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The statistical behavior of the sizer mass$ of the largest cluster in subcritical percolation on a finite lattice
of sizeN is investigatedbelow the upper critical dimension, presumably=6). It is argued that al—« the

cumulative distribution function converges to the Fisher-TippettGumbe)] distributione™ ¢ “in a certain
weak senséwhen suitably normalizedThe mean grows @ logN, wheresg(p) is a “crossover size.” The
standard deviation is bounded n@m/\/é with persistent fluctuations due to discreteness. These predictions
are verified by Monte Carlo simulations @2 square lattices of up to 30 million sites, which also reveal
finite-size scaling. The results are explained in terms of a flow in the space of probability distributiNns as
—oo, The subcritical segment of the physical manifold(p<p.) approaches a line of limit cycles where the
flow is approximately described by a “renormalization group” from the classical theory of extreme order

statistics.

PACS numbdps): 64.60.Ak, 02.50-r

I. INTRODUCTION

where the exponené is supposed to be independent pf

with =1 for d=2 and #=3/2 for d=3, respectively1].

In the past 50 years, percolation has become the canonic@ihe quantitys, in Eqg. (3) is called the “crossover size”

model of quenched spatial disordgk]. Among its many

since large clusterssg1) of size much smaller thasy be-

areas of application are polymer gelation, hopping conduchave “critically,” while much larger clusters behave “sub-

tion in semiconductors, and flow in porous mefa Perco-

critically,” as explained below. Because large clusters are

lation has also attracted the attention of mathematicians béractal objects, the crossover size and the correlation length
cause it offers challenging problems in probability theory ofare related by, &P, whereD<d is the fractal dimension

relevance to statistical physi¢8,4]. Since rigorous results

are often not easily obtained, however, computer simulation

of the infinite cluster ap=p..
In contrast to the cluster-size distribution, relatively little

has played a central role in the motivation and testing of newis known about the size of the largest clusSgy, in a finite

theoretical idea$5].

system of size\=L{ for p<p,, with the notable exception

Most analytical and numerical studies have examined thef the recent work of Borgst al.[14]. (Our notation for the

critical point (p=p.) where the correlation lengté(p) di-
verges, but here we focus on subcritical percolatign (
<p.) characterized by¥<e. In this case, it is known that
the cluster-size distributiong(p), the number of clusters of
size (or mas$ s per site of an infinite hypercubic lattice of
coordination z, decays exponentially for alp<1/(z—1)
<pc [6,7]

logng~ —s as s—x,

()
wherea,~b, means ‘a, scales ab,,” or more precisely

an

5 @

0<|'ETL'Qf sllrrpﬁsgyp br]<oo.
(The quantityPs=ngs, which is the probability that the ori-
gin is part of a cluster of sizg is also sometimes called the
“cluster-size distribution”[6,7].) The total number of finite

clusters per lattice site at the critical pomt=X¢_,ns(pc) is

known analytically ford=2 bond percolatior8,9] and nu-

random variableSy, is explained below.lt is widely be-
lieved that the mean largest-cluster sizg=E[Sy,] scales
as unxsglogN for p<p.. This follows from the heuristic
argumentNn,~1, which supposes that the largest cluster
can be placed independently at any site in the latfite
(This useful idea is extended significantly in Sec. Il below.
Recently, from certain scaling axioms verified fix=2 and
believed to hold fod=d.=6, Borgset al. have proved the
somewhat weaker statemept, a/é'P~log(L/¢') as L/&'
—o0, Or equivalently

un/s;~10g(N/s;) as N/s;—,

(4)

where¢’ (p) is another correlation length defined in terms of
“sponge-crossing probabilities” and;ézg’D is a corre-
sponding crossover siZd4]. (Note thatd<d, is assumed
throughout this paper.

In applicationsSy, provides a measure of the maximum

merically for site and bond percolation for various lattices inconnectivity of a random medium, which is of fundamental

d=2 andd=3 [12]. Universal finite-size corrections t,
have also been studied extensivglp—13.

Beyond the rigorous resultl), it is believed that the
cluster-size distribution decays exponentially for pH p,
with a characteristic size,(p) and a power-law prefactor
3

ne~s %e”%% as s/s;—o,
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interest in the subcritical regime. From a theoretical point of
view, the “strength” (or concentrationof the largest cluster
Sivy/N plays the role of an order parameter since its ex-
pected value in the “thermodynamic limit”

P..(p)=im /N ®)

