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Possiblemechanisms for overlimiting current (OLC) through aqueous ion-exchangemembranes (exceed-

ing diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic

instability have recently been observed in microfluidic experiments, but the existing theory neglects

chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water

self-ionization can lead to OLC by ‘‘current-inducedmembrane discharge’’ (CIMD), even in the absence of

fluid flow, in ion-exchange membranes much thicker than the local Debye screening length. Salt depletion

leads to a large electric field resulting in a local pH shift within the membrane with the effect that the

membrane discharges and loses its ion selectivity. Since salt co-ions, Hþ ions, and OH� ions contribute to

OLC, CIMD interferes with electrodialysis (salt counterion removal) but could be exploited for current-

assisted ion exchange andpH control. CIMDalso suppresses the extended space charge that leads to electro-

osmotic instability, so it should be reconsidered in both models and experiments on OLC.

DOI: 10.1103/PhysRevLett.109.108301 PACS numbers: 47.57.jd, 82.33.Ln, 82.45.Mp, 87.16.dp

Selective ion transport across charged, water-filled
membranes plays a major role in ion exchange and desali-
nation [1,2], electrophysiology [3], fuel cells [4,5], and
lab-on-a-chip devices [6–10], but is not yet fully under-
stood. A long-standing open question has been to explain
the experimentally observed overlimiting current (OLC),
exceeding classical diffusion limitation [11]. Possible
mechanisms include the role of electro-osmotic instability
(EOI) and water splitting in the bulk solution [12–15],
as well as surface conduction and electro-osmotic flow in
microchannels [16]. Vortices consistent with EOI have
recently been observed under OLC conditions [7,17,18],
although the theory of Rubinstein and Zaltzman [19–21]
remains to be tested quantitatively. The water splitting
mechanism, either catalyzed by membrane surface groups
or through the second Wien effect, has not yet been
conclusively tied to OLC [15,22–27].

In this Letter, we propose a chemical mechanism for
OLC, ‘‘current-induced membrane discharge’’ (CIMD),
resulting from membrane (de)protonation and water self-
ionization, even in the absence of fluid vortices due to EOI,
in ion-exchange membranes much thicker than the Debye
screening length. The amphoteric nature of the charge of
ion-exchange membranes (i.e., sensitivity to pH and other
stimuli) is well known [5,28–33], but not in response to a
large applied current. The basic physics of CIMD is illus-
trated in Fig. 1 for an anion-exchange membrane. During
OLC, a large electric field develops on the upstream, salt-
depleted side of the membrane, which expels Hþ and

attracts OH�, which have an association equilibrium
with the charged groups of the membrane, causing the
membrane to lose its positive charge (effectively, to de-
protonate, as we will consider below) thereby allowing
salt co-ions to pass and producing large pH gradients. The
upstream solution becomes more acidic (low pH), while
the downstream, salt-enriched solution and the membrane
become more basic (high pH).
The local charge of an aqueous membrane strongly

depends on the local pH. In our examples below, we
consider an anion-exchange membrane with fixed surface
groups of volumetric concentration cmem, which selectively
allows negatively charged anions (counterions) to pass,
while largely blocking cations (co-ions) [34]. Depending
on pH � p½H� ¼ �log10ðcHÞ, where cH is the proton
concentration (Hþ or H3O

þ) in M, the membrane can
discharge (deprotonate):

RHþ⇋KRþ Hþ: (1)

In terms of non-deprotonatable surface groups, such as
quarternary amine groups in anion exchange membranes,
the above reaction is equivalent to the OH� association
reaction: Rþ þ OH�⇋ROH. The ratio of product to reac-
tant concentrations in equilibrium is the dissociation con-
stant K in M (pK ¼ �log10K). Assuming a classical
Langmuir adsorption isotherm [28–32,35,36], the ioniza-
tion degree of the membrane,

PRL 109, 108301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 SEPTEMBER 2012

0031-9007=12=109(10)=108301(5) 108301-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.108301


� ¼
�
1þ K

cH

��1 ¼ ð1þ 10pH�pKÞ�1; (2)

relates its charge concentration �cmem to pH and pK. (For
a cation-exchange membrane, the power is pK � pH.)
To describe the local pH, we cannot assume Boltzmann
equilibrium with an external reservoir. Instead, we con-
sider ion transport coupled to membrane discharge Eq. (1)
and water self-ionization,

H 2O⇋
Kw

OH� þ Hþ; (3)

with dissociation constant

Kw ¼ cHcOH; (4)

where Kw ¼ 10�14 M2 at T ¼ 25�C. Although kinetics
can be included [5,24–26,37], the reactions (1) and (3)
are typically fast, so we assume local quasiequilibrium.

