Uncertainty principle

We define the uncertainty of a measurement xx as its standard deviation σx\sigma_x, where

σx2=(xx)2=x22xx+x2=x22xx+x2=x2x2. \begin{align*} \sigma_x^2 &= \avg{(x-\avg{x})^2} = \avg{x^2 - 2x\avg x + \avg{x}^2} \\ &= \avg{x^2} - 2\avg{x}\avg{x} + \avg{x}^2 \\ &= \avg{x^2} - \avg{x}^2. \end{align*}

Now consider some observables AA and BB of a wave function Ψ\ket \Psi. By definition,

σA2=(A^A^)2=Ψ(A^A^)2Ψ. \begin{align*} \sigma_A^2 = \avg{(\hat A - \avg{\hat A})^2} = \braket{\Psi | (\hat A - \avg{\hat A})^2 \Psi}. \end{align*}

Since AA is observable, A^\hat A is Hermitian; so we can say

σA2=(A^A^)Ψ(A^A^)2Ψ=ff. \begin{align*} \sigma_A^2 = \braket{(\hat A - \avg{\hat A}) \Psi | (\hat A - \avg{\hat A})^2 \Psi} = \braket{f|f}. \end{align*}

Similarly,

σB2=ggg=(B^B^)Ψ. \begin{align*} \sigma_B^2 &= \braket{g|g} \\ \ket g &= (\hat B - \avg{\hat B}) \ket\Psi. \end{align*}

Then, from the Cauchy-Schwartz inequality

σA2σB2=ffggfg2. \begin{align*} \sigma_A^2 \sigma_B^2 = \braket{f|f} \braket{g|g} \ge |\braket{f|g}|^2. \end{align*}

For any complex number zz,

z2=Re(z)2+Im(z)2Im(z)2=(12i(zz))2. \begin{align*} |z|^2 = \mathrm{Re}(z)^2 + \mathrm{Im}(z)^2 \ge \mathrm{Im}(z)^2 = \left(\frac{1}{2i}(z-z^*)\right)^2. \end{align*}

Which gives us

σA2σB2(12i(fggf))2. \begin{align*} \sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i}(\braket{f|g} - \braket{g|f})\right)^2. \end{align*}

From some algebra (omitted) we see that fggf=[A^,B^]\braket{f|g} - \braket{g|f} = \avg{[\hat A, \hat B]}, which finally gives us the generalized uncertainty principle

σAσB12i[A^,B^]. \sigma_A\sigma_B \ge \frac{1}{2i} \avg{[\hat A,\hat B]}.

In the special case of xx and pp, where [x^,p^]=i[\hat x, \hat p] = i\hbar, we get the Heisenberg uncertainty principle σxσp2\sigma_x \sigma_p \ge \frac\hbar2.