Time evolution
In Schrödinger’s formulation of quantum mechanics, a state vector is
parameterized by time, and time evolution can be written as the
application of a unitary operator
∣ ψ , t ⟩ = U ( t , t 0 ) ∣ ψ , t 0 ⟩ .
\begin{align*}
\ket{\psi,t} = U(t,t_0) \ket{\psi,t_0}.
\end{align*}
∣ ψ , t ⟩ = U ( t , t 0 ) ∣ ψ , t 0 ⟩ . Since U U U is unitary, normalization is preserved
⟨ ψ , t ∣ ψ , t ⟩ = ⟨ ψ , t 0 ∣ U † ( t , t 0 ) U ( t , t 0 ) ∣ ψ , t 0 ⟩ = ⟨ ψ , t 0 ∣ ψ , t 0 ⟩ .
\begin{align*}
\braket{\psi,t|\psi,t} = \braket{\psi,t_0 | U\adj(t,t_0)U(t,t_0)|\psi,t_0} = \braket{\psi,t_0|\psi,t_0}.
\end{align*}
⟨ ψ , t ∣ ψ , t ⟩ = ⟨ ψ , t 0 ∣ U † ( t , t 0 ) U ( t , t 0 ) ∣ ψ , t 0 ⟩ = ⟨ ψ , t 0 ∣ ψ , t 0 ⟩ . We also require that U ( t 0 , t 0 ) = 1 ^ U(t_0,t_0) = \hat 1 U ( t 0 , t 0 ) = 1 ^ , that time evolution
composes U ( t 2 , t 1 ) U ( t 1 , t 0 ) = U ( t 2 , t 0 ) U(t_2,t_1)U(t_1,t_0) = U(t_2,t_0) U ( t 2 , t 1 ) U ( t 1 , t 0 ) = U ( t 2 , t 0 ) , and that U U U is unique
and independent of state. Since U U U is unitary, its hermitian
conjugate is its inverse, so the conjugate reverses the time
translation U † ( t , t 0 ) = U ( t 0 , t ) U\adj(t,t_0) = U(t_0,t) U † ( t , t 0 ) = U ( t 0 , t ) .
Now consider how U U U relates to the time derivative of the state.
d d t ∣ ψ , t ⟩ = ∂ ∂ t U ( t , t 0 ) ∣ ψ , t 0 ⟩ = ∂ U ( t , t 0 ) ∂ t U ( t 0 , t ) ∣ ψ , t ⟩ = ∂ U ( t , t 0 ) ∂ t U † ( t , t 0 ) ∣ ψ , t ⟩ .
\begin{align*}
\frac{d }{d t} \ket{\psi,t} &= \frac{\partial }{\partial t} U(t,t_0) \ket{\psi,t_0} \\
&= \frac{\partial U(t,t_0)}{\partial t} U(t_0,t) \ket{\psi,t} \\
&= \frac{\partial U(t,t_0)}{\partial t} U\adj(t,t_0) \ket{\psi,t}.
\end{align*}
d t d ∣ ψ , t ⟩ = ∂ t ∂ U ( t , t 0 ) ∣ ψ , t 0 ⟩ = ∂ t ∂ U ( t , t 0 ) U ( t 0 , t ) ∣ ψ , t ⟩ = ∂ t ∂ U ( t , t 0 ) U † ( t , t 0 ) ∣ ψ , t ⟩ . Now write
∂ U ( t , t 0 ) ∂ t U † ( t , t 0 ) = : − i ℏ H ( t , t 0 ) .
\begin{align*}
\frac{\partial U(t,t_0)}{\partial t} U\adj(t,t_0) =: -\frac{i}{\hbar} H(t,t_0).
\end{align*}
∂ t ∂ U ( t , t 0 ) U † ( t , t 0 ) =: − ℏ i H ( t , t 0 ) . This yields something similar to the Schrödinger equation , with the notable difference that H H H is
parameterized by both t t t and t 0 t_0 t 0 .
