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Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces
containing trapped gas bubbles, have the potential to greatly enhance electrokinetic
phenomena. Existing theories assume either homogeneous flat surfaces or patterned
surfaces with thin double layers (compared with the texture correlation length) and
thus predict simple surface-averaged, isotropic flows (independent of orientation). By
analysing electro-osmotic flows over striped slip-stick surfaces with arbitrary double-
layer thickness, we show that surface anisotropy generally leads to a tensorial electro-
osmotic mobility and subtle, nonlinear averaging of surface properties. Interestingly,
the electro-osmotic mobility tensor is not simply related to the hydrodynamic slip
tensor, except in special cases. Our results imply that significantly enhanced electro-
osmotic flows over super-hydrophobic surfaces are possible, but only with charged
liquid–gas interfaces.

1. Introduction
The development of microfluidics has motivated interest in manipulating flows in

very small channels, which exhibit huge hydrodynamic resistance to pressure-driven
flow (Stone, Stroock & Ajdari 2004; Squires & Quake 2005). One avenue for driving
flow on such scales is to exploit hydrodynamic slip, usually quantified by the slip
length b (the distance within the solid at which the flow profile extrapolates to
zero) (Vinogradova 1999; Bocquet & Barrat 2007; Lauga, Brenner & Stone 2007).
For hydrophobic smooth and homogeneous surfaces, b can be of the order of tens of
nanometres (Vinogradova & Yakubov 2003; Cottin-Bizonne et al. 2005; Vinogradova
et al. 2009), but not much more. Since the efficiency of hydrodynamic slippage is
determined by the ratio of b to the scale of the channel h (Vinogradova 1995), it
is impossible to benefit from such a nanometric slip for pressure-driven microfluidic
applications.

In principle, this limitation does not apply to interfacially driven flows, such as
electro-osmosis past a charged surface in response to an applied electric field. The
combination of these two strategies can yield considerably enhanced electro-osmotic
(EO) flow on hydrophobic surfaces (Muller et al. 1986; Joly et al. 2004; Ajdari &
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Bocquet 2006), even for nanometric slip lengths. The reason is that the thickness of
the electric Debye layer (EDL), characterized by the Debye screening length λD = κ−1,
defines an additional length scale of the problem, comparable to b. For a small surface
charge density q , simple arguments show that the electro-osmotic mobility Me, which
relates the effective electro-osmotic slip velocity (outside the double layer) to the
tangential electric field us = MeEt , is given by (Muller et al. 1986; Joly et al. 2004)

Me = −εζ

η
(1 + bκ) = − q

ηκ
(1 + bκ), (1.1)

where ε and η are the permittivity and viscosity of the solution, respectively, and
ζ = q/κε is the zeta potential across the diffuse (flowing) part of the double layer. The
factor (1+bκ) associated with hydrodynamic slip can potentially enhance interfacially
driven flow in microfluidic devices (Ajdari & Bocquet 2006), electrophoretic mobility
of particles (Khair & Squires 2009) and electrokinetic energy conversion (streaming
potential) in nanochannels (van der Heyden et al. 2006).

For this reason, it is attractive to consider electro-osmotic flows over
superhydrophobic (SH) surfaces, whose texture on a scale L can significantly amplify
hydrodynamic slip due to gas entrapment (Vinogradova et al. 1995; Cottin-Bizonne
et al. 2003) leading to effective b of the order of several microns in pressure-driven
flows (Ou & Rothstein 2005; Joseph et al. 2006). Equation (1.1) with bκ # 1 suggests
that a massive amplification of EO flow can be achieved over SH surfaces, but the
controlled generation of such flows is by no means obvious, since both the slip length
and the electric charge distribution on an SH surface are inhomogeneous and often
anisotropic. Despite its fundamental and practical significance, EO flow over SH
surfaces has received little attention. Recently, Squires (2008) investigated EO flow
past inhomogeneously charged, flat slipping surfaces in the case of thick channels
(h # L) and thin EDL (λD $ L) and predicted negligible flow enhancement in the
case of an uncharged liquid–gas interface, which has been confirmed by molecular
dynamics simulations (Huang et al. 2008). However, this work cannot be trivially
extended to the general case of thick EDL (λD # L), where improved efficiency of
electrokinetic energy conversion is expected (van der Heyden et al. 2006). For thick
EDL, we might also expect anisotropic EO flows transverse to the applied electric
field, as in the case of rough, no-slip charged surfaces (Ajdari 2001).