1660 ©2000 The American Physical Society
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has a discontinuous slope At P with Pw(pg p.)=0 and S(N>Elr<nl@l(“ S )
P.(p>p:)>0. Beyond the limiting behavior of the mean T

my, however, a much more complete understanding of thén N—o with p<p. fixed. Extreme order statistics have
percolation transition is contained in the cumulative distribu-many classical applications, such as the fracture strength of

tion function (CDF) of the largest-cluster size solids, the occurrence of manufacturing defects and the fre-
guency of extreme weath€t9]. More recently in statistical
Fn(s)=Prol( Sy, =<s) (6) physics, extreme order statistics have been applied to glassy

relaxation on fractal structurg¢f1], the dynamics of elastic
manifolds in random medid22,23, the random energy
model[24,25, decaying Burgers turbulen¢24], dispersive
transport in amorphous materidld6], and random sequen-
tial adsorption27]. In such applications, extreme order sta-
tistics are used to describe the most important features of a
random energy landscape, e.g., lowest activation energy bar-
riers.
o 1 , , , In this work, we show that the theory of extreme order
lim Ian inf{Fn(e™"s; log(N/sg)) — Fn(esg log(N/sg))]1=1.  giatistics also has relevance for the geometric features of ran-
€0 N 7) dom systems. In one dimension, the largest cluster in perco-
lation bears some resemblance to the longest increasing sub-
sequence of a random permutation, which is known to
exhibit similar limiting statisticysee Ref[28] for a recent

which also describes all size-dependent fluctuations of th
order parameter. In this sense, the behavidf g(fs) near the
critical point fully describes the “birth of the infinite clus-
ter” [14]. Beginning with the same scaling axioms as in
deriving (4), Borgset al. have also proved thdy(s) varies
significantly only on the scale of the mean fop.

It is believed that Eqs4) and (7) would also hold with the

usual definition of¢ as the decay length of the pair correla- review), although the former problem is much simplel.

tion function[14], so we expect’oc¢ ands;xs;. , Of course, the interesting cases of percolation, however, are
Although Eqgs.(4) and(7) provide important rigorous jus- higher dimensions, which we address here.
tification for the logarithmic scaling of the meaumy, the

shape of the distributiofry(s) and scaling of the variance
aﬁEVar[S(N)] appear not to have been studi@ther nu-
merically or analytically before this work. Moreover, no ~ The main difficulty in the percolation problem f&y,,
connections have yet been made between subcritical percaside from the complexity of the parent distribution, is that
lation and the classical limit theorems of probability theory.the RV{S;} are correlated. Much is known about order sta-
Such fruitful connections, which are known to explain tistics of IID RV [19], but dependent RV have been studied
Gaussian fluctuations away from the critical point in thermalmostly in cases much simpler than percolatj@g]. Never-
phase transitiongL5], would presumably come from the sta- theless, considerable insight is gained by neglecting correla-
tistical theory of extremefgl16—20. tions in deriving an asymptotic form &fy(s), which will be

The article is organized as follows. First, in order to build justified below in Sec. IV. As one might expect, correlations
the reader’s physical intuition, simple approximations areln the subcritical regime are too weak to have an effect in the
made in Sec. Il to derive the asymptotic behaviorFgf(s)  thermodynamic limit.
and propose finite-size scaling laws fof, and oy . In Sec. WheneveiN>s,, which holds in the limitp— 0 for fixed
I, these predictions are verified for thie=2 square lattice N>1, cluster sizes comparable to the system size are expo-
with computer simulations, which also provide empirical nentially rare according to Eq1). Since correlations be-
functional forms and numerical parameters for the scalingween the RS} arise due to excluded volume effe¢tee
laws. Finally, in Sec. IV the preceding results are explainedelow), CoVS;,S;] is exponentially small for most pairs of

in terms of a “subcritical renormalization group.” sites(i,j) in this limit. Therefore, as a natural first approxi-
mation we assumBl independent selections from a continu-

ous parent distribution with exponential decay

B. A first approximation based on independence

II. SIMPLE ARGUMENTS

. ) . —s/s%
A. Connection with extreme order statistics ProliS=<s)~1—e % as s—x, 9

Cons(ijde-r site percolation on a periodic, hypercupic |a_tt_icevvheres§(p) is an effective crossover sizeee below. Note
of N=L" sites. Since any cluster can be uniquely identifiedy, ot the asymptotic distribution of the maximum of 11D RV
with the site nearest to its center of maeslowest index, if  ig entirely determined by the tail of the parent distribution
there is more than one such gjteve can define a set 17 19 5o the complicated behavior &f for small sizes is

independent, identically distributedlD) random variables . alevant. Erom the method of CramgL9] applied to Eq.
(RV) {S;} such thatS;=s if the largest cluster centered at (9), we quickly find

site i has sizes and S;=0 if no cluster is centered there.

Clearly, the most probable value 8fis zero, since the num- e (s—sflogny/sf \ N

ber of clusters is always much less than the number of sites, Fu(s)~(1—e S/st)N= ( 1- —) (10

and it is exceedingly rare to have more than one cluster cen- N

tered at the same site, e.g., when one cluster encircles an- . , . .

other. which implies
We seek the CDIFy(s) of the “extreme order statistic”

[19,20 lim Gy(z)=e ™", (12)
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where as the crossover size diverges and hence the envelope width
vanishes.

