
A note on more efficient architectures for NLP

Arturs Backurs Mingda Chen Kevin Gimpel

Abstract

We describe simple memory-efficient architectures for NLP tasks.

1 FFT-based model for natural language processing

Consider the sentence “The quick brown fox jumps over the lazy dog”. Suppose that our goal is to
teach a machine learning model to understand human written language. One way to do it would be
to blank out a random word from the sentence and ask the model to predict the missing word. For
instance, we might blank out the word “jumps” from the sentence and present the following input to
the machine learning model: “The quick brown fox over the lazy dog”. The model would hopefully
predict that the missing word is “jumps” from the rest of the given context. We would feed a lot of
fragments of texts to the machine learning model with random subsets of words blanked out and
the model would (hopefully) eventually build an understanding of written language. Typically the
length (number of words) of a fragment of text fed to a model is fairly large, say, 1024. Let’s denote
the length of the fragments by n, which is 1024 in our case. Out of the n words, 15% of them
get blanked before the fragment is being fed to the model and asked to recover the missing words.
Ideally we would like that n is as large as possible so that the model learns to “reason” about
texts where some parts of it depends on other parts far away. Unfortunately, for many models, the
memory consumption grows quadratically in n, which is impractical as n grows large. Below we
describe a simple model with a memory consumption that has a near-linear dependency on n.

For the sake of concreteness, we set n to be large integer, say, n = 16384. The model consists
of three phases.

Phase 1: embedding We replace every word of the input sentence by a d-dimensional vector.
For the sake of concreteness, let d = 768. For every word of the English dictionary we maintain a
d-dimensional vector. The entries of the vectors are initialized as independent Gaussians but later
are learned. Consider the input text “The quick brown fox over the lazy dog” (in this example
n = 9). The text is replaced by a sequence of n vectors

vThe, vquick, vbrown, vfox, v , vover, vthe, vlazy, vdog.

Notice that, if the text contains repeating words, then the sequence of vectors contains repeating
vectors. Furthermore, notice that there is a special vector corresponding to blanked-out words. An
issue with this embedding is that, if D denotes the number of possible distinct words in the English
vocabulary, the total number of parameters corresponding to this phase is Dd, which is too much.
One way to get around is to split the words into word-pieces - commonly occurring parts of words
such that most words can be assembled from a small number of word-pieces. This allows to reduce
D to roughly D = 32000 and the number of parameters Dd becomes tractable.

1



Phase 2: contextual embedding This phase consists of l layers. For the sake of concreteness
we set l = 64. The layers are identical but they don’t share the learnable parameters. A single layer
proceeds as follows. First, we concatenate all vector into a single nd-dimensional vectors. Next, we
apply FFT transform to the resulting vector. PyTorch has an O(nd log(nd))-time implementation of
FFT transform and it can be backpropagated through. The backpropagation stores O(nd log(nd))
intermediate values and consumes O(nd log(nd)) memory. This part of the layer doesn’t have
any learnable parameters. The second part of the layer splits the nd-dimensional vector into n
d-dimensional vectors v1, . . . , vn and applies a two layer simple neural network for every vectors.
That is, we set

vi ← BReLU(Avi)

for every i = 1, . . . , n, where A,B ∈ Rd×d are two learnable linear transformations with entries
initialized with independent Gaussians. This finishes the description of one layers. All layers are
identical except they don’t share the linear transformation matrices A and B.

Phase 3: loss computation After applying the l layers, we obtain n vectors v1, . . . , vn. To
compute the loss, we learn D vectors w1, . . . , wD ∈ Rd. D is the number of word-pieces as above
and the vectors are initialized as independent Gaussians. Suppose that the i-th word-piece in the
original input was a blank and that our goal is to determine what we should replace the blank with.
One way to do that is to replace blank with the j word-piece where j ∈ arg maxj=1,...,D w

†
jvi. This is

the intuition behind the loss computation procedure. First, we compute a probability distribution
pi,1, . . . , pi,D over the word-pieces using soft-max:

pi,j = exp(w†jvi)/
∑
i

exp(w†jvi).

Let j∗(i) be the word-piece that was in the i-th position before we blanked it out. We want that
pi,j∗(i) is as large as possible (ideally pi,j∗(i) = 1). One way to express this objective is as trying
to minimize log(1/pi,j∗(i)). The total loss is the sum of terms log(1/pi,j∗(i)) over all i such that the
i-th word-piece in the input was blanked-out. We do gradient descent to minimize the total loss.