In this paper, we provide analytical solutions to electro-osmotic flows over weakly
charged, textured slipping surfaces. We show that the electro-osmotic mobility is
generally a tensorial property of the surface, reflecting nonlinear averaging of the
slip length and charge profiles, and is not trivially related to the hydrodynamic slip
tensor (Bazant & Vinogradova 2008). In § 2, we give basic principles, formulate the
problem and obtain general solutions to longitudinal and transverse textures. Effective
slip lengths and exact solutions to EO velocity over stick-slip stripes modelling SH
surfaces are derived in § 3. Implications for the use of SH surfaces to enhance EO
flows are discussed in § 4, followed by concluding remarks in § 5.

2. General theory
2.1. Interfacial mobility tensor

Ajdari (2001) pointed out that linear electrokinetic phenomena are generally tensorial
in space and showed that microchannels with both charge and height variations can
exhibit transverse electrokinetic effects. Here, we ascribe analogous behaviour to a
‘thin interface’, whose thickness λ is much smaller than the geometrical scale h, by
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defining a tensorial electro-osmotic mobility via us = Me E, where E is the electric
field and us is the effective fluid slip velocity just outside the interface (relative to
the surface velocity). This is analogous to the tensorial hydrodynamic mobility Mh,
defined by us = Mhτ in terms of the normal traction τ = n̂ · σ , or equivalently, to the
slip-length tensor b =Mhη defined by us = bγ̇ for a Newtonian fluid, where γ̇ = τ/η
is the strain rate (Bazant & Vinogradova 2008). We combine these effects in a general
‘interfacial constitutive relation’

(
us

j s

)
=

(
Mh Me

Me Ks

)(
τ

E

)
= M

(
τ

E

)
, (2.1)

which acts as an effective boundary condition on the quasi-neutral bulk fluid, where
Ks is a tensorial surface conductivity and j s is the surface current density (in excess of
the extrapolated bulk current density, integrated over the interface). Using matched
asymptotic expansions (Chu & Bazant 2007), (2.1) can be derived by considering a
semi-infinite quasi-equilibrium electrolyte and solving for the velocity us and current
j s ‘at infinity’ relative to the interfacial thickness, e.g. λ= max{λD, L} for a periodic
texture of period L or a (non-fractal) random texture with correlation length L.

Following Bazant & Vinogradova (2008), we note some basic physical constraints
on M. In most cases, we expect M to be symmetric, as assumed in (2.1), by analogy
with Onsager’s relations in (bulk) non-equilibrium thermodynamics (Groot & Mazur
1962). This hypothesis for Mh has been established for Stokes flows over a broad
class of patterned surfaces (Kamrin, Bazant & Stone 2009). Here, we focus on Me

by calculating the anisotropic electro-osmotic flow in response to an applied electric
field, but according to (2.1) the same tensor also provides the ‘streaming surface
current’ j s = Meτ in response to an applied shear stress. The mobility M is positive
definite for a passive surface, which does no work on the fluid. In general, Mh, Me

and Ks could be represented by 3 × 3 matrices to allow for normal flux of fluid (or
charge) into a porous (or conducting) surface, driven by normal electric fields (or
tensile stresses), but here we consider only insulating, impermeable surfaces, with 2×2
matrices diagonalized by a rotation:

Me = Sθ

(
M

‖
e 0

0 M⊥
e

)
S−θ , Sθ =

(
cos θ sin θ

−sin θ cos θ

)
. (2.2)

Once the orthogonal eigen-directions θ = 0, π/2 are identified, the problem reduces to

computing the two eigenvalues, M
‖
e and M⊥

e , which attain the maximal and minimal
directional mobilities, respectively.

2.2. Weakly charged, nano-scale striped patterns

To highlight effects of anisotropy, we focus on flat patterned SH surfaces consisting of
periodic stripes, where the surface charge density q and the local (scalar) slip length
b vary only in one direction. In the case of thin channels (h $ L), striped surfaces
provide rigorous upper and lower bounds on the effective slip (eigenvalues of Mh) over
all possible two-phase patterns (Feuillebois, Bazant & Vinogradova 2009); for thick
channels, sinusoidal stripes also bound the effective slip for arbitrary perturbations
in surface height and/or slip length (Kamrin et al. 2009). Striped SH surfaces have
also been used for drag reduction in pressure-driven flows (Ou & Rothstein 2005),
with a typical geometry sketched in figure 1(a) corresponding to Cassie’s state of
a roughly flat liquid surface over gas bubbles trapped in wells. By symmetry, the
eigen-directions of Me, Mh and Ks for a striped surface correspond to longitudinal
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Figure 1. (a) Sketch of SH stripes: θ = π/2 corresponds to transverse, whereas θ = 0
corresponds to longitudinal stripes. (b) Situation in (a) is approximated by a periodic cell
of size L, with equivalent flow boundary conditions on gas/liquid and solid/liquid interface.

