Enthalpy

We want to define a state function HH such that  ⁣dHp= ⁣dˉQ\d H|_p = \db Q. It is useful to have some exact analog for heat since QQ is inexact. We write

 ⁣dU= ⁣dQp ⁣dV= ⁣dˉQ ⁣d(pV)+V ⁣dp ⁣d(U+pV)= ⁣dU+p ⁣dV+V ⁣dp= ⁣dˉQ+V ⁣dpH:=U+pV=enthalpy ⁣dHp= ⁣dˉQ. \begin{align*} \d U &= \d Q - p\d V = \db Q - \d(pV) + V\d p \\ \d(U + pV) &= \d U + p\d V + V\d p = \db Q + V\d p \\ H &:= U + pV = \text{enthalpy} \\ \d H|_p &= \db Q. \end{align*}

Differential enthalpy  ⁣dHp\d H|_p represents both heat and the work required to maintain a constant pressure.