For s’§‘<oo(p< p.), the continuum result for the scaling
of the mean(13) still holds, but the standard deviation has
persistent fluctuations due to discreteness

Gn(z)=Fn(siz+s; logN)=Prol(Sy,/s; <z+logN)
(12)

is a normalized CDF. Therefore, in this simple approxima-
tion the largest-cluster size is sampled from the Fisher-
Tippett distribution [30] with CDF e ¢ °, mean y
=0.5772-- (Euler's constantand variancer?/6 [17]; the  whereey is periodic in logN with period 11;;: . Because the
mean largest-cluster size grows logarithmicallyy/s; limiting sequence14) fluctuates periodically about a certain
~log N+, while the standard deviation converges to a cerfixed distribution, it can be viewed as a “limit cycle” in
tain constantoy/s} —/\/6. Comparing with Eq(4), we ~ SOme appropriate Banach spasee below Intuitively, the

can view the leading-order asymptotic behavior of the meaflistribution conforms asymptotically to the Fisher-Tippett
distribution as closely as possible within the constraints im-

posed by discreteness.

UN/S§~1T/\/€+EN as N—x, (19

un~SglogN as N—o (19
as defining the effective crossover s'a}a (should it exis},
which is presumably proportional to the others introduced
aboves} xs;xs;.

D. Corrections due to correlations

The simple derivation of Eq.14) should be valid when-
evers;<1 (or s;<1 or sy <1) because then even a single
site qualifies as a large cluster. $~1, however, non-
negligible correlations among the R\&;} arise because a
There appears to be a problem with E#jl) for percola-  cluster of sizes, excludes on the order f; nearby sites
tion on a lattice: A discrete CDFwhich is a piecewise con- from being part of any other cluster.df>1, on the order of
stant function cannot converge to a continuous function gdocsg’D>s§ sites are excluded by such a cluster since it
when scaled by a bounded standard deviation. In fact, sinceengulfs many smaller, exterior regions due to its fractal ge-
in Egs. (9), (10) is restricted to integer values, the limit in ometry (D<d). Therefore, correlations can be included heu-
Eq. (11) does not exist. Instead, if we replasdy [s] (the  ristically by replacingN with N/s¢ in Eq. (14) which simply
nearest integer t®) in Eq. (9), then the normalized CDF shifts the mean by a constaffu/s;= — a logs; without af-
Gn(z) defined by Eq.(12) approaches a quasiperiodic se- fecting the leading-order scaling behaviag), wherea=0
guence of piecewise constant functions with period roughlyf sg<1, a=1 if s,~1 anda=d/D if s;>1. Note that the

C. Corrections due to discreteness

1/3’5 in logN, effect of correlations is negligible foN>s,. Correlations
AN do, however, control the finite-size scaling at smaller values
_e*ZJr 5N(Z)/S§ ezt 5N(Z)/S‘§ Of N.
Gy = 1—T ~e as N—oo,
(14 E. Finite-size scaling

where

Sn(2)=s; (z+1ogN)—[s; (z+logN)]. (15

(The limiting sequence is strictly periodic only wheHst is

an integen. The piecewise constant functions in Ed4)

converge weakly in the sense thaths» oo the “step edges”
periodically trace out two continuous functions

G(2)=lipsupGy(z)=e * "™, (16
G(2)=lipinf Gy(z)=e~¢ " (16b)

which define a stationary “envelope” of width  about

the Fisher-Tippett distribution. If we letbe the lattice spac-
ing (which we take to be uniby then the envelope width
would be a“/s’gc , showing that the lack of convergence is
controlled by the relative importance of discreteness on th

There are only two relevant length scales in percolation,
the correlation lengtl§ and the lattice spacing (normalized
to unity), or equivalently two mass scales, the crossover size
s (or sé or s’g) and the volume of a lattice cedl (also
normalized to unity. If s,>a, then discrete lattice effects on
“large” clusters with sizes on the order @ or larger be-
come negligible, and the system has only one relevant mass
scales;. As a consequence of the single scalén the limit
p— pc, any function ofN ands; is expected to collapse into
a self-similar form interpolating between a critical power-
law in N valid for 1<N<s; and a subcritical function of
N/s¢ (for some constant) valid for 1<s,<N. For ex-
ample, becausg(p) and on(p) have the dimensions of
S¢, we have

pin/se=D(N/SY), (199

on/se=W(N/sP) (190

scale of the crossover size. Note that the continuous distri" SOme universal function®(x) and W (x) which do not

bution (11) is recovered in the limip—p, (taken after the
limit N—c0)
17)

