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Largest cluster in subcritical percolation

Martin Z. Bazant
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307

~Received 14 December 1999!

The statistical behavior of the size~or mass! of the largest cluster in subcritical percolation on a finite lattice
of sizeN is investigated~below the upper critical dimension, presumablydc56!. It is argued that asN→` the

cumulative distribution function converges to the Fisher-Tippett~or Gumbel! distribution e2e2z
in a certain

weak sense~when suitably normalized!. The mean grows assj* log N, wheresj* (p) is a ‘‘crossover size.’’ The
standard deviation is bounded nearsj* p/A6 with persistent fluctuations due to discreteness. These predictions
are verified by Monte Carlo simulations ond52 square lattices of up to 30 million sites, which also reveal
finite-size scaling. The results are explained in terms of a flow in the space of probability distributions asN
→`. The subcritical segment of the physical manifold (0,p,pc) approaches a line of limit cycles where the
flow is approximately described by a ‘‘renormalization group’’ from the classical theory of extreme order
statistics.

PACS number~s!: 64.60.Ak, 02.50.2r
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I. INTRODUCTION

In the past 50 years, percolation has become the cano
model of quenched spatial disorder@1#. Among its many
areas of application are polymer gelation, hopping cond
tion in semiconductors, and flow in porous media@2#. Perco-
lation has also attracted the attention of mathematicians
cause it offers challenging problems in probability theory
relevance to statistical physics@3,4#. Since rigorous results
are often not easily obtained, however, computer simula
has played a central role in the motivation and testing of n
theoretical ideas@5#.

Most analytical and numerical studies have examined
critical point (p5pc) where the correlation lengthj(p) di-
verges, but here we focus on subcritical percolationp
,pc) characterized byj,`. In this case, it is known tha
the cluster-size distributionns(p), the number of clusters o
size ~or mass! s per site of an infinite hypercubic lattice o
coordination z, decays exponentially for allp,1/(z21)
,pc @6,7#

logns ; 2s as s→`, ~1!

wherean;bn means ‘‘an scales asbn , ’’ or more precisely

0, lim inf
n→`

an

bn
< lim sup

n→`

an

bn
,`. ~2!

~The quantityPs5nss, which is the probability that the ori
gin is part of a cluster of sizes, is also sometimes called th
‘‘cluster-size distribution’’@6,7#.! The total number of finite
clusters per lattice site at the critical pointnc[(s51

` ns(pc) is
known analytically ford52 bond percolation@8,9# and nu-
merically for site and bond percolation for various lattices
d52 andd53 @12#. Universal finite-size corrections tonc
have also been studied extensively@10–13#.

Beyond the rigorous result~1!, it is believed that the
cluster-size distribution decays exponentially for allp,pc
with a characteristic sizesj(p) and a power-law prefactor

ns;s2ue2s/sj as s/sj→`, ~3!
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where the exponentu is supposed to be independent ofp
with u51 for d52 andu53/2 for d53, respectively@1#.
The quantitysj in Eq. ~3! is called the ‘‘crossover size’’
since large clusters (s@1) of size much smaller thansj be-
have ‘‘critically,’’ while much larger clusters behave ‘‘sub
critically,’’ as explained below. Because large clusters
fractal objects, the crossover size and the correlation len
are related bysj}jD, whereD,d is the fractal dimension
of the infinite cluster atp5pc .

In contrast to the cluster-size distribution, relatively litt
is known about the size of the largest clusterS(N) in a finite
system of sizeN5Ld for p,pc , with the notable exception
of the recent work of Borgset al. @14#. ~Our notation for the
random variableS(N) is explained below.! It is widely be-
lieved that the mean largest-cluster sizemN[E@S(N)# scales
as mN}sj logN for p,pc . This follows from the heuristic
argumentNnm'1, which supposes that the largest clus
can be placed independently at any site in the lattice@1#.
~This useful idea is extended significantly in Sec. II below!
Recently, from certain scaling axioms verified ford52 and
believed to hold ford<dc56, Borgset al. have proved the
somewhat weaker statementmLd /j8D; log(L/j8) as L/j8
→`, or equivalently

mN /sj8 ; log~N/sj8! as N/sj→`, ~4!

wherej8(p) is another correlation length defined in terms
‘‘sponge-crossing probabilities’’ andsj8[j8D is a corre-
sponding crossover size@14#. ~Note thatd<dc is assumed
throughout this paper.!

In applicationsS(N) provides a measure of the maximu
connectivity of a random medium, which is of fundamen
interest in the subcritical regime. From a theoretical point
view, the ‘‘strength’’~or concentration! of the largest cluster
S(N) /N plays the role of an order parameter since its e
pected value in the ‘‘thermodynamic limit’’

P`~p!5 lim
N→`

mN /N ~5!
1660 ©2000 The American Physical Society



n
th
u

th

-
in

a-

-

e

rc
ry
in
a
-

ild
r

a
lin
e

ic
e

t
.