We now develop a membrane model (seemingly the
first) including all of these effects: (i) transport of four
ionic species, including co-ions and water ions (Hþ
and OH�) along with majority anions, (ii) water self-
ionization, and (iii) pH-dependent membrane charge.
We consider the prototypical 1D electrodialysis geometry
in Fig. 1, consisting of a planar ion-selective membrane
of thickness Lmem between two well-stirred reservoir com-
partments of salt ion concentration cres and pH of pHres.
We adopt the simplest and most commonly used model of
diffusion limitation [11], in which ion concentrations vary
across ‘‘stagnant diffusion layers’’ (SDLs) of thickness Lsdl

(of the order 10–100 �m) between the reservoirs and the
membrane, representing convection-diffusion boundary
layers.
Ionic diffusion, electromigration, and reactions are

described by four Nernst-Planck equations. Following
Refs. [28,29,38], we combine the Nernst-Planck equations
for Hþ and OH� using Eq. (4) to eliminate the reaction
terms and relate the water-ion current density Jw to the
water-ion variable Pw ¼ ðDHcH �DOHcOHÞ=Dw, in which
Dw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DHDOH

p
is the geometric mean of the free Hþ and

OH� diffusivities. We thus arrive at the following set of
coupled, nonlinear, differential equations to be solved in
both SDLs and the membrane [38]:

dJi
dx

¼ 0; i ¼ þ;�; w; (5a)

J� ¼ �frD�
�
dc�
dx

� c�
d�

dx

�
; (5b)

Jw ¼ �frDw

�
dPw

dx
þ ½4Kw þ P2

w�1=2 d�dx
�
; (5c)

where Ji is the ionic current density of species i and fr is a
correction factor for the ion diffusion coefficient in the
membrane, taking into account geometrical and chemical
effects which effectively retard ion transport (fr ¼ 1 in the
SDLs). Here, � is the dimensionless mean electrostatic
potential scaled to the thermal voltage VT ¼ kBT=e ¼
25:7 mV and satisfying Poisson’s equation

d2�

dx2
¼ �4��Bð�ions þ �memÞ; (6)

where �B ¼ e2=ð4�"r;j"0kBTÞ is the Bjerrum length, and

�ions ¼ �ðcþ � c� þ cH � cOHÞ and �mem ¼ ��cmem are
charge densities due to the ions and the immobilized
charges in the membrane, respectively. The porosity �
of the membrane appears because concentrations ci are
defined with respect to the interstitial, not total, volume
(� ¼ 1 in the SDLs). In our simulations below, we choose
the following typical parameters: cmem ¼ 5 M, pK ¼ 9:5,
Lmem ¼ Lsdl ¼ 100 �m, "r;sdl ¼ 78, "r;mem ¼ 29, �¼0:4,
fr ¼ 0:02 [39], Dþ ¼ 1:3� 10�9 m2 s�1 and D� ¼
2:0� 10�9 m2 s�1 (corresponding to NaCl), DH ¼ 9:3�
10�9 m2 s�1, and DOH ¼ 5:3� 10�9 m2 s�1. We also use
pHres ¼ 7 and � ¼ 2cres=cmem ¼ 0:02, unless otherwise
noted. The voltage difference across the system is ��.
At the reservoir-SDL boundaries we set c� ¼ cres and
relate Pw to pHres.
In spite of neglecting fluid flow, the model still predicts

OLC, as shown in Fig. 1. The classical ion concentration
polarization phenomenon is apparent in panel (b) with salt
depletion where counterions (anions) enter the membrane
(x ¼ x2) and enrichment where they leave (x ¼ x3).
Within the membrane, however, anion depletion and cation
(co-ion) enrichment reveal a significant loss of selectivity
due to CIMD. At the same time, panel (c) shows large,
order-of-magnitude variations in cH, ‘‘mirrored’’ by cOH

FIG. 1 (color online). Basic physics of CIMD, illustrated by
numerical solutions of Eqs. (2), (5), and (6) for an anion
exchange membrane of thickness Lmem ¼ 100 �m between
two stagnant diffusion layers (SDLs) each of thickness Lsdl ¼
100 �m, both without (E ¼ 0, dashed curves) and with (E � 0,
full curves) electric forcing for (a) electrostatic potential and
concentrations of (b) cations cþ and anions c� and (c) protons
cH and hydroxyl ions cOH.
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through the equilibrium Eq. (4), with proton enrichment
(acidity) in the left SDL and proton depletion (basicity) in
both the membrane and the right SDL. The existence of
such pH variations has been confirmed experimentally in
similar systems [40–43].

