Uncertainty principle
We define the uncertainty of a measurement x as its standard deviation σx, where
σx2=⟨(x−⟨x⟩)2⟩=⟨x2−2x⟨x⟩+⟨x⟩2⟩=⟨x2⟩−2⟨x⟩⟨x⟩+⟨x⟩2=⟨x2⟩−⟨x⟩2.Now consider some observables A and B of a wave function ∣Ψ⟩. By definition,
σA2=⟨(A^−⟨A^⟩)2⟩=⟨Ψ∣(A^−⟨A^⟩)2Ψ⟩.Since A is observable, A^ is Hermitian; so we can say
σA2=⟨(A^−⟨A^⟩)Ψ∣(A^−⟨A^⟩)2Ψ⟩=⟨f∣f⟩.Similarly,
σB2∣g⟩=⟨g∣g⟩=(B^−⟨B^⟩)∣Ψ⟩.Then, from the Cauchy-Schwartz inequality
σA2σB2=⟨f∣f⟩⟨g∣g⟩≥∣⟨f∣g⟩∣2.For any complex number z,
∣z∣2=Re(z)2+Im(z)2≥Im(z)2=(2i1(z−z∗))2.Which gives us
σA2σB2≥(2i1(⟨f∣g⟩−⟨g∣f⟩))2.From some algebra (omitted) we see that ⟨f∣g⟩−⟨g∣f⟩=⟨[A^,B^]⟩, which finally gives us the generalized uncertainty principle
σAσB≥2i1⟨[A^,B^]⟩.In the special case of x and p, where [x^,p^]=iℏ, we get the Heisenberg uncertainty principle σxσp≥2ℏ.
|