-
ite
e
a

e
h of
fre-

assy

-
a-
of a
bar-

er
ran-
rco-
sub-
to

are

at
ta-
ed

ela-

ns
the

xpo-
-

f
i-
u-

V
on

PRE 62 1661LARGEST CLUSTER IN SUBCRITICAL PERCOLATION
has a discontinuous slope atp5pc with P`(p<pc)50 and
P`(p.pc).0. Beyond the limiting behavior of the mea
mN , however, a much more complete understanding of
percolation transition is contained in the cumulative distrib
tion function ~CDF! of the largest-cluster size

FN~s![Prob~S~N!<s! ~6!

which also describes all size-dependent fluctuations of
order parameter. In this sense, the behavior ofFN(s) near the
critical point fully describes the ‘‘birth of the infinite clus
ter’’ @14#. Beginning with the same scaling axioms as
deriving ~4!, Borgset al. have also proved thatFN(s) varies
significantly only on the scale of the mean forp,pc

lim
e→0

lim inf
N→`

@FN„e
21sj8 log~N/sj8!…2FN„esj8 log~N/sj8!…#51.

~7!

It is believed that Eqs.~4! and ~7! would also hold with the
usual definition ofj as the decay length of the pair correl
tion function @14#, so we expectj8}j andsj8}sj .

Although Eqs.~4! and~7! provide important rigorous jus
tification for the logarithmic scaling of the meanmN , the
shape of the distributionFN(s) and scaling of the varianc
sN

2 [Var@S(N)# appear not to have been studied~either nu-
merically or analytically! before this work. Moreover, no
connections have yet been made between subcritical pe
lation and the classical limit theorems of probability theo
Such fruitful connections, which are known to expla
Gaussian fluctuations away from the critical point in therm
phase transitions@15#, would presumably come from the sta
tistical theory of extremes@16–20#.

The article is organized as follows. First, in order to bu
the reader’s physical intuition, simple approximations a
made in Sec. II to derive the asymptotic behavior ofFN(s)
and propose finite-size scaling laws formN andsN . In Sec.
III, these predictions are verified for thed52 square lattice
with computer simulations, which also provide empiric
functional forms and numerical parameters for the sca
laws. Finally, in Sec. IV the preceding results are explain
in terms of a ‘‘subcritical renormalization group.’’

II. SIMPLE ARGUMENTS

A. Connection with extreme order statistics

Consider site percolation on a periodic, hypercubic latt
of N5Ld sites. Since any cluster can be uniquely identifi
with the site nearest to its center of mass~of lowest index, if
there is more than one such site!, we can define a set ofN
independent, identically distributed~IID ! random variables
~RV! $Si% such thatSi5s if the largest cluster centered a
site i has sizes and Si50 if no cluster is centered there
Clearly, the most probable value ofSi is zero, since the num
ber of clusters is always much less than the number of s
and it is exceedingly rare to have more than one cluster c
tered at the same site, e.g., when one cluster encircles
other.

We seek the CDFFN(s) of the ‘‘extreme order statistic’’
@19,20#
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S~N![ max
1< i<N

Si ~8!

in N→` with p,pc fixed. Extreme order statistics hav
many classical applications, such as the fracture strengt
solids, the occurrence of manufacturing defects and the
quency of extreme weather@19#. More recently in statistical
physics, extreme order statistics have been applied to gl
relaxation on fractal structures@21#, the dynamics of elastic
manifolds in random media@22,23#, the random energy
model @24,25#, decaying Burgers turbulence@24#, dispersive
transport in amorphous materials@26#, and random sequen
tial adsorption@27#. In such applications, extreme order st
tistics are used to describe the most important features
random energy landscape, e.g., lowest activation energy
riers.

In this work, we show that the theory of extreme ord
statistics also has relevance for the geometric features of
dom systems. In one dimension, the largest cluster in pe
lation bears some resemblance to the longest increasing
sequence of a random permutation, which is known
exhibit similar limiting statistics~see Ref.@28# for a recent
review!, although the former problem is much simpler@29#.
Of course, the interesting cases of percolation, however,
in higher dimensions, which we address here.

B. A first approximation based on independence

The main difficulty in the percolation problem forS(N) ,
aside from the complexity of the parent distribution, is th
the RV $Si% are correlated. Much is known about order s
tistics of IID RV @19#, but dependent RV have been studi
mostly in cases much simpler than percolation@20#. Never-
theless, considerable insight is gained by neglecting corr
tions in deriving an asymptotic form ofFN(s), which will be
justified below in Sec. IV. As one might expect, correlatio
in the subcritical regime are too weak to have an effect in
thermodynamic limit.

