1 INTRODUCTION

- The Network Performance Model (NPM) provides performance monitoring and strategic decision support for urban railways.
- Learning passengers’ path choice behavior under station crowding (denied boarding) from automated fare collection (AFC) data is challenging.
- Current path choice studies are formulated based on AFC journey times, assuming no crowding and independence of individual journey times.
- The research addresses the path choice gaps by:
 - Proposing a simulation-based optimization (SBO) framework to estimate route choice using AFC data.
 - Comparing the performance of SBO optimizers.

2 METHODOLOGY

Framework

- **Input**
 - Timetable
 - OD Entry flow
 - Network
 - Capacity
 - Path choice
- **NPM Engine**
- **Performance Monitoring**
 - Station Crowding
 - Waiting Time
 - Train Load
 - Journey Time
 - OD Exit flow
- **SBO Engine**

Problem formulation

Minimize the difference (between estimated and observed) of OD exit flows and journey time distribution

\[
\beta \left(\sum_{i,j,k} q_{i,j,k} \right)^2 + \sum_{i,j,k} D_{KL}(p_{i,j,k}(x) \| p_{i,j,k}(s))
\]

Subject to:

- \(q_{i,j,k} = \text{NPM}(\beta, q_{i,j,k}, \theta)\) \(\forall i, j, k\),
- \(p_{i,j,k}(x) = \text{NPM}(\beta, q_{i,j,k}, \theta)\) \(\forall i, j, k \in \mathcal{S}\),
- \(L_\beta \leq \beta \leq U_\beta\),
- \(q^m_{i,j,k} = \text{Number of passengers entering station } i \text{ during time interval } m \text{ and exiting at station } j\),
- \(q^j_{i,j,k} = \text{Number of passengers exiting at station } i \text{ during time interval } n \text{ with origin } i\),
- \(p_{i,j,k}(x) = \text{Journey time distribution for passengers with origin } i, \text{ destination } j, \text{ and exit at time interval } n\),
- \(\beta\): Path choice parameters of a C-logit model
- \(L_\beta\): Lower bound of \(\beta\),
- \(U_\beta\): Upper bound of \(\beta\),
- \(\theta\): External inputs to the NPM model, including time table and transit network typology.

Model assumption

- The route choice fractions are estimated using a C-logit model. \(CF\) is the commonality factor.

\[
p_{i,j,k}^* = \frac{\exp(\beta_i \cdot X_{im} + \beta_j \cdot X_{jm} + \beta_k \cdot X_{km} + CF)}{\sum_{i,j,k} \exp(\beta_i \cdot X_{im} + \beta_j \cdot X_{jm} + \beta_k \cdot X_{km} + CF)}
\]

3 SIMULATION-BASED OPTIMIZATION ALGORITHMS

<table>
<thead>
<tr>
<th>Algorithms Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Direct search</td>
</tr>
<tr>
<td>Gradient-based</td>
</tr>
<tr>
<td>Response surface</td>
</tr>
</tbody>
</table>

4 RESULTS

Case study

- Synthetic data using Hong Kong MTR System
- Generate transaction tap-out times given a ‘true’ path choice model and tap-in times

Model convergence and estimation results

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>True Value</th>
<th>Estimated Parameter of C-logit Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSA</td>
<td>-0.0653</td>
<td>-0.0663</td>
</tr>
<tr>
<td>MADS</td>
<td>-0.0542</td>
<td>-0.0803</td>
</tr>
<tr>
<td>SPSA</td>
<td>-0.0993</td>
<td>-0.0623</td>
</tr>
<tr>
<td>BYO</td>
<td>-0.0645</td>
<td>-0.0645</td>
</tr>
<tr>
<td>Number of transfers</td>
<td>-0.4380</td>
<td>-0.4295</td>
</tr>
<tr>
<td>Transfer walking time</td>
<td>-0.3100</td>
<td>-0.3100</td>
</tr>
<tr>
<td>Map distance</td>
<td>-0.6132</td>
<td>-0.6132</td>
</tr>
<tr>
<td>Commonality factor</td>
<td>-0.1940</td>
<td>-0.1940</td>
</tr>
<tr>
<td>Objective function</td>
<td>-0.0908</td>
<td>-0.0908</td>
</tr>
</tbody>
</table>

5 CONCLUSION

- All algorithms converge to a small objective value with a limited number of function evaluations.
- The response surface methods (BYO and CORS) perform best in terms of the convergence speed, objective values and parameter estimates (compared to the ‘true’ choice model parameters).
- Despite a similar objective function value, algorithms may give different \(\beta\) estimates. For example, NMSA results in good value for the coefficients of in-vehicle time and number of transfers, but less accurate results for the commonality factors. SPSA shows similar properties.

ACKNOWLEDGEMENT

The authors would like to thank the Mass Transit Railway (MTR) in Hong Kong for providing the funding and data for this research.