(θ = 0) and transverse (θ = π/2) alignment with the applied electric field or shear
stress, so we need only to compute the eigenvalues for these cases using (2.2).

We consider a semi-infinite electrolyte in the region y > 0 above a flat patterned
surface of period L at y = 0 subject to an electric field E0 in the x direction.
The electrostatic potential is given by φ(x, y, z) = −E0x + ψ(x, y, z), where ψ is the
perturbation due to diffuse charge. For nano-scale patterns (L < 1 µm), we can
neglect convection (Pe = 〈q〉E0L/ηκD $ 1 for a typical ionic diffusivity D) so that
ψ(x, y, z) is independent of the fluid flow. We also assume weak fields |Eo|L $ |ψ |
and weakly charged surfaces (|ψ | $ kT /ze =25/z mV at room temperature) for a z : z
electrolyte, so that ψ satisfies the Debye–Hückel equation with a boundary condition
of prescribed surface charge

(ψ =
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
= κ2ψ, −ε

∂ψ

∂y
(x, 0, z) = q(x, z), (2.3)

where κ = λD
−1 = (2z2e2n∞/εKT )1/2 is the inverse screening length. In this limit, we

can neglect surface conduction (which tends to reduce electro-osmotic flow) compared
with bulk conduction (Du = | j s |/σE0L $ 1), so we will only discuss the tensors Me

and Mh.
For transverse stripes, q = q(x) = q(x + L), we expand q(x) in a Fourier series

q(x) = 〈q〉 +
∞∑

n=1

(Ansin(λnx) + Bncos(λnx)), (2.4)

where 〈q〉 is the mean surface charge, and solve (2.3) by separation of variables

ψ = ψ(x, y) =
〈q〉
εκ

e−κy +
∞∑

n=1

1

ε
√

κ2 + λ2
n

(Ansin(λnx) + Bncos(λnx))e−
√

κ2+λ2
ny, (2.5)

where λn = 2nπ/L. For longitudinal stripes, q = q(z) = q(z + L), the potential ψ =
ψ(y, z) has exactly the same form (2.5) with x replaced by z.

The fluid flow satisfies Stokes’ equations with an electrostatic body force

η(u = −ε(ψ∇φ + ∇p, ∇ · u = 0. (2.6a, b)

To describe the local hydrodynamic slip, we apply Navier’s boundary condition

u(x, 0, z) = b(x, z)
∂u
∂y

(x, 0, z), ŷ · u(x, 0, z) = 0. (2.7)
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Far from the surface, u approaches the effective, electro-osmotic ‘slip’ velocity
limy→∞ u(x, y, z) = u0, and the derivatives of u remain bounded. By definition, the
flow is two-dimensional in the eigen-directions of the surface.

For transverse stripes, we have u =(u(x, y), v(x, y), 0), u(x, 0) = b(x)uy(x, 0) and
v(x, 0) = 0. Assuming constants η and ε and using (2.3), we can write (2.6) as

(u(x, y) = −εκ2

η
ψ(x, y)∇φ(x, y) +

1

η
∇p, (2.8)

where the pressure can be eliminated by taking the curl of both sides:

(
(
∇ × u

)
= −εκ2

η
(E0x̂ × ∇ψ).

Taking another curl of this equation and using incompressibility, we obtain

∇4u =
εκ2E0

η

(
∂2ψ

∂y2
+

∂2ψ

∂z2

)
, (2.9)

where ∇4ψ = κ4ψ from (2.3). The general solution to (2.9) for u(x, y) has the form

u(x, y) = u0 +
∞∑

n=1

(Pnsin(λnx) + Qncos(λnx))e−λny +
εE0

κ2η

∂2ψ

∂y2
, (2.10)

where Pn, Qn are unknown coefficients and the last term involving ψ(x, y) can be
obtained from (2.5). The slip boundary condition then determines the coefficients
{Pn, Qn} and the electro-osmotic slip u0 = M⊥

e Eo.
For longitudinal stripes, the flow is also two-dimensional: u = (0, v(y, z), u(y, z)),

u(0, z) = b(z)uy(0, z) and v(0, z) = 0, where u is again the tangential velocity. Similar
steps lead to (2.9) for u(y, z), using (2.3) with ψ =ψ(y, z). The general solution now
takes the form

u(y, z) = u0 +
∞∑

n=1

(Pnsin(λnz) + Qncos(λnz))e
−λny +

εE0

η
ψ, (2.11)

where {Pn, Qn} and u0 = M
‖
e Eo are determined by the slip boundary condition.

