Compton scattering

Compton observed that the wavelength of X-rays scattered by an electron depends on their scattering angle θ\theta.

From conservation of momentum and energy of the electron-photon system we find

E=hcλ0+mec2=hcλf+p2c2+me2c4px=hλ0=hλfcosθ+pcosϕpy=0=hλfsinθpsinϕ, \begin{align*} E &= \frac{hc}{\lambda_0} + m_e c^2 = \frac{hc}{\lambda_f} + \sqrt{p^2 c^2 + m_e^2c^4} \\ p_x &= \frac{h}{\lambda_0} = \frac{h}{\lambda_f} \cos \theta + p \cos \phi \\ p_y &= 0 = \frac{h}{\lambda_f} \sin \theta - p \sin \phi, \end{align*}

where ϕ\phi is the electron scattering angle and pp is the momentum of the electron after the collision.

We isolate pp to find

p2=(hλ0hλfcosθ)2+(hλfsinθ)2. p^2 = \left(\frac{h}{\lambda_0} - \frac{h}{\lambda_f} \cos \theta \right)^2 + \left(\frac{h}{\lambda_f} \sin \theta \right)^2.

Using the energy equation we solve for

p2=h2(1λ021λf2)2+2h(1λ01λf)mec. p^2 = h^2 \left( \frac{1}{\lambda_0^2} - \frac{1}{\lambda_f^2} \right)^2 + 2h\left(\frac{1}{\lambda_0} - \frac{1}{\lambda_f} \right) m_e c.

After some algebra we find

2h2λ0λf+2h(1λ0+1λf)mec=2h2λ0λfcosθ. -\frac{2h^2}{\lambda_0 \lambda_f} + 2h \left( \frac{1}{\lambda_0} + \frac{1}{\lambda_f} \right) m_e c= -\frac{2h^2}{\lambda_0 \lambda_f} \cos \theta.

Finally, we find the Compton shift

Δλ=λfλ0=hmecλc(1cosθ). \Delta\lambda = \lambda_f - \lambda_0 = \underbrace{\frac{h}{m_e c}}_{\lambda_c} (1-\cos \theta).

Where λc\lambda_c is the Compton wavelength.