WheneverN@sj , which holds in the limitp→0 for fixed
N@1, cluster sizes comparable to the system size are e
nentially rare according to Eq.~1!. Since correlations be
tween the RV$Si% arise due to excluded volume effects~see
below!, Cov@Si ,Sj # is exponentially small for most pairs o
sites ~i,j! in this limit. Therefore, as a natural first approx
mation we assumeN independent selections from a contin
ous parent distribution with exponential decay

Prob~Si<s!;12e2s/sj* as s→`, ~9!

wheresj* (p) is an effective crossover size~see below!. Note
that the asymptotic distribution of the maximum of IID R
is entirely determined by the tail of the parent distributi
@17,18#, so the complicated behavior ofSi for small sizes is
irrelevant. From the method of Crame´r @19# applied to Eq.
~9!, we quickly find

FN~s!;~12e2s/sj* !N5S 12
e2~s2sj* log N!/sj*

N
D N

~10!

which implies

lim
N→`

GN~z!5e2e2z
, ~11!
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where

GN~z![FN~sj* z1sj* logN!5Prob~S~N! /sj* <z1 logN!
~12!

is a normalized CDF. Therefore, in this simple approxim
tion the largest-cluster size is sampled from the Fish
Tippett distribution @30# with CDF e2e2z

, mean g
50.5772̄ ~Euler’s constant! and variancep2/6 @17#; the
mean largest-cluster size grows logarithmicallymN /sj*
; logN1g, while the standard deviation converges to a c
tain constantsN /sj* →p/A6. Comparing with Eq.~4!, we
can view the leading-order asymptotic behavior of the m

mN;sj* logN as N→` ~13!

as defining the effective crossover sizesj* ~should it exist!,
which is presumably proportional to the others introduc
abovesj* }sj8}sj .

C. Corrections due to discreteness

There appears to be a problem with Eq.~11! for percola-
tion on a lattice: A discrete CDF~which is a piecewise con
stant function! cannot converge to a continuous functio
when scaled by a bounded standard deviation. In fact, sins
in Eqs. ~9!, ~10! is restricted to integer values, the limit i
Eq. ~11! does not exist. Instead, if we replaces by @s# ~the
nearest integer tos! in Eq. ~9!, then the normalized CDF
GN(z) defined by Eq.~12! approaches a quasiperiodic s
quence of piecewise constant functions with period roug
1/sj* in logN,

GN~z!5S 12
2e2z1dN~z!/sj*

N
D N

;e2e2z1dN~z!/sj
*

as N→`,

~14!

where

dN~z![sj* ~z1 logN!2@sj* ~z1 logN!#. ~15!

~The limiting sequence is strictly periodic only whene1/sj* is
an integer.! The piecewise constant functions in Eq.~14!
converge weakly in the sense that asN→` the ‘‘step edges’’
periodically trace out two continuous functions

G~z![ lim sup
N→`

GN~z!5e2e2z21/~2sj* !
, ~16a!

G~z![ lim inf
N→`

GN~z!5e2e2z11/~2sj* !
~16b!

which define a stationary ‘‘envelope’’ of width 1/sj* about
the Fisher-Tippett distribution. If we leta be the lattice spac
ing ~which we take to be unity!, then the envelope width
would be ad/sj* , showing that the lack of convergence
controlled by the relative importance of discreteness on
scale of the crossover size. Note that the continuous di
bution ~11! is recovered in the limitp→pc ~taken after the
limit N→`!

lim
p→pc

G~z!5 lim
p→pc

G~z!5e2e2z
, ~17!
-
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as the crossover size diverges and hence the envelope w
vanishes.

For sj* ,`(p,pc), the continuum result for the scalin
of the mean~13! still holds, but the standard deviation ha
persistent fluctuations due to discreteness

sN /sj* ;p/A61eN as N→`, ~18!

whereeN is periodic in logN with period 1/sj* . Because the
limiting sequence~14! fluctuates periodically about a certa
fixed distribution, it can be viewed as a ‘‘limit cycle’’ in
some appropriate Banach space~see below!. Intuitively, the
distribution conforms asymptotically to the Fisher-Tippe
distribution as closely as possible within the constraints
posed by discreteness.

D. Corrections due to correlations

The simple derivation of Eq.~14! should be valid when-
ever sj!1 ~or sj8!1 or sj* !1! because then even a sing
site qualifies as a large cluster. Ifsj'1, however, non-
negligible correlations among the RV$Si% arise because a
cluster of sizesj excludes on the order ofsj nearby sites
from being part of any other cluster. Ifsj@1, on the order of
jd}sj

d/D@sj sites are excluded by such a cluster since
engulfs many smaller, exterior regions due to its fractal
ometry (D,d). Therefore, correlations can be included he
ristically by replacingN with N/sj

a in Eq. ~14! which simply
shifts the mean by a constantDm/sj52a logsj without af-
fecting the leading-order scaling behavior~13!, wherea50
if sj!1, a51 if sj'1 anda5d/D if sj@1. Note that the
effect of correlations is negligible forN@sj . Correlations
do, however, control the finite-size scaling at smaller valu
of N.

