Trigonometric identities

Double angle formulas

  • cos(2x)=cos2xsin2x\cos(2x) = \cos^2 x- \sin^2 x.

  • cos(2x)=2cos2x1\cos(2x) = 2\cos^2 x - 1.

  • cos(2x)=12sin2x\cos(2x) = 1 - 2\sin^2x.

  • sinh(2x)=2sinhxcoshx\sinh(2x) = 2 \sinh x \cosh x.

  • cosh(2x)=2cosh2x1\cosh(2x) = 2 \cosh^2 x - 1.

Sine and cosine addition formulas

  • Acos(θ+α)+Bsin(θ+β)=(Acosα+Bsinβ)2+(AsinαBcosβ)2cos(θ+tan1[AsinαBcosβAcosα+Bsinβ])A \cos (\theta + \alpha) + B \sin (\theta + \beta) = \sqrt{ \left( A \cos \alpha + B \sin \beta \right)^2 + \left( A \sin \alpha - B \cos \beta \right)^2 } \cdot \cos \left( \theta + \tan^{-1} \left[ \frac{A \sin \alpha - B \cos \beta}{A \cos \alpha + B \sin \beta} \right] \right)

  • Acosθ+Bsinθ=A2+B2cos(θtan1BA)A \cos \theta + B \sin \theta = \sqrt{A^2 +B^2} \cdot \cos \left( \theta - \tan^{-1} \frac BA \right).

Proof.

Angle addition formulas

  • cos(a+b)=cosacosbsinasinb\cos(a+b) = \cos a \cos b - \sin a \sin b.

  • sin(a+b)=sinacosb+cosasinb\sin(a+b) = \sin a \cos b + \cos a \sin b.