− i ℏ d d t ∣ ψ , t ⟩ = H ( t , t 0 ) ∣ ψ , t ⟩
\begin{align*}
-i\hbar \frac{d }{d t} \ket{\psi,t} = H(t,t_0) \ket{\psi,t}
\end{align*}
− i ℏ d t d ∣ ψ , t ⟩ = H ( t , t 0 ) ∣ ψ , t ⟩ First show that H H H is hermitian, observing that H † = − i ℏ U ∂ t U † H\adj = -i\hbar U\partial_t U\adj H † = − i ℏ U ∂ t U † .
0 = ∂ t 1 ^ = ∂ t ( U ( t , t 0 ) U † ( t , t ) ) = ( ∂ t U ) U † + U ∂ t U † = − i ℏ H + i ℏ H † .
\begin{align*}
0 &= \partial_t \hat 1 = \partial_t (U(t,t_0) U\adj(t,t_)) =
(\partial_t U) U\adj + U\partial_t U\adj \\
&= -\frac{i}{\hbar} H + \frac{i}{\hbar} H\adj.
\end{align*}
0 = ∂ t 1 ^ = ∂ t ( U ( t , t 0 ) U † ( t , t ) ) = ( ∂ t U ) U † + U ∂ t U † = − ℏ i H + ℏ i H † . Then show that H H H is t 0 t_0 t 0 independent by introducing an arbitary
time t 1 t_1 t 1 and showing that H ( t , t 0 ) = H ( t , t 1 ) H(t,t_0) = H(t,t_1) H ( t , t 0 ) = H ( t , t 1 ) .
H ( t , t 0 ) = i ℏ ( ∂ t U ( t , t 0 ) ) 1 ^ U † ( t , t 0 ) = i ℏ ( ∂ t U ( t , t 0 ) ) U ( t 0 , t 1 ) ⏟ ∂ t ( U ( t , t 0 ) U ( t 0 , t 1 ) ) U ( t 1 , t 0 ) U † ( t , t 0 ) ⏟ U † ( t , t 1 ) = i ℏ ( ∂ t U ( t , t 1 ) ) U † ( t , t 1 ) = H ( t , t 1 ) = H ( t ) .
\begin{align*}
H(t,t_0) &= i\hbar (\partial_t U(t,t_0)) \hat 1 U\adj(t,t_0) \\
&= i\hbar \underbrace{(\partial_t U(t,t_0))
U(t_0,t_1)}_{\partial_t(U(t,t_0)U(t_0,t_1))} \underbrace{U(t_1,t_0)
U\adj(t,t_0)}_{U\adj(t,t_1)} \\
&= i\hbar (\partial_t U(t,t_1)) U\adj(t,t_1) \\
&= H(t,t_1) = H(t).
\end{align*}
H ( t , t 0 ) = i ℏ ( ∂ t U ( t , t 0 )) 1 ^ U † ( t , t 0 ) = i ℏ ∂ t ( U ( t , t 0 ) U ( t 0 , t 1 )) ( ∂ t U ( t , t 0 )) U ( t 0 , t 1 ) U † ( t , t 1 ) U ( t 1 , t 0 ) U † ( t , t 0 ) = i ℏ ( ∂ t U ( t , t 1 )) U † ( t , t 1 ) = H ( t , t 1 ) = H ( t ) . We thus arrive at the Schrödinger equation
for the hermitian Hamiltonian H ^ ( t ) \hat H(t) H ^ ( t ) .
i ℏ d d t ∣ ψ , t ⟩ = H ^ ( t ) ∣ ψ , t ⟩ .
\begin{align*}
i\hbar \frac{d }{d t} \ket{\psi,t} = \hat H(t) \ket{\psi,t}.
\end{align*}
i ℏ d t d ∣ ψ , t ⟩ = H ^ ( t ) ∣ ψ , t ⟩ . The only thing we assumed about H H H is that it is hermitian. We see
that any hermitian operator generates unitary time evolution! The
question becomes which operators correspond to physical
systems. Following classical intuition we extend the Hamiltonian from
classical mechanics to quantum mechanics.