. —_— _ . _ 7e*Z
pIerch(z) plmcg(z) ¢

depend orp. In the critical regimeN<s;, it is expected that
un<LP=NP’? and that bothuy and oy are asymptotically
independent ofs,, which implies a=d/D and ®(x)
W (x)=sP’? ass—0. From Eqgs(7) and(14), we also ex-
pect®(x)~logx and¥(x)~1 asx—oo,
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The classical idea behind the finite-size scaling ansatz ' ' ' ' ' ' ' '
(19) can be understood as follows. A large subcritical cluster r (a) - -
(on an infinite lattice intersected with a finite box of side ;
exhibits a crossover from “critical scaling” at small scales eer i P Simulation
a<L<¢ (where a portion of it typically spans the boto sk AL x:fﬁﬂ—:—— i
“critical scaling” at large scalest.> ¢ (where it is entirely ' 1 pARDY N = 55007 —a—
contained within the box Note that the lattice spacirayis il SR Theory i
irrelevant as long ag>a; all systems with the same ratio ATT? el
L/& should have equivalent statistics, up to small corrections | paan e_e.,ﬂ,mg _
of order a/¢ due to discreteness. Of course, @s:0 the AT 4 T
finite-size scaling ansatz breaks down, and discrete effect  (loeald=e® ' ! ! L !
eventually dominate over correlation effects, as explained 20 b > 6
above.
04 T T T T T T T T
035 | (b) Simulation .
Ill. NUMERICAL RESULTS 03f g:;ﬁ:’ o
A. Methods G'0‘25 L N=55007 A
. . . Theory
In order to test the predictions of the previous section, oz .
numerical simulations are performed for site percolation on 45t ) N et
periodicd=2 square lattices of sizéd$="52, 13, 312, 74,
129, 179, 41%, 982, 2324, and 5508 with p T
=0.05,0.1,0.15,...,0.5[31]. Note that the value p. 005 |-
=0.592 746 @-0.000 000 5 has been determined numerically o lae
in this case[32]. For each(N,p), betweenM =2x10° and 2 ! ¢ ! z 2 ’ s 6

M = 10 samples are generated, and clusters are identified by

a recursive “burning” algorithni5,33]. With these methods, FIG. 1. The discrete CDF ifa) and PDF in(b) of the largest-

trillions of clusters are counted in several months of CPUcluster size fop=0.15 andN=982, 2434, 550G, normalized to

time on Silicon Graphics R-10,000 processors. have meary and variancer?/6. The CDFs in(a) are compared with
In performing such large-scale simulations, special attenEd- (16), wheres; =0.905,(0.15)=1.313.

tion must be paid to the choice gbseudgrandom-number

generatof32,34]. With the standard 32-bit generator rafid  the values op considered here, thus lending some credence

the largest observed cluster sizes tend to come in multiple® the approximations of the previous section.

of integers=2 (after accumulating data from a very large

number of “random” realizations which indicates that the C. Cluster-size distributions

periodicity of the generator is having an artificial effect. In . ) ,

all the simulations reported here, however, the 48-bit genera- !N Order to test the finite-size scaling law), numerical

tor drand48) is used, and the numerical cluster-size distri-vValues of the crossover sizg(p) are obtained by fitting the

butionsny(p) appear to be free of any systematic errors. cluster-size distributionsg(p) to Eq. (3). When compiling
these distributions, unwanted finite-size effects are mini-

mized by requiring thalN® exceed the largest observed
cluster size(for a given value ofp). With this restriction, a
The measured largest-cluster distributions are in vensingle cluster cannot directly see the periodic boundary con-
close agreement with the predictions of E¢4—(16) for  ditions. Motivated by Eq.(3), the tails of the cluster-size
all p<pc, as shown in Fig. 1 for the cage=0.15. In order  distributions are fit to
to check the shape of the CDF agaiest® *, the distribu-
tions are normalized to have meanand variancem?/6,
which differs somewhat from the normalization given above
in Eq. (12). As predicted by Eq(16) the discrete CDFs in
Fig. 1(a lie almost perfectly within a continuous envelope
between two Fisher-Tippett distributions. Likewise, the dis-
crete probability density function®DF shown in Fig. 1b)
for p=0.15, which are simply the step heights in Figa)l o ; _ _
exhibit the expected small fluctuations about the Fisherég'('j)l(sz Z?gtgm?ri;?lgzihﬁs_eﬁhgv Rte iq;djé/edrr?gﬂ,r(lltij:tl)lde&\zlr']en
Tippett PDFe™*"° ~ due to discreteness. Using the valuethe value thus obtained at,; is contained within all the
s (0.15)=1.313 (determined independently beldwthe  other confidence intervals for fits with,;>Sg). Because
width of the envelope is seen to be very close & 1/Note  the raw distributions have bin counts ranging from ove*10
that the CDFs in Fig. (B are shifted slightly outside the at size 1 down to 0 and 1 in the large-size tails, the fitting
envelope byeN\/él(a-rs’g) because sizes have been scaled bycannot be done by the usual least-squares method, which
o6/ rather than b)s’g . Overall, the agreement between assumes normally distributed errors. Instead, the parameters
Egs.(14)—(16) and the simulation results is excellent for all (C,8,s;) are fit to theng(p) data by Poisson regression,

