Piecewise constant potential

We can analytically find the energy eigenstates for a piecewise constant potential. Consider one constant interval, with potential V1V_1. From the time independent Schrodinger equation, we have

Eψ1(x)=22m2ψ1x2+V1ψ1(x)2ψx2=2m(EV1)2ψ1(x). \begin{align*} E \psi_1(x) &= -\frac{\hbar^2}{2m} \frac{\partial^2 \psi_1}{\partial x^2} + V_1 \psi_1(x) \\ \frac{\partial^2\psi}{\partial x^2} &= -\frac{2m(E-V_1)}{\hbar^2} \psi_1(x). \end{align*}

We see that if E>V1E > V_1, the second derivative of ψ1\psi_1 is a negative constant times ψ1\psi_1. This gives us a complex exponential solution ψ1=Aeikx+Beikx\psi_1 = Ae^{ikx} + Be^{-ikx} where k2=2m(EV1)2k^2 = \frac{2m(E-V_1)}{\hbar^2}.

If E<V1E<V_1, then the second derivative is a positive constant times ψ1\psi_1, giving us a real exponential solution ψ1=Aeκx+Beκx\psi_1 = Ae^{\kappa x} + Be^{-\kappa x}.

At steps in the potential, we have the condition that both ψ\psi and ψ\psi' be continuous.