3. Striped super-hydrophobic surfaces
3.1. Hydrodynamic mobility tensor

To illustrate the theory, we consider an idealized, flat, periodic, charged, striped SH
surface in the Cassie state sketched in figure 1(a), where the liquid–solid interface
has no slip (b1 = 0) and the liquid–gas interface has perfect slip (b2 = ∞). Let φ1 and
φ2 = δ/L be the area fractions of the solid and gas phases with φ1 + φ2 = 1. Our
results apply to a single surface in a thick channel (h # max{λD, L}) where effective
hydrodynamic slip is determined by flow at the scale of roughness (Bocquet & Barrat
2007), but not to thin channels (h $ min{λD, L}) where the effective slip scales with
the channel width (Feuillebois et al. 2009).

Pressure-driven flow past stick-slip stripes has been analysed and shown to depend
on the direction of the flow (Lauga & Stone 2003; Cottin-Bizonne et al. 2004;
Sbragaglia & Prosperetti 2007). Following Bazant & Vinogradova (2008), the



250 S. S. Bahga, O. I. Vinogradova and M. Z. Bazant

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
1.0
 1.1
 1.2
 1.3

(a) (b)

10–3 10–2 10–1 100

κL κL
101 102 103 104 10–2

104

103

102

101

100
10–1 100 101 102 103 104

–M
e(

η
κ

/q
0)

Thick EDL

Thin EDL

Transverse
Longitudinal

Thick EDL

Thin EDL

Numerical solution
Formula

0.50

0.53

0.56

0.001 0.250 0.500

Figure 2. Eigenvalues of the electro-osmotic slip tensor Me for stick-slip stripes of period L
and slipping area fraction δ/L = 1/2 as a function of the ratio κL of the period to the electric
double-layer (EDL) thickness. Numerical solutions are compared with exact results in the text
for the limits κL → 0, ∞ for (a) an uncharged slipping interface q1 = q0, q2 = 0, with thick
EDL limit clarified in the inset, and (b) a surface of constant charge q1 = q2 = q0.

hydrodynamic slip tensor Mh must have the form (2.2), where the eigenvalues are

M⊥
h =

beff

η
=

L

2πη
ln

[
sec

(
πφ2

2

)]
and M

‖
h = 2M⊥

h . (3.1)

The effective slip for parallel stripes, M
‖
h , is twice that of perpendicular stripes, M

‖
h

(which holds for general grooved surfaces (Kamrin, Bazant & Stone 2009)), just as a
vertically oriented elongated body sedimenting due to its own weight falls twice faster
than if it were oriented horizontally (Batchelor 1970).

3.2. Electro-osmotic mobility tensor

1. Transverse stripes. For θ = 0, the region |x| ! δ/2 has b = ∞ (i.e. uy(x, 0) = 0)
and q = q1, while the region δ/2 < |x| ! L/2 has b = 0 and q = q2. Imposing these
boundary conditions on the general solution (2.10) yields a dual cosine series

〈q〉E0

η
+

∞∑

n=1

(
λnQn +

γ 2
n E0Bn

ηκ2

)
cos(λnx) = 0, ∀ |x| ! 1

2
δ, (3.2a)

u0 +
〈q〉E0

ηκ
+

∞∑

n=1

(
Qn +

γnE0Bn

ηκ2

)
cos(λnx) = 0, ∀ 1

2
δ < |x| ! 1

2
L, (3.2b)

where γn =
√
λ2

n + κ2. (The sine terms vanish due to symmetry.)
For the general case q1 /= q2, the dual series can be solved numerically for

M⊥
e = u0/E0 (see figure 2) by truncating the series and taking the inner products

with 1 and cos(λnx), but exact results are possible in the thin and thick EDL limits.
(Below, we also give an exact solution to any value of κL in the case q1 = q2.) In the
thin EDL limit, λn/κ → 0, we have γn/κ → 1. Since Bn are Fourier cosine coefficients
of q(x), the dual series can be written as

∞∑

n=1

λnQncos(λnx) = −q2E0

η
, ∀ |x| ! 1

2
δ, (3.3a)

