AsymptoticsAsymptotics describe the relation of two functions as their inputs grow. The table below shows the formal definitions as well as the operator intuitively corresponding to the asymptotic behavior. Orders describe the behavior of two functions only up to a constant factor. So for example . Similarly, it only matters that the relation holds after some constant , so . | *Definition* | *Limit Test* | || $f \sim g$ | $\to$ | \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1\) | $=$ || $f \in O(g)$ | $\exists c. \exists M. \forall x > M. \lvert f(x)\rvert \le cg(x)$ | \(\lim_{x \to \infty} \frac{\lvert f(x)\rvert}{g(x)} \in \R\) | $\leq$ || $f \in o(g)$ | $\to$ | \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0\) | $<$ || $f \in \Omega(g)$ | $g \in O(f)$ | \(\lim_{x \to \infty} \frac{f(x)}{g(x)} \in (0, \infty]\) | $\ge$ || $f \in \omega(g)$ | $g \in o(f)$ | \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty\) | $>$ || $f \in \Theta(g)$ | $f \in O(g)$ and $g \in O(f)$ | \(\lim_{x \to \infty} \frac{f(x)}{g(x)} \in (0, \infty)\) | $=$ Note that the limit tests for are one sided only. |