Motivated by this observation, we analyze the pH gra-
dients perturbatively in the full CIMD model. We con-
sider underlimiting currents, assume thin, quasiequilibrium
double layers (Donnan approximation) at the SDL-
membrane interfaces, and solve the leading-order problem
for cþ, c� and � with small perturbations in cH and cOH,
valid when ðcH þ cOHÞ=ðcþ þ c�Þ � 1. The resulting
semianalytical model suffices to predict CIMD (variations
of membrane charge with local pH) via Eq. (2). Numerical
calculations show that pH and � are nearly constant across
the membrane, so the water charge density is averaged
between positions x2 and x3 (see below) to calculate the
membrane charge and midplane pH [Fig. 2(b)] to be used
in Eq. (2) to calculate �.

The final result for the most general model including
membrane discharge, arbitrary values for pHres and cres,
and the possibility that all diffusion coefficients are differ-
ent, consists of Eq. (2) together with the set of algebraic
equations below (see the Supplemental Material for details
[44]). First, we introduce the dimensionless salt flux
variable jsalt ¼ ðJ� � JþD�=DþÞ=Jlim, in which Jlim ¼
�2D�cres=LSDL is the ‘‘classical’’ limiting current density
[11], and obtain the salt current–voltage relation,

�� ¼ 4tanh�1ðjsaltÞ þ jsalt
	

�

�
; (7)

in which 	 ¼ fr=lmem, where lmem ¼ Lmem=Lsdl is the
membrane-to-SDL width ratio. The first term describes
concentration polarization in the SDLs, while the second
is the Ohmic response of the membrane. Next, we intro-
duce the dimensionless water ion flux jw ¼ JwLsdl=
ðDw

ffiffiffiffiffiffiffi
Kw

p Þ and water ion variable �w ¼ Pw=
ffiffiffiffiffiffiffi
Kw

p
and

obtain the following equations: �wðxmem
3 Þ � �wðxmem

2 Þ�
exp½jsalt�=ð	�Þ� þ jw=	 ¼ 0, sinh�1½�wðxmem

i Þ=2� ¼
sinh�1½�wðxsdli Þ=2� � sinh�1ð�=½�ð1 � jsaltÞ�Þ, and

�wðxsdli Þ¼�res
w �jwþ�0½1þ2	�=�� lnð1�jsaltÞ, (where

in these expressions i ¼ 2 and 3 corresponds to � and

þ, respectively). Here, �res
w is related to pHres and �0 ¼

½4þ ð�res
w Þ2�ð1=2Þ. Note that xmem

i and xsdli refer to positions
on either side of the equilibrium electric double layer at the
membrane–SDL interfaces. In the limit of an infinite mem-
brane charge �=� ! 0 the solution to the leading order
problem [Eq. (7)] is simply the ‘‘classical’’ result [45],
jsalt ¼ tanhð��=4Þ. We find the characteristic voltage fac-
tor �0 by expanding Eq. (7) for small jsalt � 1 and obtain
jsalt ¼ ��=�0 in which �0 ¼ 4þ �=	 assuming con-
stant � ¼ 1. The voltage factor �0 characterizes the
exponential-like approach of the current density to its
limiting value with applied voltage. Thus, in the classical
picture, for ��=�0 � 3 we expect the current density to
be at � 95% of its limiting value.
Results of the semianalytical model are compared with

full numerical calculations in Fig. 2, which shows good
agreement in the expected range of validity ��=�0 & 1.
The pH appears to converge towards a limiting value for
�� ! 1, and the jump in this limiting pH value between
the left SDL and the membrane is huge, here about 5 pH
units at the highest values of �� considered. We note that
the deviation between the analytical and numerical solu-
tion is largest in the left SDL where electroneutrality is
most strongly violated. This comparative analysis consti-
tutes a validation of our numerics and provides further
support for our conclusions regarding the role of pH in
controlling the ionic transport properties of ion-selective
membranes.
We now turn to a numerical analysis of the CIMDmodel

Eqs. (2)–(6). For comparison, we also solve the classical
model M1 used in all prior work on EOI [17–21] in which
(i) cþ ¼ 0 in the membrane, (ii) cH ¼ cOH ¼ 0 every-
where, and (iii) � ¼ 1 for all conditions. Additionally,
we solve two intermediate models which include co-ions
in the membrane with � ¼ 1 and either exclude (M2) or
include (M4) water ions, i.e., taking 2 or 4 ions into account
in the membrane, respectively. The total current density is
Jtot ¼ Jþ þ J� þ Jw.
Figure 3(a) shows the significant decrease in the ioniza-

tion degree � predicted by the CIMD model, in contrast to
the constant � ¼ 1 in the M1 model. Moreover, � de-
creases with decreasing � (due to the increasing Donnan
potential) and decreases with pHres (due to decreasing cH
in the membrane). A striking, and yet unexplained predic-
tion is that for ��=�0 & 3 and pHres larger than 7 the
ionization degree is almost constant until the curve hits that
for pHres ¼ 7 after which the curves follow each other.
In general we find beyond a few times�0 that reservoir pH
has a very small influence on membrane charge, fluxes, and
currents [see also Figs. 3(b)–3(d)]. A more in-depth analy-
sis of the effect of reservoir pH and the inclusion of addi-
tional chemical species is left for future work. Figure 3(b)
shows the significant increase of co-ion flux Jþ, thus loss

