscous fluid in a Hele-Shaw cell �4,17,19�, and
closely resembles simulations of “mean-field DLE” �Fig. 2
of Ref. �19��.

The linear stability of a flat interface in DLD is contained
in the long-time limit of Eqs. �2�–�4�. With the dimensions
restored �w�wk, G�Gk, and t�kvt�, the interface’s shape
becomes sinusoidal,

x�y� � vt + Ce−kvt cos�ky� , �5�

for a Fourier mode of wave number k and mean interfacial
velocity v. We thus recover the classical result �19,21,23�
that kv is the exponential decay rate of mode k, as observed
in the experiments �24�.

Outward dissolution of cloverlike shapes. Next we con-
sider the continuous analog of IDLA:DLD in a radial geom-
etry driven by a constant diffusive flux from the origin. This
could model quasisteady melting of an infinite solid around a
point source of heat, or the injection of a viscous fluid into a
Hele-Shaw cell, displacing an inviscid fluid. The radial PG
equation is �3,5�

Re�wg�gt� = 1 on �w� = 1, �6�

where z=g�w , t� is a univalent mapping of the interior of the
unit disk. A tractable case is the cloverlike �N−1�-fold per-
turbation of a circle,

g�w,t� = a1�t�w + aN�t�wN, �7�

first analyzed by Meyer for the �time-reversed� Hele-Shaw
problem �14�. For a1�0�=1 and 0�c=aN�0��1/N �real�, the
solution has the implicit form,

a1
2 + NaN

2 = 1 + Nc2 + 2t and a1
NaN = c . �8�

Since a1�t� increases to � from a1�0�=1 and aN�t� decreases
to 0 from aN�0�=c�1/N�1, the following recursion con-
verges very quickly,

a1 = �2t + 1 + Nc2�1 − a1
−2N� , �9�

and yields an asymptotic approximation upon recursive sub-
stitution. An example shown in Fig. 2 illustrates the rapid
smoothing of a four-leafed clover shape.

From Eqs. �8� and �9� we see that the �N−1�-fold radial
perturbation decays as a power-law, aN� t−N/2, in contrast to
the exponential decay of perturbations of a flat interface. We
conjecture that the stochastic interface in IDLA is asymptotic
to the continuous DLD solution above, up to small logarith-
mic fluctuations �25�, where wN is the smallest perturbation
in the initial cluster shape. In general, the continuous dynam-
ics of DLD may also accurately approximate the ensemble-
averaged stochastic dynamics of IDLA, which is not the case
for DLA and other unstable aggregation processes �9�.

An explicit solution is possible for N=2. In that case, Eq.
�8� reduces to a depressed cubic �26�, a2

3+3pa2=2q, solved
by the formula of Cardano and dal Ferro,

a1 = �3 q + �q2 − p3 + �3 q − �q2 − p3, �10�

where p=−�t+c2+1/2� /4 and q=−c /4.

Inward dissolution of starlike shapes. Next we briefly
consider inward DLD with a constant diffusive flux at infin-
ity, which simply is the time-reverse of Laplacian growth in
a radial geometry �5�. Now the map in Eq. �6� must be uni-
valent outside the unit disk, �w��1 with a Laurent expan-
sion, g�w , t�=�n=−�

1 an�t�wn. There are well-known solutions
for �N+1�-fold perturbations �15,16�,

g�w,t� = a1�t�w + a−N�t�w−N for �w� � 1, �11�

where, without loss of generality, a1�0�=1 and a−N�0�=c
�1/N is real. Again, the Laurent coefficients satisfy a pair of
nonlinear equations, which is most easily solved as a fixed-
point iteration,

a1 = �1 − 2t + Nc2�a1
2N − 1� and a−N = ca1

N. �12�

The only qualitative difference with outward DLD is that the
solid collapses to a point in a finite time, tc= �1−Nc2� /2. For
N=1, an ellipse �0�c�1� or circle �c=0� maintains its
shape during collapse,

g�w,t� =�1 −
t

tc
	w +

c

w

 . �13�

For N�1, the shape approaches a circle prior to collapse,
according to the asymptotic formula,

a1�t� � �2�tc − t� + Nc2�2�tc − t��N �14�

with a−N�t�=ca1�t�N. The collapse of a four-pointed shape
�N=3� is shown in Fig. 3.

Advection-diffusion-limited dissolution. The dynamics of
dissolution become more interesting when driven by non-
Laplacian �but conformally invariant �8�� transport processes

FIG. 2. Outward radial diffusion-limited dissolution driven by a
point sink at the origin for an initial four-lobed perturbation of a
circle. This exact solution is given by Eqs. �7�–�9� with N=5, c
=0.15, and t=0,0.2,0.4, . . . ,1.0.
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�7�, where the right-hand side of the PG equation �6� is re-
placed by the nonuniform, time-dependent flux to the inter-
face, ��w , t�. An important example is dissolution by
advection-diffusion in a potential flow, e.g., the erosion of
rock by flowing water, the evaporation of a fiber coating in a
flowing gas, or the melting of a solid column in a flowing
liquid. The time-reversed growth problem has been studied
extensively in the contexts of freezing �10–13� and
advection-diffusion-limited aggregation �7,9�, but it seems
that dissolution—which leads to collapse in finite time—has
not been analyzed. For a given initial shape and background
flow, when and where will collapse occur?

Consider a finite solid of constant concentration and arbi-
trary shape in a two-dimensional potential flow of zero con-
centration and uniform velocity far away. The relative impor-
tance of advection to diffusion is measured by the Péclet
number, Pe0=UL /D, for a background fluid velocity U, dif-
fusivity D, and length L. The time-dependent Péclet number,
Pe�t�=Pe0a1�t�, is defined by the conformal radius, a1�t�.
When the solid dissolves �a1�t�→0�, diffusion eventually
dominates, so it is natural to focus on the low-Pe limit.

