Row-echelon form
A matrix is in row-echelon form if
all the zero rows are grouped at the bottom; and
each pivot lies farther to the right than the pivots of higher rows.
A pivot is the first nonzero entry of a row.
Gaussian elimination
Gaussian elimination is an algorithm for converting a matrix into row-echelon form through a series of row operations.
Find the first column with a nonzero entry from the left
If that row is not first, switch it with the first row.
Make all the other entries in that column zero by adding a multiple of the first row to the other rows, as needed.
Continue these steps from the second row on until the matrix is in row-echelon form.
Reduced row-echelon form
A matrix is in reduced row-echelon form if
it is in row-echelon form,
each pivot is a 1, and
in each pivot column, each entry other than the pivot is 0.
|