E. Finite-size scaling

There are only two relevant length scales in percolati
the correlation lengthj and the lattice spacinga ~normalized
to unity!, or equivalently two mass scales, the crossover s
sj ~or sj8 or sj* ! and the volume of a lattice cellad ~also
normalized to unity!. If sj@a, then discrete lattice effects o
‘‘large’’ clusters with sizes on the order ofsj or larger be-
come negligible, and the system has only one relevant m
scalesj . As a consequence of the single scalesj in the limit
p→pc , any function ofN andsj is expected to collapse into
a self-similar form interpolating between a critical powe
law in N valid for 1!N!sj and a subcritical function of
N/sj

a ~for some constanta! valid for 1!sj!N. For ex-
ample, becausemN(p) and sN(p) have the dimensions o
sj , we have

mN /sj5F~N/sj
a!, ~19a!

sN /sj5C~N/sj
a! ~19b!

for some universal functionsF(x) and C(x) which do not
depend onp. In the critical regimeN!sj , it is expected that
mN}LD5ND/d and that bothmN andsN are asymptotically
independent ofsj , which implies a5d/D and F(x)
}C(x)}sD/d ass→0. From Eqs.~7! and ~14!, we also ex-
pectF(x); logx andC(x);1 asx→`.
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PRE 62 1663LARGEST CLUSTER IN SUBCRITICAL PERCOLATION
The classical idea behind the finite-size scaling ans
~19! can be understood as follows. A large subcritical clus
~on an infinite lattice! intersected with a finite box of sideL
exhibits a crossover from ‘‘critical scaling’’ at small scale
a!L!j ~where a portion of it typically spans the box! to
‘‘critical scaling’’ at large scalesL@j ~where it is entirely
contained within the box!. Note that the lattice spacinga is
irrelevant as long asj@a; all systems with the same rati
L/j should have equivalent statistics, up to small correcti
of order a/j due to discreteness. Of course, asp→0 the
finite-size scaling ansatz breaks down, and discrete eff
eventually dominate over correlation effects, as explain
above.

III. NUMERICAL RESULTS

A. Methods

In order to test the predictions of the previous secti
numerical simulations are performed for site percolation
periodicd52 square lattices of sizesN552, 132, 312, 742,
1292, 1752, 4152, 9822, 23242, and 55002 with p
50.05,0.1,0.15,...,0.5 @31#. Note that the value pc
50.592 746 060.000 000 5 has been determined numerica
in this case@32#. For each~N,p!, betweenM523105 and
M5108 samples are generated, and clusters are identifie
a recursive ‘‘burning’’ algorithm@5,33#. With these methods
trillions of clusters are counted in several months of C
time on Silicon Graphics R-10,000 processors.

In performing such large-scale simulations, special att
tion must be paid to the choice of~pseudo!random-number
generator@32,34#. With the standard 32-bit generator rand~ !,
the largest observed cluster sizes tend to come in multi
of integers>2 ~after accumulating data from a very larg
number of ‘‘random’’ realizations!, which indicates that the
periodicity of the generator is having an artificial effect.
all the simulations reported here, however, the 48-bit gen
tor drand48~ ! is used, and the numerical cluster-size dis
butionsns(p) appear to be free of any systematic errors.

B. Largest-cluster distributions

The measured largest-cluster distributions are in v
close agreement with the predictions of Eqs.~14!–~16! for
all p,pc , as shown in Fig. 1 for the casep50.15. In order
to check the shape of the CDF againste2e2z

, the distribu-
tions are normalized to have meang and variancep2/6,
which differs somewhat from the normalization given abo
in Eq. ~12!. As predicted by Eq.~16! the discrete CDFs in
Fig. 1~a! lie almost perfectly within a continuous envelop
between two Fisher-Tippett distributions. Likewise, the d
crete probability density functions~PDF! shown in Fig. 1~b!
for p50.15, which are simply the step heights in Fig. 1~a!,
exhibit the expected small fluctuations about the Fish
Tippett PDFe2z2e2z

due to discreteness. Using the val
sj* (0.15)51.313 ~determined independently below!, the
width of the envelope is seen to be very close to 1/sj* . Note
that the CDFs in Fig. 1~a! are shifted slightly outside the
envelope byeNA6/(psj* ) because sizes have been scaled
sNA6/p rather than bysj* . Overall, the agreement betwee
Eqs.~14!–~16! and the simulation results is excellent for a
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the values ofp considered here, thus lending some crede
to the approximations of the previous section.

C. Cluster-size distributions

In order to test the finite-size scaling laws~19!, numerical
values of the crossover sizesj(p) are obtained by fitting the
cluster-size distributionsns(p) to Eq. ~3!. When compiling
these distributions, unwanted finite-size effects are m
mized by requiring thatN1/d exceed the largest observe
cluster size~for a given value ofp!. With this restriction, a
single cluster cannot directly see the periodic boundary c
ditions. Motivated by Eq.~3!, the tails of the cluster-size
distributions are fit to

logns5C2u logs2s/sj for s.stail . ~20!