B. Largest-cluster distributions

logns=C— @logs—s/s; for s>sy. (20

Fitting to such an asymptotic form requires some care: The
starting point of the fits,; must be large enough that the

asymptotic behavior is dominant but also small enough that
the fit is not degraded by statistical fluctuations. In this work
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TABLE I. The measured correlation sizg(p) and exponent
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6(p) for site percolation on the=2 square lattice. 16 [ 1 . L. ‘ ‘
10 SRR
0.05 0.60%0.005 1.6:0.1 wis gy s 0
|3 °
0.10 0.976-0.001 0.97-0.05 s i = i
0.15 1.45% 0.001 0.99-0.02
0.20 2.156-0.001 1.03:0.01
0.25 3.226-:0.001 1.075:0.005 “r @ 1
0.30 4.987-0.002 1.109-0.004
0.35 8.156-0.005 1.129-0.005 0 L e s ~
0.40 14.63:0.03 1.13:0.03 N /5P
0.45 31.4:0.1 1.20:0.03
0.50 91.5-0.2 1.20-0.03 ' ' ' K

which properly handles the discrete, rare events in the tail [
(using the package X-Lisp-Stg35]). Hise |
The fitting results are given in Table I. Fitting errors grow

" subcritical

asp—0 because less data is available to accurately resolve  'F §§§?§ E 3
the tail of ng(p) and also ap—p, due to critical slowing 5203 2
down. Although the results fos; should be reliable, the 5;%:%% E
results foré (not needed in this wopkcould change some- ‘p?igigg H
what if different corrections to scaling were considefbdl { e
Therefore, the observed small deviationgdfom its conjec- 01 10 103 105 107
tured valug[1] of 1 (for all 0=<p<p,.) may only be an arti- Nisg

fact of the fit. .
FIG. 2. The mean largest cluster size plotted ds, versus

N/s¢'’® on a log-linear plot in(a) and a log-log plot ir(b). The solid
D. Scaling of the mean and variance line fits thep=0.30 data to Eq(21) with asymptotic forms given
As shown in Figs. 2—3, the collapse of the mean and?y the d_otted lines. The raw data is in the insetaf the legend in
standard deviation of the largest-cluster size plotted a& applies throughout.
un!se and oy /s, versusN/sY'® (using D=91/48[1]) is
nearly perfect fop=0.30. As discrete-lattice effects become ) . .
important at smaller values @f however, the data drifts off OVer SIZ€sg In Eq. (3) via s =0.9Cs; .
the universal curves, and the tiny oscillations predicted by Although the standard deviation appears to be bounded
Eq. (18) begin to be visible in the standard deviation. These/Tom the data shown in Fig. 3, we can only safely conclude
effects are most pronounced whep<1(p=<0.10) since on=0(log IogN) because theds/gbcrltlcal portion of the glata
then the interpretation o6f® as an excluded volume is only spans five decades M/s; - (due to memory restric-
meaningless and the second length seatel cannot be ig- _t|ons). Following the derivation in the next section, however,
nored. Indeed, whenu/s; and o/s, are plotted versus It can be proved43] thatoy=0(1) follows from very rea-
N/max(1s¢®}, as shown in Fig. 4, the data feg<1 lies sonag% ggs%mptlor}s reflated_ t%rECFQ.fandhﬂ). Thgregorde,_
much closer to the universal curves, consistent with théqr p=0.5 the scaing _unctlo (x) for the standard de
simple arguments given above in Sec. Il D. viation is fit to the empirical form
From the simulation results with>1, the universal scal-
ing functions in Eq.(19) for the d=2 square lattice can be
determined numerically. Fop=0.30, the scaling function
®d(x) for the mean is fit to the empirical form

and for the case of the square lattice relates it to the cross-

1
~ 1+Dbszlog(1+ (x/by)PT)

W(x)=b, 1 , (22

where b;=8.4£0.8, b,=1.23+0.01, and b;=1.5+0.1.
Once again, as shown in Fig. 3, the collapsed datasfor
> 1 fits closely the expected scaling laWgx) ~0.25"'? as
x—0 and ¥(x)~b,=1.23 as x—x. Note that o/s:
~1.23/0.96-1.36 for s;>1, which differs from Tr/J%
=1.2825-- by only 6.5%.

ag D/d

PO G

a,+ log 1+ , (21)

a

where the best parameter valu@s the least squares sefse
area;=8.1+0.5, a,=0.954+0.005,a;=3.3£0.2, a,=1.0