The flux profile ��� ,Pe� on the absorber has been studied
extensively, and very accurate asymptotic approximations
are available �27�. �A numerical code in MATLAB is also at
http://advection-diffusion.net.� From the low-Pe approxima-
tion,

� �
I0�Pe�

K0�Pe/2�
ePe cos � − Pe	cos � + �

0

Pe

dt et cos � I1�t�
t 
 ,

�15�

which is uniformly accurate in angle � up to Pe=10−1, let us
keep only the leading terms,

� �
1 + Pe cos �

− log�Pe/4� − 	
− Pe cos � , �16�

where 	=0.577215. . . is Euler’s constant.
In the final stage of collapse where −log Pe
	, the inter-

face is asymptotically circular, g�w , t��a1�t�w. From Eq.
�16�, the radius in this regime satisfies, a1da1 /dt�
−1/ log a1, and thus has the asymptotic form,

a1 �� 4�t − tc�

log
1

t − tc
− log log

1

t − tc
+ ¯

. �17�

To describe the dynamics starting at small Pe and ending
just prior to collapse, it is reasonable to further set log Pe
�constant. In this intermediate regime, the interfacial
dynamics is given by �for a suitable choice of units�,

Re�wg�gt� = − 1 + ba1�t�cos � for w = ei�, �18�

which is interesting to study in its own right, as the simplest
case of a nonuniform flux profile �here, due to fluid flow�.
The cos � term has the effect of exciting new modes in the
shape of the dissolving solid, which are not present in the
initial condition. We will see that a circle, g�w ,0�=w, trans-
lates away from the flow, g�w , t�=w+a0�t�, as its upstream
side dissolves more quickly prior to collapse. It can also be
shown that an �N+1�-fold perturbation of a circle �11� will
translate and develop an N-fold perturbation, g�w , t�
=a1�t�w+a0�t�+a−N+1w−N+1+aN�t�w−N. Higher Fourier
modes in ��w , t� excite additional terms in the Laurent ex-
pansion of the shape, g�w , t�.

FIG. 4. Inward advection-diffusion-limited dissolution of a tilted
elliptical solid in a uniform background flow from left to right �c
=0.5i, b=0.8, t=0,0.04,0.08, . . . ,0.36,0.3749�. The major axis of
the ellipse remains oriented at � /4, while its center of mass moves
at an angle of � /6 relative to the background flow. At time tc

=0.375, the solid disappears at the point a0�tc�=0.4+0.2i.

FIG. 3. Inward radial diffusion-limited dissolution driven by a
sink at � for a four-pointed shape. This exact solution is given by
Eqs. �11� and �12� with N=3, c=0.3, and t=0,0.04,
0.08, . . . ,0.36,0.3649; the collapse occurs at tc=0.365.
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Collapse of a tilted ellipse in a uniform flow. To illustrate
these principles, let us consider a solid ellipse, g�w ,0�=w
+c /w �c�1�, which is tilted at an angle �= �arg c� /2 with
respect to a background flow in the positive x direction. Dur-
ing dissolution, the shape remains an ellipse, but its center of
mass, a0�t�, moves. An example is shown in Fig. 4.

The Laurent expansion is given by g�w , t�=a1�t�w+a0�t�
+a−1�t� /w, where a1�t� is real, but a0�t� and a−1�t� are com-
plex. Substituting into Eq. �18� and integrating shows that
the conformal radius has a square-root singularity,

a1�t� =�1 −
t

tc
, tc =

1 − �c�2

2
, �19�

since the area decreases linearly to zero �in the approxima-
tion of constant total flux�: A�t�=A�0�−2�t, where A�0�
=��1− �c�2�. The collapse time depends on the initial shape
through �c�. The slowest collapse, tc=1/2, occurs for a circle,
c=0, while the collapse time tends to zero for a very elon-
gated ellipse, �c�→1, regardless of orientation.

For a constant total flux, the collapse time tc does not
depend on the bias introduced by the flow velocity �through
b�, although the flow affects the time scale through the initial
Péclet number, Pe0. This is a consequence of the conformal
invariance of the transport process �7�, which causes the total
flux �Nusselt number� to depend only on the conformal ra-
dius �27�. Physically, dissolution is enhanced upstream just
as much as it is reduced downstream, causing any shape to

collapse in the same time as a circle �of the same conformal
radius�.

During dissolution, the ellipse keeps its shape and its ori-
entation with respect to the flow direction since a−1�t�
=ca1�t�. However, the center of mass moves away from the
flow, but also away from the end of the ellipse which pro-
trudes upstream. The velocity of the center of mass is con-
stant and in the 1+c direction,

a0�t� =
b�1 + c�t
1 − �c�2

. �20�

Note that the center of mass does not move along the major
axis of the ellipse at angle �, but instead at an oblique angle
� given by sin �= �c�sin�2�−��. The final collapse occurs at
the point, a0�tc�=b�1+c� /2. In the simplest case, c=0, a
circle maintains its shape while its center of mass translates
away from the flow at �dimensionless� velocity b until col-
lapse occurs at x=b /2 at time tc=b /2.

For general transport-limited dynamics �7�, predicting the
collapse seems like an interesting open question. A non-
trivial, but possibly tractable, first problem would be to cal-
culate the time and place of collapse for the model in Eq.
�18�. It would also be interesting to compare exact solutions
of such models to experiments, e.g., on melting, corrosion, or
electro-dissolution in a Hele-Shaw cell.

The author thanks J. Propp for an introduction to IDLA.
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