Fitting to such an asymptotic form requires some care: T
starting point of the fitstail must be large enough that th
asymptotic behavior is dominant but also small enough t
the fit is not degraded by statistical fluctuations. In this wo
stail is systematically chosen whereudsj /dstailu, udu/dstailu
andx2 are minimal (x2'1). The fit is deemed reliable whe
the value thus obtained atstail is contained within all the
other confidence intervals for fits withstail8 .stail . Because
the raw distributions have bin counts ranging from over 111

at size 1 down to 0 and 1 in the large-size tails, the fitti
cannot be done by the usual least-squares method, w
assumes normally distributed errors. Instead, the parame
(C,u,sj) are fit to thens(p) data by Poisson regression

FIG. 1. The discrete CDF in~a! and PDF in~b! of the largest-
cluster size forp50.15 andN59822, 24342, 55002, normalized to
have meang and variancep2/6. The CDFs in~a! are compared with
Eq. ~16!, wheresj* 50.90sj(0.15)51.313.
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1664 PRE 62MARTIN Z. BAZANT
which properly handles the discrete, rare events in the
~using the package X-Lisp-Stat@35#!.

The fitting results are given in Table I. Fitting errors gro
as p→0 because less data is available to accurately res
the tail of ns(p) and also asp→pc due to critical slowing
down. Although the results forsj should be reliable, the
results foru ~not needed in this work! could change some
what if different corrections to scaling were considered@5#.
Therefore, the observed small deviation ofu from its conjec-
tured value@1# of 1 ~for all 0<p,pc! may only be an arti-
fact of the fit.

D. Scaling of the mean and variance

As shown in Figs. 2–3, the collapse of the mean a
standard deviation of the largest-cluster size plotted
mN /sj and sN /sj versusN/sj

d/D ~using D591/48 @1#! is
nearly perfect forp>0.30. As discrete-lattice effects becom
important at smaller values ofp, however, the data drifts of
the universal curves, and the tiny oscillations predicted
Eq. ~18! begin to be visible in the standard deviation. The
effects are most pronounced whensj,1(p<0.10) since
then the interpretation ofsj

d/D as an excluded volume i
meaningless and the second length scalea51 cannot be ig-
nored. Indeed, whenm/sj and s/sj are plotted versus
N/max$1,sj

d/D%, as shown in Fig. 4, the data forsj,1 lies
much closer to the universal curves, consistent with
simple arguments given above in Sec. II D.

From the simulation results withsj@1, the universal scal-
ing functions in Eq.~19! for the d52 square lattice can b
determined numerically. Forp>0.30, the scaling function
F(x) for the mean is fit to the empirical form

F~x!5Fa21
a3

~a41x!a5G logF11S x

a1
D D/dG , ~21!

where the best parameter values~in the least squares sens!
are a158.160.5, a250.95460.005,a353.360.2, a451.0
60.3, anda550.6160.2. The collapsed data in Fig. 2 show
a smooth crossover between the expected critical and
critical scaling lawsF(x);30.3xD/d as x→0 and F(x)
;a2 log@11(x/a1)

D/d#;(a2D/d)logx50.90 logx asx→`, re-
spectively. The simulation resultmN;0.90sj logN justifies
our definition of the effective crossover sizesj* in Eq. ~13!

TABLE I. The measured correlation sizesj(p) and exponent
u(p) for site percolation on thed52 square lattice.

p sj u

0.05 0.60360.005 1.060.1
0.10 0.97660.001 0.9760.05
0.15 1.45960.001 0.9960.02
0.20 2.15660.001 1.0360.01
0.25 3.22660.001 1.07560.005
0.30 4.98760.002 1.10960.004
0.35 8.15660.005 1.12960.005
0.40 14.6360.03 1.1360.03
0.45 31.460.1 1.2060.03
0.50 91.560.2 1.2060.03
il

ve

d
s

y
e

e

b-

and for the case of the square lattice relates it to the cr
over sizesj in Eq. ~3! via sj* 50.90sj .

Although the standard deviation appears to be boun
from the data shown in Fig. 3, we can only safely conclu
sN5o(log logN) because the subcritical portion of the da
only spans five decades inN/sj

d/D ~due to memory restric-
tions!. Following the derivation in the next section, howeve
it can be proved@43# that sN5O(1) follows from very rea-
sonable assumptions related to Eqs.~4! and ~7!. Therefore,
for p>0.30 the scaling functionC(x) for the standard de-
viation is fit to the empirical form

C~x!5b2F12
1

11b3 log~11~x/b1!D/d!G , ~22!

where b158.460.8, b251.2360.01, and b351.560.1.
Once again, as shown in Fig. 3, the collapsed data forsj

@1 fits closely the expected scaling lawsC(x);0.25xD/d as
x→0 and C(x);b251.23 as x→`. Note that s/sj*
;1.23/0.9051.36 for sj@1, which differs from p/A6
51.2825̄ by only 6.5%.

