Sackur-Tetrode equation

We know entropy is a state function. Let’s calculate it for an ideal gas in terms of macroscopic quantities S(U,V,N)S(U,V,N) in a box of length LL.

Assume the state of each of the NN particles is described by three quantum numbers. The state of the system is then n={ni}\vec n = \{ n_i \} for i[1,3N]i \in [1,3N]. The energy of the system is

U=π222mL2(n12+n22+). U = \frac{\pi^2 \hbar^2}{2mL^2}\left( |\vec n_1|^2 + |\vec n_2|^2 + \cdots \right).

It follows that the number of states with energy at most EE is

N(E)=n1n2Θ(Eπ222mL2jnj2)iN ⁣d3niΘ(Eπ222mL2jNnj2). \begin{align*} N(E) &= \sum_{n_1} \sum_{n_2} \cdots \Theta \left(E - \frac{\pi^2 \hbar^2}{2mL^2} \sum_j |\vec n_j|^2 \right) \\ &\approx \int \prod_i^N \d^3 n_i\, \Theta\left(E - \frac{\pi^2 \hbar^2}{2mL^2} \sum_j^N |\vec n_j|^2 \right) \tag{for large \textit{E}}. \end{align*}

Above we assume EE is large enough that the probability of two particles in the same state is negligible. This allows us to write the sum as an integral.

Note

Why don’t I have particle in a box notes from QM?

Make a change of variables to write N(E)N(E) as slice of a 3N3N-sphere.

R=2EmL2π22,ni=RziN(E)=R3N0i3N ⁣dziΘ(1j3Nzj2)=(12)3NR3Nπ3N/2(3N/2)!. \begin{align*} R &= \sqrt\frac{2EmL^2}{\pi^2\hbar^2}, \\ n_i &= R z_i \\ N(E) &= R^{3N} \int_0^\infty \prod_i^{3N} \d z_i\, \Theta\left(1-\sum_{j}^{3N} z_j^2\right) \\ &= \left(\frac 12\right)^{3N} \frac{R^{3N} \pi^{3N/2}}{(3N/2)!}. \end{align*}

Then compute multiplicity Γ\Gamma, where the 1/N!1/N! factor accounts for overcounting particles that are indistinguishable

Γ=1N! ⁣dN ⁣dEδE=1N!(π4)3N/23N/2(3N/2)!(2mL2Eπ22)3N/2δEE. \begin{align*} \Gamma = \frac{1}{N!} \frac{\d N}{\d E} \delta E = \frac{1}{N!} \left(\frac{\pi}{4}\right)^{3N/2} \frac{3N/2}{(3N/2)!} \left(\frac{2mL^2 E}{\pi^2 \hbar^2}\right)^{3N/2} \frac{\delta E}{E}. \end{align*}

And apply Stirling’s approximation to find entropy SS, dropping factors of order lnN\ln N or smaller

S(U,V,N)=kln[1N!(π4)3N/23N/2(3N/2)!(2mL2Uπ22)3N/2δUU]=kNln(2mL2Uπ22)3N/2+kln3N2+kln[3N2ln3N2+3N2]kNlnN=kN[lnVN+ln(Um3Nπ2)3/2+52]=kN[lnVN+32lnUN+32lnm3π2+52] \begin{align*} S(U,V,N) &= k \ln \left[ \frac{1}{N!} \left(\frac{\pi}{4}\right)^{3N/2} \frac{3N/2}{(3N/2)!} \left(\frac{2mL^2 U}{\pi^2 \hbar^2}\right)^{3N/2} \frac{\delta U}{U}\right] \\ &= k N \ln \left(\frac{2mL^2 U}{\pi^2 \hbar^2}\right)^{3N/2} + k \ln \frac{3N}{2} + k \ln \left[ -\frac{3N}{2} \ln \frac{3N}{2} + \frac{3N}{2} \right] - k N \ln N \\ &= k N \left[ \ln \frac VN + \ln \left(\frac{Um}{3N\pi \hbar^2}\right)^{3/2} + \frac52 \right] \\ &= kN \left[ \ln \frac VN + \frac 32 \ln \frac UN + \frac 32 \ln \frac{m}{3\pi\hbar^2} + \frac 52 \right] \tag{!!} \end{align*}

The final line (!!) is the Sackur-Tetrode equation. It can be shown that SS is extensive.