+0.3, andas=0.61+0.2. The collapsed data in Fig. 2 shows
a smooth crossover between the expected critical and sub-
critical scaling laws®(x)~30.x"'? as x—0 and ®(x)
~ a, log[1+(x/a,)P"¥]~ (a,D/d)log x=0.90 logx asx— =, re-
spectively. The simulation resufty~0.90s,;logN justifies
our definition of the effective crossover siz§ in Eq. (13

IV. SUBCRITICAL RENORMALIZATION

A. Flow in the space of distributions

There is a profound connection between renormalization-
group (RG) concepts from the theory of critical phenomena
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envelope manifolds

Fisher-Tippett
fixed point

critical fixed point

FIG. 5. Sketch of the trajectorigglashed linesof the normal-
ized largest-cluster size CDGy(z) (in some appropriate function
space for p<p.. Arrows indicate directions of flow dd—o. The
physical manifold is shown foN=1 and three larger values of
(solid lineg. Also shown are three fixed pointshick dotg, the
subcritical envelope manifoldshort dotted linesand the crossover
manifold (long dotted ling.
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In the case of percolation, although the appropriate order
parameter is not the sum but rather the maximum of certain
RV, RG concepts can still be applied. Consider the CDF of
éhe largest-cluster sizé=\(s), which we normalize(or
rather, successively “renormalizé’as

—
2

FIG. 3. The standard deviation of the largest cluster size plotte
exactly as in Fig. 2. In this case, tipe=0.30 data is fit to Eq(22).

Gn(Zz)=Fn(onz+ uy) =ProhZy=2z), (23
[36,37] and the limit theorems of probability theory through
what one might call “renormalization of the order param- where
eter” (as opposed to “renormalization of the coupling con-
stant” [38,39)). For many second-order phase transitions, the 7 = Siny— M (24)
appropriate order parameter is a sum or average of identical, NT oy

correlated RV indexed by the sites of a lattice, e.g., the total

magnetization in the Ising model. In such cases the centras a RV with zero mean and unit variance. Note that since
limit theorem for 1ID RV describes the behavior of the orders(N) assumes only integer value3y(z) is a piecewise con-
parameter away from the critical point, where correlationsstant function ofz e 9% with discontinuities at a countable set
are unimportant, and the mathematical concept of a “stablef points{(s— uy)/on|se 9} with equal spacing Iy .
distribution” [40—42 amounts to a fixed point of an RG in  The discrete mappinGy(z) can be viewed as a flow with
the space of probability distributions of the order parametejncreasingN (in some appropriate Banach space, eld),

[15,41].
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mean largest-cluster size plottedds; versus

which advects distributions towards various possible limiting
behaviors. The subcritical portion of the flow is depicted in
Fig. 5. For eaciN e, the set of normalized distributions
{Gy\} parametrized by &p=<1 forms a one-dimensional
manifold, which we call the “physical manifold.” The ends
of the physical manifold correspondingpe=0 andp=1 are
pinned at trivial fixed points, which are unit step functions
centered ak=0 andx=N, respectively(before normaliza-
tion). Although these fixed points affect the nearby flow,
every trajectory with 8p<<1 eventually escapes toward
one of three possible limiting behaviors for sufficiently large
N: subcritical (0<p<p,), critical (p=p.), or supercritical
(pc<p<1). The latter two cases will be considered else-
where; here we focus on subcritical behavior.

According to the Heuristic arguments in Sec. Il and the
simulation results in Sec. lll, the subcritical segment of the
physical manifold is advected into a line of limit cycles
(12—(18) around the Fisher-Tippett distribution once the
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m" 52 tually crossover to a different limiting behavior along the
- = direction of an unstable manifold. One such ‘“crossover
] manifold” shown in Fig. 5, which connects the critical and

subcritical fixed points, corresponds to the linlits»c and
4—F p—pc with N/s¢’®—c for some constant>0. Likewise,
the stable manifold converging to the critical fixed point cor-

responds to the limiN—o with p=p,.

(mn) nd

' B. The subcritical renormalization group

More than seventy years ago, Enet[16] and Fisher and
Tippett [17] deduced the possible limiting distributions for
extremes for 1ID RV with the following ingenious argument:
If one partitionsN=mn IID RV into n disjoint subsets con-
taining m RV each, then the largest of then outcomes is
equal to the largest of the largest outcomes in each subset

system size exceeds the crossover dizes,, or more pre- of sizem

FIG. 6. Sketch ofn=9 cells (solid lineg used for subcritical
renormalization on a square lattice of side=mn. Along with the
nine partitioning cells, one enlarged “supercelldashed lines
used in Ref[43] to bound correlations for cluster sizes smaller than
s (as described in the main teys also shown.

; s cdiD) s ; ~ .
cisely,N>s; _(L>_§). The envelope maqulo@ andG for Stmn = max Sl(m)i (26)
0<p<p. defined in Eq.(16) enclose the limit cycles. As 1<i=n

sketched in Fig. 5, the “radius” of each limit cycle grows as .