IV. SUBCRITICAL RENORMALIZATION

A. Flow in the space of distributions

There is a profound connection between renormalizati
group ~RG! concepts from the theory of critical phenome

FIG. 2. The mean largest cluster size plotted asm/sj versus
N/sj

d/D on a log-linear plot in~a! and a log-log plot in~b!. The solid
line fits thep>0.30 data to Eq.~21! with asymptotic forms given
by the dotted lines. The raw data is in the inset of~a!; the legend in
~b! applies throughout.
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@36,37# and the limit theorems of probability theory throug
what one might call ‘‘renormalization of the order param
eter’’ ~as opposed to ‘‘renormalization of the coupling co
stant’’ @38,39#!. For many second-order phase transitions,
appropriate order parameter is a sum or average of ident
correlated RV indexed by the sites of a lattice, e.g., the t
magnetization in the Ising model. In such cases the cen
limit theorem for IID RV describes the behavior of the ord
parameter away from the critical point, where correlatio
are unimportant, and the mathematical concept of a ‘‘sta
distribution’’ @40–42# amounts to a fixed point of an RG i
the space of probability distributions of the order parame
@15,41#.

FIG. 3. The standard deviation of the largest cluster size plo
exactly as in Fig. 2. In this case, thep>0.30 data is fit to Eq.~22!.

FIG. 4. The mean largest-cluster size plotted asm/sj versus
N/max$1,sj

d/D%.
e
al,
al
al

s
le

r

In the case of percolation, although the appropriate or
parameter is not the sum but rather the maximum of cer
RV, RG concepts can still be applied. Consider the CDF
the largest-cluster sizeFN(s), which we normalize~or
rather, successively ‘‘renormalize’’! as

GN~z![FN~sNz1mN!5Prob~ZN<z!, ~23!

where

ZN[
S~N!2mN

sN
~24!

is a RV with zero mean and unit variance. Note that sin
S(N) assumes only integer values,GN(z) is a piecewise con-
stant function ofzPR with discontinuities at a countable se
of points$(s2mN)/sNusPN% with equal spacing 1/sN .

The discrete mappingGN(z) can be viewed as a flow with
increasingN ~in some appropriate Banach space, e.g.,Lp!
which advects distributions towards various possible limiti
behaviors. The subcritical portion of the flow is depicted
Fig. 5. For eachNPN, the set of normalized distribution
$GN% parametrized by 0<p<1 forms a one-dimensiona
manifold, which we call the ‘‘physical manifold.’’ The end
of the physical manifold corresponding top50 andp51 are
pinned at trivial fixed points, which are unit step functio
centered atx50 andx5N, respectively~before normaliza-
tion!. Although these fixed points affect the nearby flo
every trajectory with 0,p,1 eventually escapes towar
one of three possible limiting behaviors for sufficiently lar
N: subcritical (0,p,pc), critical (p5pc), or supercritical
(pc,p,1). The latter two cases will be considered els
where; here we focus on subcritical behavior.

According to the Heuristic arguments in Sec. II and t
simulation results in Sec. III, the subcritical segment of t
physical manifold is advected into a line of limit cycle
~12!–~18! around the Fisher-Tippett distribution once th

d

FIG. 5. Sketch of the trajectories~dashed lines! of the normal-
ized largest-cluster size CDFGN(z) ~in some appropriate function
space! for p<pc . Arrows indicate directions of flow asN→`. The
physical manifold is shown forN51 and three larger values ofN
~solid lines!. Also shown are three fixed points~thick dots!, the
subcritical envelope manifolds~short dotted lines! and the crossover
manifold ~long dotted line!.
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system size exceeds the crossover sizeN@sj , or more pre-
cisely,N@sj

d/D(L@j). The envelope manifoldsGI andḠ for
0,p,pc defined in Eq.~16! enclose the limit cycles. As
sketched in Fig. 5, the ‘‘radius’’ of each limit cycle grows a
1/sj(p) in the limit p→0, which reflects the influence of th
p50 fixed point representing discreteness. In the oppo
limit p→pc @in the subcritical regimesj

d/D5o(N)#, the en-
velope manifolds meet at a fixed point corresponding to
continuous Fisher-Tippett distribution.

The approach to a fixed point is generally characteri
by self-similarity, which holds ‘‘universally’’ for all trajec-
tories leading to it. In the present case of a lattice-ba
system, this asymptotic self-similarity can described by
real-space RG which relates the CDFGN(z) for a system of
size N5mn to the CDF for each ofn identical, contiguous
cells ~or blocks! of sizem

Gmn5RnGm ~25!

in the limit m→` with n fixed, as shown in Fig. 6. As usua
the renormalization operators form an Abelian semigro
under compositionRmn5Rm+Rn5Rn+Rm . These kinds of
arguments are typically applied to a coupling constant in
vicinity of a critical fixed point, where they capture the effe
of long-range correlations@37#. They apply equally well,
however, to the order-parameter distribution at a subcrit
fixed point, where correlations disappear.

