4-Force

We define 4-force F\fv F as the proper time derivative of 4-momentum:

F= ⁣dp ⁣dτ. \fv F = \frac{\d \fv p}{\d \tau}.

It’s often more useful to use the 3-force since that’s what we can actually measure. We’ll often need to convert between 3- and 4-force depending on the situation. Let’s first consider how the 3-force transforms, then how to relate it to the 4-force.

We will use the classic example of a train moving through a station with velocity v=vex\tv v = v \tv e_x. An object in the station has momentum pS=γ(u)mu\tv p_S = \gamma(u) m \tv u, energy ESE_S, and feels a force FS\tv F_S. Apply the Lorentz transform to find

(FT)x= ⁣dpTx ⁣dtT=γ( ⁣dpSxv ⁣dEs/c2)γ( ⁣dtSv ⁣dxS/c2)=(FS)x(v/c2)( ⁣dEs/ ⁣dtS)1v(u)x/c2. \begin{align*} (\tv F_T)^x &= \frac{\d p_T^x}{\d t_T} = \frac{\gamma(\d p_S^x - v\d E_s/c^2)}{\gamma(\d t_S - v \d x_S / c^2)} \\ &= \frac{(\tv F_S)^x - (v/c^2)(\d E_s/\d t_S)}{1-v(\tv u)^x / c^2}. \end{align*}

We simplify further by recalling that E2=p2c2+m2c4E^2 = p^2c^2 + m^2 c^4 and differentiating both side.

Es ⁣dES ⁣dtS=ps ⁣dpS ⁣dtSc2γmc2 ⁣dES ⁣dtS=γmu ⁣dpS ⁣dtSc2 ⁣dEs ⁣dtS=FSu. \begin{align*} E_s \frac{\d E_S}{\d t_S} &= \tv p_s \cdot \frac{\d \tv p_S}{\d t_S} c^2 \\ \gamma mc^2 \frac{\d E_S}{\d t_S} &= \gamma m \tv u \cdot \frac{\d \tv p_S}{\d t_S} c^2 \\ \frac{\d E_s}{\d t_S} &= \tv F_S \cdot \tv u. \end{align*}

Which tells us

(FT)x=(FS)x(v/c2)FSu1v(u)x/c2. \begin{align*} (\tv F_T)^x &= \frac{(\tv F_S)^x - (v/c^2)\tv F_S \cdot \tv u}{1-v(\tv u)^x / c^2}. \end{align*}

We compute the other components to find

(FT)y,z=(FS)y,zγ(1v(u)x/c2). \begin{align*} (\tv F_T)^{y,z} &= \frac{(\tv F_S)^{y,z}}{\gamma(1-v(\tv u)^x / c^2)}. \end{align*}

This looks a lot like velocity addition. It’s a remarkable symmetry.

We can also easily relate the 3-force to the 4-force. Considering first the spacial components,

Fi= ⁣dpi ⁣dτ=γ(u) ⁣dpi ⁣dt=γ(u)(F)i. \begin{align*} F^i &= \frac{\d p^i}{\d \tau} = \gamma(u) \frac{\d p^i}{\d t} = \gamma(u) (\tv F)^i. \end{align*}

Then the time component,

F0= ⁣dp0 ⁣dτ=γ(u) ⁣d ⁣dt(Ec)=γ(u)c ⁣dE ⁣dt. \begin{align*} F^0 = \frac{\d p^0}{\d\tau} = \gamma(u) \frac{\d}{\dt} \left(\frac Ec\right) = \frac{\gamma(u)}{c} \frac{\d E}{\dt} . \end{align*}

We have shown that  ⁣dE/ ⁣dt=Fu\d E/\dt = \tv F \cdot \tv u, so

F0=γ(u)cFu. \begin{align*} F^0 = \frac{\gamma(u)}{c} \tv F \cdot \tv u. \end{align*}