1/s¢(p) in the limit p— 0, which reflects the influence of the whereS'(m) is the largest outcome in théh subset. Since the

p=0 fixed point representing discreteness. In the oppositg, m) are themselves IID RV, the CDFy(s) of Sy, obeys

limit p— p, [in the subcritical regimsg’D:o(N)], the en-  the exact recursion

velope manifolds meet at a fixed point corresponding to the

continuous Fisher-Tippett distribution. Frn(S)=Fm(s)" 27
The approach to a fixed point is generally characterized _

by self-similarity, which holds “universally” for all trajec- for all mandn (m",n*@e91). In terms of the normalized

tories leading to it. In the present case of a lattice-basedistribution(23), the recursion takes the form

system, this asymptotic self-similarity can described by a N

real-space RG which relates the ClOIg(z) for a system of G,(2)=G (‘Tmnz"‘ Mmn— Mm) 29)

sizeN=mn to the CDF for each ofi identical, contiguous mn " Om ’

cells (or blocks of sizem o ) N )
which is essentially the subcritical RG for the normalized

Gmn=R.Gm (25 largest-cluster size distribution in percolation, but we must
also address correlations and discreteness. In going from Eqg.
in the limit m— o with n fixed, as shown in Fig. 6. As usual, (27) to Eq. (28) we have defined a “renormalized” order-
the renormalization operators form an Abelian semigrouparameter distribution for percolation valid near the subcriti-
under compositiorRy,,=R°R,=R,°Ry,. These kinds of cal fixed point, in much the same way that the Kadanoff-
arguments are typically applied to a coupling constant in thevilson block-spin construction defines a renormalized
vicinity of a critical fixed point, where they capture the effect coupling constant for the Ising model valid near the critical
of long-range correlation§37]. They apply equally well, fixed point[37].
however, to the order-parameter distribution at a subcritical The power of the cell-renormalization approach is that it
fixed point, where correlations disappear. provides a natural way to bound correlations and show that
In a system exhibiting a phase transition, there @fer-  the subcritical limit cycles in percolation are described by the
entRG of the form(25) valid near each of the various fixed same RG as in the case of independent random variables
points. As shown in Fig. 5, subcritical trajectories with  (except for the subtle, persistent fluctuations due to discrete-
<1 pass by thep=0 fixed point and quickly become en- ness described earlierThis is demonstrated rigorously in
snared in the subcritical limit cycles, which are described byRef.[43], but here we simply explain the basic ideas of these
a RG given below. Such trajectories never feel much influ-authors. The strategy of the proGhspired by Fisher and
ence from the critical fixed point because correlation effectsTippet is to fix the number of cella>1 and let the size of
are dominated by discrete-lattice effects, due to proximity ofeach cellm diverge. Since correlations decay exponentially
the p=0 fixed point. For larger values gf<p. such that with distance in the subcritical regime, it seems plausible
1<s.<=, however, subcritical trajectories at first approachthat the “renormalized” cell random variabIeS(m) would

the critical fixed point (.N<s{'°) before crossing over to become uncorrelatedas the surface-to-volume ratio van-

the subcritical limit cyclesm>s‘g’D). This crossover behav- isheg in the limit m—c, at least if the dimension were not

ior was demonstrated for the mean and variance above itoo high d<d,.).

Figs. 2—3, but it also holds for the shape of the distribution. Precise bounds on the intercell correlations can be ob-
In the vicinity of the critical fixed point (&N<s{'®),  tained as followg43]. If the cells were independerivith

trajectories obey a different RG reflecting the dominance ofree boundary conditionswve would haveF ,,(s) =Fn(s)"

long-range correlations. The critical fixed point is unstable inas above, but due to correlations we have instead the upper

the sense that subcritical and supercritical trajectories everpound
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TABLE Il. Summary of solutions to the Fisher-Tippett equation. In the last column, parent probability
distributionsp;(x) in the basins of attraction of each fixed point @&reughly) described by their decay at
largex. (See Refs[18-20 for more details

Name G(2) Range a, b, Basin of attraction
Frechet ez " (0, =) >1 0 power-law tails
Weibull e~ (=2 (=, 0) <1 0 finite tails
Fisher-Tippett e ¢’ (=00, ) 1 logn exponential tails
an(s)gFm(s)n (29 G(2)=G(apz+ bn)n (33

because joining tha cells togetheand thus allowing clus- which was first discovered by Fisher and Tippet]. This