Number of parameters Phases 1 and 3 has Dd parameters each. Phase 2 has 2d2 parameters
per each one of the l layers. So the total number of parameters is 2Dd+2d2l = O(Dd+d2l). With our
choice of D, d and l we get that the number of parameters is 2Dd+2d2l = 2·32000·768+2·7682 ·64 =
49152000 + 75497472 = 124649472.

Memory consumption To be able to do the backpropagation, we need to store all the interme-
diate computation steps. For this model the memory complexity is the same as the time complexity
to evaluate the total loss according to the above description. For phase 1 the memory consumption
is O(nd). For phase 2 the memory consumption is O(lnd log(nd))+O(lnd2). For the third phase the
memory consumption is O(ndD). So the total memory consumption is O(lnd log(nd)+lnd2+ndD).

We note that the memory complexity of the model has a near linear dependency on n. This is in
contrast to the typical quadratic dependency on n. There are works that achieve similar near-linear
dependency [TDBM20] but the resulting models are significantly more complex. In Appendix A
we add a complete implementation of the described model in Python.

2



Experiments We trained a variant of the model (see Appendix A) on the WikiText-103 data
set for 1 billion tokens (around 9 epochs). The model has context length n = 64, l = 12 layers,
dimension d = 768 and vocabulary size D = 32000. The total number of parameters is 105, 871, 628.
We used batch size of 64 and Adam optimizer with weight decay (weight decay coefficient 0.01,
β1 = 0.9, β2 = 0.999). We set learning rate to 0.001 with a linear learning rate decay and no
warm-up. We finetuned the model on the SST-2 task from the GLUE benchmark and it achieved
the accuracy 86.7. We can compare this to the GLUE benchmark leaderboard [glu].

2 Faster models for text generation

For this model we again have an input text sequence of, say, n = 16384 word-pieces. Similarly as
before, the model processes the input sequence in 3 phases.

Phase 1: embedding We replace every word-piece of the input sentence by a d-dimensional
vector. For an example, the input text “The quick brown fox jumps over the lazy dog” is replaced
by a sequence of n vectors

vThe, vquick, vbrown, vfox, vjumps, vover, vthe, vlazy, vdog.

Notice that there are no blanked-out word-pieces in the input sequence unlike for the previously
described FFT-based model.

Phase 2: contextual embedding This phase consists of l layers. For the sake of concreteness
we set l = 64. The layers are identical but they don’t share the learnable parameters. A single
layer proceeds as follows. First, we replace every vector by the sum of the first i vectors. That is,
vi ←

∑i
j=1 vj for i = 1, . . . , n. This part of the layer doesn’t have any learnable parameters. The

second part of the layer applies a two layer simple neural network for every vector. That is, for
every i = 1, . . . , n, we set

vi ← BReLU(Avi),

where A,B ∈ Rd×d are two learnable linear transformations. A very important observation about
the layers is that the i-th output vector of every layer depends only on the first i input vectors to
the layer.

Phase 3: loss computation After applying the l layers, we obtain n vectors v1, . . . , vn. We
note that for every i = 1, . . . , n, the vector vi depends only on the first i input vectors to the model
(the first i input vectors to the first layer). This follows from the observation from the previous
phase.

Our goal is that for every i = 1, . . . , n, the vector vi (which depends only on the first i word-
pieces), predicts, the (i+ 1)-st word-piece. In particular, for i = n we want to predict the (n+ 1)-st
word-piece, which is not part of the input sentence. However, we assume that the n input word-
pieces come from a larger text and we can read the (n+ 1)-st word-piece from the larger text. Let
pi,j be as defined in the description of phase 3 of the FFT-based model. Let j∗(i) be the word-piece
that is in the (i+ 1)-st position for i = 1, . . . , n. Then our goal is to minimize log(1/pi,j∗(i)) for all
i. We define the loss function

∑n
i=1 log(1/pi,j∗(i)) and minimize this loss using gradient descent.

3



Number of parameters and memory consumption An easy computation shows that the
number of parameters is 2Dd+2d2l = O(Dd+d2l) and that the memory (and the time) complexity
of the model is O(lnd2 + ndD).