FIG. 2 (color online). Predicted pH variations from the full
numerical model, compared to the semianalytical approxima-
tion, as a function of the applied voltage (a) in the left SDL,
just outside the local equilibrium screening layer on the mem-
brane , (b) at the membrane midplane , and (c) in the right
SDL, just outside the local equilibrium screening layer on the
membrane.
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of membrane selectivity, with increasing voltage, as pre-
dicted by the CIMD model, for all values of
pH and �, while Fig. 3(d) shows likewise the increase in
current density Jw due to water ions. Still, these contribu-
tions do not sum to the increased current during OLC,
as shown in Fig. 3(c), the difference being due to increased
counterion flux J�.

Although the current–voltage relation in CIMD is
quite complicated, our simulations and analysis suggest
two general trends: (i) OLC increases with reservoir
salt concentration, roughly as �0:65 for the parameters of
Fig. 3; (ii) OLC is nearly independent of reservoir pH,
in spite of the large pH gradients produced across the
membrane.

Finally, we analyze the possible effect of CIMD on
EOI. In the classical M1 model, nonequilibrium space
charge forms at the limiting current [45–48], and its
growing separation from the membrane reduces viscous
resistance to electro-osmotic flow and destabilizes the fluid
[19–21]. As a measure of the propensity to develop EOI we
use the transverse (Helmholtz-Smoluchowski) electro-
osmotic mobility �eo=�eo;0 at the left SDL-reservoir

edge, which is equal to the first moment of the charge
density, �4��B

R
x2
x1
x�ionsdx, or the dimensionless poten-

tial difference across the left SDL, �ðx1Þ ��ðx2Þ.

Figure 4(a) shows that slightly above the limiting current
(Jtot=Jlim ¼ 1:01) the M1 model already predicts a very
significant extended space charge layer (the ‘‘shoulder’’
maximum in �ions=�ions;0 ¼ ð�DLSDL=�0Þd2�=dx2 sev-

eral hundred Debye lengths from the membrane), whereas
for an even higher current (Jtot=Jlim ¼ 1:03), using the
more realistic CIMD model, the extension of this layer
is still very minor. The two intermediate models lie in
between. Figure 4(b) shows how the transverse electro-
osmotic mobility is predicted by the M1 model to diverge
at the limiting current. This divergence is significantly
reduced only by the full CIMD model including simulta-
neously co-ion access, water ion transport, water splitting,
and membrane discharge. We note that a proper analysis of
EOI would be more involved, since here we have simply
focused on the transverse electro-osmotic mobility as a
way of illustrating the suppression of EOI due to CIMD.
In conclusion, we have theoretically demonstrated that

OLC through aqueous ion-exchange membranes can result
from CIMD, or loss of ion selectivity due to (de-)
protonation coupled to ion transport and water self-
ionization. The appearance of OLC carried partially by
salt co-ions and water ions reduces separation efficiency
in electrodialysis, but the associated large pH gradients
and membrane discharge could be exploited for current-
assisted ion exchange or pH control. In addition to the
effect of the water ions, the loss of ion selectivity due to
CIMD leads to a further suppression of the nonequilibrium
space charge that is much larger than in any of the models
M1, M2, and M4, see Fig. 4(a). The nonequilibrium space
charge is responsible for EOI and thus CIMD should be
considered in both models and experiments on OLC with

FIG. 3 (color online). Comparison of the classical M1 model
(only counterions in the membrane) with the full CMID model
for different concentration ratios � ¼ 2cres=cmem ¼ 0:004, 0.02,
0.04, and in the case � ¼ 0:02 for pHres ¼ 5:5, 7, 8.5.
(a) Membrane ionization degree �. (b) Co-ion current Jþ.
(c) Total current Jtot. (d) Water ion current Jw.

FIG. 4 (color online). Comparison of three fixed-charge mem-
brane models Mn having n ¼ 1, 2, or 4 mobile ionic species and
the CIMD model for (a) charge density �ions versus distance x	
from the membrane scaled to the reservoir Debye length �D, and
(b) electro-osmotic mobility �eo as a function of total current
Jtot. To further stress the effect of CIMD, the CIMD and M4

models are shown for the higher current density Jtot=Jlim ¼ 1:03
compared to Jtot=Jlim ¼ 1:01 for the M1 and M2 models.
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fluid flow. Although we have developed the theory for ion-
exchange membranes in aqueous solutions, CIMD could
occur in any nanofluidic system with an electrolyte whose
ions regulate the surface charge.
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