ters to connect and growcan only increase the size of the functional equation has exactly three solutions, given in
largest clusteriand thus decrease the probability that theTable Il, up to trivial translations and rescalings ofoy
largest cluster has sizgs). A lower bound can be obtained constants. In the case of [ID RV the basins of attraction of
by considering a set of “supercellsagain with free bound- these three fixed points, which depend only on the tail of the
ary conditiong formed by appending a “skin” oflinear  parent distribution, were first characterized by Gnedenko
width s/2 to each of the original cells, as shown in Fig. 6. If [18]. In the case of percolation, we have argued above that
the mass of the largest cluster intersected with each of thegbe appropriate parent distribution has an exponential tail,
overlapping supercells were independendy s, then the which suggests that the Fisher-Tippett distribution is indeed
largest cluster overall would also have mass (because the subcritical fixed pointagain, ignoring discretengss

even a linear chain of length would necessarily be com- Still assuming that a continuous limiting distributi@(z)

pletely contained in one supergelvhich yields[45] exists, let us make the following additional assumptions:
F (mudsg)d(S)"<Fnn(s)<Fn(s)". (30 un~sglogN, (349

These inequalities, which are valid for any dimensibrare on—0n-_1=0(1/N) (34b)

the analogs of the Fobet-Fisher-Tippett “RG” (27) for
subcritical percolation, and from them the Fisher-Tippett bewhich are clearly supported by our numerical simulations
havior of the subcritical limit cycles can be establisiéd]. and are consistent with the rigorous restsand(7). These
Heuristically, it is quite plausible that if the “typical” largest scaling axioms are expected to hold for @ d.. Note that
cluster size, say withiz standard deviations of the mean  Eq. (34b) implies oy=0(logN)=0(uy); with the fact that
oy must be an increasing sequence, it also imgigs 1 for
Smn(2) = Umnt Zomn, (3D allne (see Ref[43]). From Eqs(34a and(32b), we have

does not grow too fast, i.es,,,(z) <m*¥) asm—o with n Kmn— m St logn
and z fixed, then Eq.(30) should reduce asymptotically to ~
Eqg. (27). Given the results of Borgst al. Egs. (4)—(7), we
actually expect the much stronger boun€ny(z)  There are two possibilitiessr,,— and o,—a for some
=0O(logm). As explained below, this logarithmic scaling se- constanta>0. In the former case, we havg=0 and hence
lects the Fisher-Tippett distributioa™ © * from among the a,#1 (see Table ll, which is a contradiction. In the latter

—b,. (35

Om Om

possible fixed points of Eq27). caseb,=(s;/a)logn. Without loss of generality we can set
a=s§ (since this simply amounts to rescaliggand obtain
C. The subcritical fixed point the equation
The subcritical fixed point is described by the classical G(z)=G(z+logn)" (36)

theory for extremes of 11D RY19,20. Following Fisher and
Tippett[17], let us assume for now that a continuous fixed
point of Eq. (28) exists pointwise for allz, i.e., Gy(2)
—G(2) asN—o> and p—p. such thats,=o(N). In this
case, there must exist finite constaats>0 andb, defined

whose only nontrivial solution i® ¢ ", This also implies
that the standard deviation converges to a constant propor-
tional to the crossover sizer,N—>sfgf Jml6.

by
D. The subcritical limit cycles
lim m:an, (323 Of course, the assumption of pointwise convergence to a
M= Om continuous limiting distribution is wronge.g., see Fig. 1
_ Nevertheless, the conclusions of our simple derivation are
lim Lmn—Hm_p (32b  not very different from those of a rigorous analysis including
m— o O-m

correlations and discretendgk3]. Note that although a lim-

such that the limiting distributioi©(z) obeys the equation iting distribution G(z)=lim G\(z) does not exist, the
[17] envelope functions G(z)=liminfGy(z) and G(2)
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=lim supGy(z) do exist. Assuming thaB(z) andG(z) are V. CONCLUSION
continuous[althoughGy(2) is nof, it can be shown from In this article, a simple theory of the finite-size scaling of
Eq. (34) that the envelope functions have the Fisher-Tippetthe largest-cluster size in subcritical percolation is presented
form and supported by numerical simulations. As expected away
_ ., from a critical point, correlations are weak enough that a
G(z—21)=G(z—zy)=€"® (37 classical limiting distribution from the theory of extremes of

independent random variables is recovered once the system
for some constants <z;<z,<e and that the variance is sjze greatly exceeds the correlation length. This behavior can
bounded on the scale of the crossover sizg/s; =O(1).  be easily understood via a cell-renormalization scheme,
The latter result supports our assumption above in fitting thevhich also provides a suitable framework for rigorous analy-
simulation data to Eq(22). The reader is referred to Ref. sis. Work is underway to extend this work to the supercritical
[43] for a detailed proof of Eq(37), which follows the RG  case, where another classical limiting distribution arises, and
strategy outlined here. The simple arguments and simulatiothe critical case, which involves a new universality class.
results in Secs. Il and IIl also lead us to conjecture that the
“envelope width” z,—z; is simply set by the “strength” of
the discreteness, i.e., the ratio of the lattice cell volum ( ACKNOWLEDGMENTS
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