Weighted sum variant of the model For every i = 1, . . . , n, the current model does the
vi ←

∑i
j=1 vj . A natural idea is to introduce learnable parameters w1, . . . , wn and make the

update rule to be vi ←
∑i

j=1 vjwi+1−j . Given v1, . . . , vn, the updated v1, . . . , vn can still be
computed efficiently using FFT (by observing that the above operation is convolution and using
the convolution theorem). This increase the number of parameters to 2Dd+ 2d2l + ln = O(Dd+
d2l + ln) and the memory (and the time) complexity becomes O(lnd log(nd) + lnd2 + ndD). The
implementation of the model is given in Appendix B

Experiments We trained a variant of the model (see Appendix B) on the WikiText-103 data
set with the same hyperparameters as for the FFT-based model. The model has 112, 977, 932
parameters and it achieved perplexity 25.8. We can compare this to the the language modelling on
WikiText-103 leaderboard [wik]. We also trained our own implementation of the standard attention
based model with 12 attention heads and 127, 200, 536 parameters and it achieved perplexity 23.2
on the benchmark (with the same hyperparameters).

References

[glu] GLUE Benchmark. https://gluebenchmark.com/leaderboard.

[TDBM20] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A
survey. arXiv preprint arXiv:2009.06732, 2020.

[wik] WikiText-103 Benchmark. https://paperswithcode.com/sota/

language-modelling-on-wikitext-103.

4

https://gluebenchmark.com/leaderboard
https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-wikitext-103


A Python implementation of the FFT-based model

The implementation adds a few extra details - including a layer norm and a skip connection (initial-
ized as 0). This slightly increases the number of parameters but it does not change the asymptotic
memory bounds.

import torch

import torch.nn as nn

import torch.nn.functional as F

def fft(x):

z = torch.view_as_complex(x.contiguous ().view(x.shape[0], -1, 2))

z = torch.view_as_real(torch.fft.fft(z, norm="ortho"))

return z.contiguous ().view_as(x)

class Layer(nn.Module):

def __init__(self , dimension):

super().__init__ ()

self.norm = nn.LayerNorm(dimension)

self.linear_1 = nn.Linear(dimension , 4 * dimension)

self.linear_2 = nn.Linear(4 * dimension , dimension)

self.scalar = nn.Parameter(torch.zeros(1))

def forward(self , x):

x = self.norm(x)

x = x + self.linear_2(F.gelu(self.linear_1(x))) * self.scalar

return fft(x)

class Model(nn.Module):

def __init__(self , vocabulary_size , n_layers , dimension):

super().__init__ ()

self.embedding = nn.Embedding(vocabulary_size , dimension)

self.layers = nn.ModuleList([Layer(dimension) for _ in range(n_layers)])

self.linear = nn.Linear(dimension , vocabulary_size)

def forward(self , x):

x = self.embedding(x)

for layer in self.layers:

x = layer(x)

return F.log_softmax(self.linear(x), dim=-1)

5



B Python implementation of the weighted sum model

class Layer(nn.Module):

def __init__(self , dimension , length):

super().__init__ ()

self.linear = nn.Linear(dimension , dimension)

self.weights = nn.Parameter(torch.zeros(length).unsqueeze(0).unsqueeze(0))

scale = torch.FloatTensor([math.sqrt(1 / (i + 1)) for i in range(length)])

self.register_buffer(’scale ’, scale.unsqueeze(-1).unsqueeze(0))

self.norm_1 = nn.LayerNorm(dimension)

self.linear_1 = nn.Linear(dimension , 4 * dimension)

self.linear_2 = nn.Linear(4 * dimension , dimension)

self.scalar = nn.Parameter(torch.zeros(1))

self.norm_2 = nn.LayerNorm(dimension)

def forward(self , x):

length = self.weights.size()[-1]

#implementing convolution using fft

x_1 = x.transpose(-2, -1)

x_1 = torch.fft.fft(x_1 , n=2*length) * \

torch.fft.fft(self.weights , n=2*length)

x_1 = torch.fft.ifft(x_1).real[..., :length]

x_1 = x_1.transpose(-2, -1)

x_1 = self.norm_1(x + x_1 * self.scale)

x_2 = self.linear_2(F.gelu(self.linear_1(x_1)))

x_2 = self.norm_2(x_1 + self.scalar * x_2)

return x_2

class Model(nn.Module):

def __init__(self , vocabulary_size , n_layers , length , dimension):

super().__init__ ()

self.embedding = nn.Embedding(vocabulary_size , dimension)

self.layers = \

nn.ModuleList([Layer(dimension , length) for _ in range(n_layers)])

self.linear = nn.Linear(dimension , vocabulary_size)

def forward(self , x):

x = self.embedding(x)

for layer in self.layers:

x = layer(x)

return F.log_softmax(self.linear(x), dim=-1)

6


	FFT-based model for natural language processing
	Faster models for text generation
	Python implementation of the FFT-based model
	Python implementation of the weighted sum model

