Uncertainty principle

We define the uncertainty of a measurement xx as its standard deviation σx\sigma_x, where

σx2=(xx)2=x22xx+x2=x22xx+x2=x2x2. \begin{align*} \sigma_x^2 &= \avg{(x-\avg{x})^2} = \avg{x^2 - 2x\avg x + \avg{x}^2} \\ &= \avg{x^2} - 2\avg{x}\avg{x} + \avg{x}^2 \\ &= \avg{x^2} - \avg{x}^2. \end{align*}

Now consider some observables AA and BB of a wave function Ψ\ket \Psi. By definition,

σA2=(A^A^)2=Ψ(A^A^)2Ψ. \begin{align*} \sigma_A^2 = \avg{(\hat A - \avg{\hat A})^2} = \braket{\Psi | (\hat A - \avg{\hat A})^2 \Psi}. \end{align*}

Since AA is observable, A^\hat A is Hermitian; so we can say

σA2=(A^A^)Ψ(A^A^)2Ψ=ff. \begin{align*} \sigma_A^2 = \braket{(\hat A - \avg{\hat A}) \Psi | (\hat A - \avg{\hat A})^2 \Psi} = \braket{f|f}. \end{align*}

Similarly,

σB2=ggg=(B^B^)Ψ. \begin{align*} \sigma_B^2 &= \braket{g|g} \\ \ket g &= (\hat B - \avg{\hat B}) \ket\Psi. \end{align*}

Then, from the Cauchy-Schwarz inequality

σA2σB2=ffggfg2. \begin{align*} \sigma_A^2 \sigma_B^2 = \braket{f|f} \braket{g|g} \ge |\braket{f|g}|^2. \end{align*}

For any complex number zz,

z2=Re(z)2+Im(z)2Im(z)2=(12i(zz))2. \begin{align*} |z|^2 = \mathrm{Re}(z)^2 + \mathrm{Im}(z)^2 \ge \mathrm{Im}(z)^2 = \left(\frac{1}{2i}(z-z^*)\right)^2. \end{align*}

Which gives us

σA2σB2(12i(fggf))2. \begin{align*} \sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i}(\braket{f|g} - \braket{g|f})\right)^2. \end{align*}

From some algebra (omitted) we see that fggf=[A^,B^]\braket{f|g} - \braket{g|f} = \avg{[\hat A, \hat B]}, which finally gives us the generalized uncertainty principle

σAσB12i[A^,B^]. \sigma_A\sigma_B \ge \frac{1}{2i} \avg{[\hat A,\hat B]}.

In the special case of xx and pp, where [x^,p^]=i[\hat x, \hat p] = i\hbar, we get the Heisenberg uncertainty principle σxσp2\sigma_x \sigma_p \ge \frac\hbar2.

Geometric interpretation

Consider a state ψ\ket \psi and an observable AA. Define a projector Pψ=ψψP_\psi = \ket \psi \bra \psi. Then the projection of the measurement onto the state is

PψAψ=ψψAψ=Aψ. \begin{align*} P_\psi A \ket \psi &= \ket \psi \braket{\psi|A|\psi} = \braket{A} \ket \psi. \end{align*}

From which we compute the perpendicular component ψ\ket{\psi_\perp}

ψ=(1^Pψ)Aψ=(AA)ψψψ=ψ(AA)2ψ=σA2. \begin{align*} \ket{\psi_\perp} &= (\hat 1 - P_\psi) A \ket \psi = (A - \braket{A}) \ket \psi \\ \braket{\psi_\perp | \psi_\perp} &= \braket{\psi | (A - \braket{A})^2 | \psi} = \sigma_A^2. \end{align*}

Geometrically, we see that the uncertainty is the length of the component of AψA\ket\psi perpendicular to ψ\ket \psi. Intuitively you can think of this as “how much does measuring AA change the state”.