Stress-energy tensor

The stress-energy tensor is a symmetric tensor which describes the spacetime density and flux of energy and momentum.

Tαβ=.(T00T01T02T03T10T11T12T13T20T21T22T23T30T31T32T33). \begin{align*} T^{\alpha\beta} \compeq \mat{ {\color{red} T^{00}} & \color{orange} T^{01} & \color{orange}T^{02} & \color{orange}T^{03} \\ \color{orange} T^{10} & \color{green}T^{11} & \color{blue}T^{12} & \color{blue}T^{13} \\ \color{orange} T^{20} & \color{blue}T^{21} & \color{green}T^{22} & \color{blue}T^{23} \\ \color{orange} T^{30} & \color{blue}T^{31} & \color{blue}T^{32} & \color{green}T^{33} }. \end{align*}
  • T00\color{red} T^{00} is the energy density, or the density of p0p^0

flowing in the x0x^0 direction.

  • T0a\color{orange} T^{0a} is the energy flux, or the density of

p0p^0 flowing in the xax^a direction. Actually, it’s missing a cc factor, since p0=E/cp^0 = E/c.

  • Ta0\color{orange} T^{a0} is the momentum density, or the densit

of pap^a flowing in time. Note T0α=Tα0T^{0\alpha} = T^{\alpha0}. Here we are missing a 1/c1/c factor because x0=ctx^0 = ct.

  • Taa\color{green} T^{aa} is the flux of momentum pap^a

in the xax^a direction, also known as stress or pressure.

  • Tab\color{blue} T^{ab} is the flux of momentum pap^a in the xbx^b

direction. When talking about a fluid, these components represent the non-normal flows.

We can derive the continuity equation from understanding TαβT^{\alpha\beta} as the pαp^\alpha momentum flux in the xβx^\beta direction.

Let Δpα\Delta p^\alpha be the change in 4-momentum in the xαx^\alpha direction in some time Δt\Delta t over a volume VV. We can write this using the Tα0T^{\alpha0} components as

Δpα=ΔtVTα0x0 ⁣dV. \begin{align*} \Delta p^\alpha &= \Delta t \int_V \frac{\partial T^{\alpha 0}}{\partial x^0} \d V. \end{align*}

We can also write this by computing the surface over the enclosing surface SS, and apply the divergence theorem

Δpα=ΔtSTαi ⁣dAi=ΔtVTαixi ⁣dV. \begin{align*} \Delta p^\alpha &= - \Delta t \oint_S T^{\alpha i} \d A^i \\ &= - \Delta t \int_V \frac{\partial T^{\alpha i}}{\partial x^i} \d V. \end{align*}

We set these two integrals and simplify to find

VTα0x0 ⁣dV=VTαixi ⁣dVTα0x0+Tαixi=0βTαβ=0. \begin{align*} \int_V \frac{\partial T^{\alpha 0}}{\partial x^0} \d V &= - \int_V \frac{\partial T^{\alpha i}}{\partial x^i} \d V \\ \frac{\partial T^{\alpha 0}}{\partial x^0} + \frac{\partial T^{\alpha i}}{\partial x^i} &= 0 \\ \partial_\beta T^{\alpha\beta} &= 0. \end{align*}

This equation encodes conservation of momentum and energy.