Matrix diagonalization

Let ARn×nA \in \R^{n \times n}. If we can find nn linearly independent eigenvectors Vj\mathbf V_j with corresponding eigenvalues λj\lambda_j, we can define a matrix V=(V1,V2,,Vn)V = (\mathbf V_1, \mathbf V_2, \ldots, \mathbf V_n) whose columns are the eigenvectors.

Let ΛCn×n\Lambda \in \mathbb C^{n \times n} be the diagonal matrix consisting of the eigenvalues of AA.

Λ=(λ10000λ20000λ300λn). \Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & \lambda_n \end{pmatrix}.

It follows that

AV=A(V1,V2,,Vn)=(AV1,AV2,,AVn)=(λ1V1,λ1V2,,λnVn)=VΛ,A=VΛV1. \begin{align*} AV &= A(\mathbf V_1, \mathbf V_2, \ldots, \mathbf V_n) \\ &= (A\mathbf V_1, A\mathbf V_2, \ldots, A\mathbf V_n) \\ &= (\lambda_1 \mathbf V_1, \lambda_1 \mathbf V_2, \ldots, \lambda_n \mathbf V_n) \\ &= V \Lambda,\\ A &= V \Lambda V^{-1}. \end{align*}

If we can write A=VΛV1A = V \Lambda V ^{-1} we say that AA is diagonalized. It is important that the eigenvectors in VV are in the same order as the eigenvalues in Λ\Lambda.

Note

If AA is symmetric and we construct V\mathbf V from its normalized eigenvectors, then V1=V.\mathbf V^{-1} = \mathbf V^\top.