(
u0 +

q1E0

ηκ

)
+

∞∑

n=1

Qncos(λnx) = 0, ∀ 1
2δ < |x| ! 1

2L. (3.3b)
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This dual series can be solved exactly (Sneddon 1966) to obtain

M⊥,thin
e =

u0

E0
= −q1 + 2q2κbeff

ηκ
. (3.4)

In the thick EDL limit, λn/κ # 1, the dual series (3.2) takes the form

∞∑

n=1

λn

(
Qn +

γnE0Bn

ηκ2

)
cos(λnx) = −E0

2η
(〈q〉 + q2), ∀ |x| ! 1

2
δ, (3.5a)

u0 +
〈q〉E0

ηκ
+

∞∑

n=1

(
Qn +

γnE0Bn

ηκ2

)
cos(λnx) = 0, ∀ 1

2
δ < |x| ! 1

2
L, (3.5b)

which can again be solved exactly to obtain the thick-DL electro-osmotic mobility

M⊥,thick
e =

u0

E0
= −〈q〉

ηκ

[
1 +

(
〈q〉 + q2

〈q〉

)
beff κ

]
. (3.6)

2. Longitudinal stripes. Rotating the SH surface by θ = π/2, the region |z| ! δ/2 has
b = ∞ and q = q1, while the region δ/2 < |z| ! L/2 has b = 0 and q = q2. Applying
boundary conditions to (2.11), we obtain another dual cosine series

〈q〉E0

η
+

∞∑

n=1

(
λnQn +

E0Bn

η

)
cos(λnz) = 0, ∀ |z| ! 1

2
δ, (3.7a)

u0 +
〈q〉E0

ηκ
+

∞∑

n=1

(
Qn +

E0Bn

ηγn

)
cos(λnz) = 0, ∀ 1

2
δ < |z| ! 1

2
L, (3.7b)

which can be solved numerically (figure 2) or exactly for thin and thick EDL. In the
thin EDL limit, γn/κ → 1, the dual series (3.7) can be simplified using the q(x) series
to obtain again (3.3) and, thus,

M‖,thin
e = M⊥,thin

e = M thin
e = −q1 + 2q2κbeff

ηκ
. (3.8)

Therefore, we find that the electro-osmotic mobility tensor is isotropic in the thin
DL limit, Mthin

e = M thin
e I , consistent with the examples of Squires (2008). In general,

Me must be isotropic for any flat patterned surface in the thin DL limit, since the
effective EO slip velocity is equal to the surface-averaged EO slip velocity (Ramos
et al. 2003), and thus always in the direction of E0.

In the thick EDL limit, we have λn/γn → 1, λn/κ # 1, and the dual series reduces
to

∞∑

n=1

λn

(
Qn +

E0Bn

γnη

)
cos(λnz) = −〈q〉E0

η
, ∀ |z| ! 1

2
δ, (3.9a)

(
u0 +

〈q〉E0

ηκ

)
+

∞∑

n=1

(
Qn +

E0Bn

ηγn

)
cos(λnz) = 0, ∀ 1

2
δ < |z| ! 1

2
L, (3.9b)

which can be solved exactly

M‖,thick
e = −〈q〉

ηκ

(
1 + 2κbeff

)
. (3.10)

Since M⊥,thick
e /= M

‖,thick
e , we see that Me becomes anisotropic for thick DL.
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4. Discussion
4.1. Uncharged liquid–gas interface

It is instructive to set the charge to zero on the slipping surface, q2 = 0, to describe
the Cassie state of an SH surface with an uncharged liquid–gas interface. The EO
flow is then related only to the charge q1 = q0 on the no-slip liquid–solid interface.
First, we consider the thin EDL limit, where the EO mobility is generally isotropic as
noted above. Using (3.8), we obtain the simple result of Squires (2008):

Mthin
e = M thin

e I, where M thin
e = − q0

ηκ
= − 〈q〉

φ1ηκ
, (4.1)

where the EO mobility is the same as that for a homogeneous, solid no-slip surface
with charge density q0, regardless of the orientation or area fraction of the slipping
stripes. In other words, there is no EO flow enhancement due to the slipping regions.
As explained by Squires (2008), the liquid appears to slip on the charged liquid–solid
interface by electro-osmosis, but without any retarding shear stress or amplifying
electro-osmotic flow on the uncharged, perfectly slipping liquid–gas interface.