In a system exhibiting a phase transition, there is adiffer-
ent RG of the form~25! valid near each of the various fixe
points. As shown in Fig. 5, subcritical trajectories withsj

!1 pass by thep50 fixed point and quickly become en
snared in the subcritical limit cycles, which are described
a RG given below. Such trajectories never feel much in
ence from the critical fixed point because correlation effe
are dominated by discrete-lattice effects, due to proximity
the p50 fixed point. For larger values ofp,pc such that
1!sj,`, however, subcritical trajectories at first approa
the critical fixed point (1!N!sj

d/D) before crossing over to
the subcritical limit cycles (N@sj

d/D). This crossover behav
ior was demonstrated for the mean and variance abov
Figs. 2–3, but it also holds for the shape of the distributi

In the vicinity of the critical fixed point (1!N!sj
d/D),

trajectories obey a different RG reflecting the dominance
long-range correlations. The critical fixed point is unstable
the sense that subcritical and supercritical trajectories e

FIG. 6. Sketch ofn59 cells ~solid lines! used for subcritical
renormalization on a square lattice of sizeN5mn. Along with the
nine partitioning cells, one enlarged ‘‘supercell’’~dashed lines!
used in Ref.@43# to bound correlations for cluster sizes smaller th
s ~as described in the main text! is also shown.
te

e
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tually crossover to a different limiting behavior along th
direction of an unstable manifold. One such ‘‘crossov
manifold’’ shown in Fig. 5, which connects the critical an
subcritical fixed points, corresponds to the limitsN→` and
p→pc with N/sj

d/D→c for some constantc.0. Likewise,
the stable manifold converging to the critical fixed point co
responds to the limitN→` with p5pc .

B. The subcritical renormalization group

More than seventy years ago, Fre´chet@16# and Fisher and
Tippett @17# deduced the possible limiting distributions fo
extremes for IID RV with the following ingenious argumen
If one partitionsN5mn IID RV into n disjoint subsets con-
taining m RV each, then the largest of themn outcomes is
equal to the largest of then largest outcomes in each subs
of sizem

S~mn!5 max
1< i<n

S~m!
i , ~26!

whereS(m)
i is the largest outcome in thei th subset. Since the

S(m)
i are themselves IID RV, the CDFFN(s) of S(N) obeys

the exact recursion

Fmn~s!5Fm~s!n ~27!

for all m and n (m1/d,n1/dPN). In terms of the normalized
distribution ~23!, the recursion takes the form

Gmn~z!5GmS smnz1mmn2mm

sm
D n

, ~28!

which is essentially the subcritical RG for the normaliz
largest-cluster size distribution in percolation, but we m
also address correlations and discreteness. In going from
~27! to Eq. ~28! we have defined a ‘‘renormalized’’ order
parameter distribution for percolation valid near the subcr
cal fixed point, in much the same way that the Kadano
Wilson block-spin construction defines a renormaliz
coupling constant for the Ising model valid near the critic
fixed point @37#.

The power of the cell-renormalization approach is tha
provides a natural way to bound correlations and show
the subcritical limit cycles in percolation are described by
same RG as in the case of independent random varia
~except for the subtle, persistent fluctuations due to discr
ness described earlier!. This is demonstrated rigorously i
Ref. @43#, but here we simply explain the basic ideas of the
authors. The strategy of the proof~inspired by Fisher and
Tippett! is to fix the number of cellsn.1 and let the size of
each cellm diverge. Since correlations decay exponentia
with distance in the subcritical regime, it seems plausi
that the ‘‘renormalized’’ cell random variablesS(m)

i would
become uncorrelated~as the surface-to-volume ratio van
ishes! in the limit m→`, at least if the dimension were no
too high (d<dc).

Precise bounds on the intercell correlations can be
tained as follows@43#. If the cells were independent~with
free boundary conditions! we would haveFmn(s)5Fm(s)n

as above, but due to correlations we have instead the u
bound
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TABLE II. Summary of solutions to the Fisher-Tippett equation. In the last column, parent proba
distributionsp1(x) in the basins of attraction of each fixed point are~roughly! described by their decay a
largex. ~See Refs.@18–20# for more details!.

Name G(z) Range an bn Basin of attraction

Fréchet e2z2a ~0, `! .1 0 power-law tails

Weibull e2(2z)a ~2`, 0! ,1 0 finite tails

Fisher-Tippett e2e2z ~2`, `! 1 logn exponential tails
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Fmn~s!<Fm~s!n ~29!

because joining then cells together~and thus allowing clus-
ters to connect and grow! can only increase the size of th
largest cluster~and thus decrease the probability that t
largest cluster has size<s!. A lower bound can be obtaine
by considering a set of ‘‘supercells’’~again with free bound-
ary conditions! formed by appending a ‘‘skin’’ oflinear
width s/2 to each of the original cells, as shown in Fig. 6.
the mass of the largest cluster intersected with each of th
overlapping supercells were independently< s, then the
largest cluster overall would also have mass<s ~because
even a linear chain of lengths would necessarily be com
pletely contained in one supercell!, which yields@45#

F ~m1/d1s!d~s!n<Fmn~s!<Fm~s!n. ~30!

These inequalities, which are valid for any dimensiond, are
the analogs of the Fre´chet-Fisher-Tippett ‘‘RG’’ ~27! for
subcritical percolation, and from them the Fisher-Tippett
havior of the subcritical limit cycles can be established@43#.
Heuristically, it is quite plausible that if the ‘‘typical’’ larges
cluster size, say withinz standard deviations of the mean

smn~z!5mmn1zsmn , ~31!

does not grow too fast, i.e.,smn(z)!m1/d! asm→` with n
and z fixed, then Eq.~30! should reduce asymptotically t
Eq. ~27!. Given the results of Borgset al. Eqs. ~4!–~7!, we
actually expect the much stronger boundsmn(z)
5O(logm). As explained below, this logarithmic scaling s
lects the Fisher-Tippett distributione2e2z

from among the
possible fixed points of Eq.~27!.

C. The subcritical fixed point

The subcritical fixed point is described by the classi
theory for extremes of IID RV@19,20#. Following Fisher and
Tippett @17#, let us assume for now that a continuous fix
point of Eq. ~28! exists pointwise for allz, i.e., GN(z)
→G(z) as N→` and p→pc such thatsj5o(N). In this
case, there must exist finite constantsan.0 andbn defined
by

lim
m→`

smn

sm
5an , ~32a!

lim
m→`

mmn2mm

sm
5bn ~32b!

such that the limiting distributionG(z) obeys the equation
@17#
se

-

l

G~z!5G~anz1bn!n ~33!

which was first discovered by Fisher and Tippett@44#. This
functional equation has exactly three solutions, given
Table II, up to trivial translations and rescalings ofz by
constants. In the case of IID RV the basins of attraction
these three fixed points, which depend only on the tail of
parent distribution, were first characterized by Gneden
@18#. In the case of percolation, we have argued above
the appropriate parent distribution has an exponential
which suggests that the Fisher-Tippett distribution is inde
the subcritical fixed point~again, ignoring discreteness!.

Still assuming that a continuous limiting distributionG(z)
exists, let us make the following additional assumptions:

mN;sj* logN, ~34a!

sN2sN215o~1/N! ~34b!

which are clearly supported by our numerical simulatio
and are consistent with the rigorous results~4! and~7!. These
scaling axioms are expected to hold for alld<dc . Note that
Eq. ~34b! implies sN5O(logN)5O(mN); with the fact that
sN must be an increasing sequence, it also impliesan51 for
all nPN ~see Ref.@43#!. From Eqs.~34a! and~32b!, we have

mmn2mm

sm
;

sj* logn

sm
→bn . ~35!

There are two possibilities:sm→` and sm→a for some
constanta.0. In the former case, we havebn50 and hence
anÞ1 ~see Table II!, which is a contradiction. In the latte
case,bn5(sj* /a)logn. Without loss of generality we can se
a5sj* ~since this simply amounts to rescalingz! and obtain
the equation

G~z!5G~z1 logn!n ~36!

whose only nontrivial solution ise2e2z
. This also implies

that the standard deviation converges to a constant pro
tional to the crossover size,sN→sj* Ap/6.

D. The subcritical limit cycles

Of course, the assumption of pointwise convergence t
continuous limiting distribution is wrong~e.g., see Fig. 1!.
Nevertheless, the conclusions of our simple derivation
not very different from those of a rigorous analysis includi
correlations and discreteness@43#. Note that although a lim-
iting distribution G(z)5 lim GN(z) does not exist, the
envelope functions GI (z)5 lim infGN(z) and Ḡ(z)
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5lim supGN(z) do exist. Assuming thatGI (z) andḠ(z) are
continuous@althoughGN(z) is not#, it can be shown from
Eq. ~34! that the envelope functions have the Fisher-Tipp
form

Ḡ~z2z1!5GI ~z2z2!5e2e2z
~37!

for some constants2`,z1<z2,` and that the variance i
bounded on the scale of the crossover sizesm /sj* 5O(1).
The latter result supports our assumption above in fitting
simulation data to Eq.~22!. The reader is referred to Re
@43# for a detailed proof of Eq.~37!, which follows the RG
strategy outlined here. The simple arguments and simula
results in Secs. II and III also lead us to conjecture that
‘‘envelope width’’ z22z1 is simply set by the ‘‘strength’’ of
the discreteness, i.e., the ratio of the lattice cell volumead

51) to the crossover size

z22z15
1

sj*
, ~38!

which vanishes in the limitp→pc .
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V. CONCLUSION

In this article, a simple theory of the finite-size scaling
the largest-cluster size in subcritical percolation is presen
and supported by numerical simulations. As expected aw
from a critical point, correlations are weak enough tha
classical limiting distribution from the theory of extremes
independent random variables is recovered once the sy
size greatly exceeds the correlation length. This behavior
be easily understood via a cell-renormalization schem
which also provides a suitable framework for rigorous ana
sis. Work is underway to extend this work to the supercriti
case, where another classical limiting distribution arises,
the critical case, which involves a new universality class.
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