The flow is anisotropic for any finite EDL thickness, and in this case, there is a
simple relationship between the electro-osmotic and hydrodynamic mobility tensors
in the thick EDL limit. Using (3.6) and (3.10) for the EO mobility eigenvalues and
comparing with (3.1), we find

Mthick
e = −〈q〉

(
I

ηκ
+ Mh

)
= −〈q〉

ηκ
(I + κb) , (4.2)

which is a natural tensorial generalization of the classical formula (1.1). In the limit
κL → 0 (similar to the thick channel limit), hydrodynamic slip becomes negligible, and
the EO flow is isotropic and driven by the average surface charge, Mthick

e → −〈q〉/ηκ .
From the thick EDL results of this case we see that the EO velocities are even

smaller than in the case of thin EDL. Even if (4.1) is used for κL ≈ 1, the EO
mobility of the SH surface is still smaller than having a constant charge on the
surface without any slipping regions. This is consistent with the molecular dynamics
simulations of Huang et al. (2008) for perpendicular stripes for 1 M NaCl solution
confined in parallel walls with no charge on the liquid–gas interface, which also
showed no enhancement of the EO flow. Since the effective slip length depends on the
pattern, however, some flow enhancement may be possible for thick EDL, even with
an uncharged liquid–gas interface, provided that effective slip length is quite large.

4.2. Charged liquid–gas interface

The situation is very different if the slipping regions carry some net charge. There is
growing evidence that the air–water interface contains an excess of either adsorbed
OH− ions (Shchekin & Borisov 2005; Takahashi 2005; Zangi & Engberts 2005) or
H3O+ ions (Jungwirth & Tobias 2006; Buch et al. 2007). However, electrostatic
forces on these mobile ions are balanced by opposite forces on their screening clouds,
and we have neglected the resulting interfacial torque due to the low gas viscosity.
Instead, the diffuse charge in our model screens the fixed charge of solid surfaces
below the gas bubble, which could, in principle, be controlled, as in electrowetting of
SH surfaces (Krupenkin et al. 2004).

To quantify the possible EO flow enhancement, we consider the special case of
uniform surface charge q1 = q2 = q0. In this case, an exact solution is possible for



Anisotropic electro-osmotic flow over super-hydrophobic surfaces 253

arbitrary EDL thickness and any stripe orientation:

Me = Me I, where Me = −q0

(
1

ηκ
+ M

‖
h

)
= − q0

ηκ
(1 + 2beff κ). (4.3)

Clearly, a large EO flow enhancement, similar to that of an isotropic surface (1.1), is
possible with a charged liquid–gas interface (figure 2b). This conclusion holds even
if the charge is not homogeneous. For thin EDL κL ∼ 103, and q2/q1 ∼ 0.1 − 1,
φ2 ∼ 0.5, the theory predicts EO flow enhancement by factor of 10–100. For thick
EDL, this factor approaches 1, but is offset by the prefactor κ−1 in the case of constant
charge. We conclude that SH electrokinetic enhancement is possible with a charged
liquid–gas interface, perhaps by an order of magnitude, versus a homogeneous no-slip
surface.

5. Conclusion
We have analysed electro-osmotic flows over patterned surfaces of non-uniform

charge and local slip length. Unlike the approach of Squires (2008), we have obtained
general solutions to arbitrary EDL thickness, surface charge distribution and slip
variation, which are qualitatively different from the thin EDL limit. We have shown
that the electrokinetic response of a patterned slipping surface is generally anisotropic
and describable by a third rank interfacial mobility tensor (2.1), analogous to the
tensorial linear response of a thin microchannel (Ajdari 2001). For stick-slip stripes,
we have calculated the electro-osmotic mobility tensor and shown that it is not
simply related to the hydrodynamic mobility tensor (Bazant & Vinogradova 2008).
In particular, a tensorial generalization (4.2) of the classical formula (1.1) does not
hold, except for uncharged slipping regions.

Our results provide some guidance for the design of SH surfaces for electrokinetic
applications. For an uncharged liquid–gas interface with thick EDL, our results are
closely related to those of Lauga & Stone (2003) for pressure-driven flows, since
EO flow enhancement is directly set by the hydrodynamic mobility tensor. For an
uncharged liquid–gas interface with thin EDL, we also confirm the result of Squires
(2008) that there is no enhancement of EO flow, but the general response for an
SH surface can be quite different. Our main conclusion is that a charged liquid–gas
interface is required to achieve significant enhancement of EO flow. For a uniformly
charged SH surface, we show that the EO mobility (4.3) is isotropic and can exhibit
large enhancement from hydrodynamic slip, possibly by an order of magnitude.
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