Three dimensional boundary conditions

We will now consider boundary conditions of a wave in three dimensions. In particular, let us examine the behavior of a standing sound wave in a box.

We write the three dimensional sound wave as

ψ=(Axsin(Kxx+αx)sin(Kyy+γx)sin(Kzz+δx)Aysin(Kxx+αy)sin(Kyy+γy)sin(Kzz+δy)Azsin(Kxx+αz)sin(Kyy+γz)sin(Kzz+δz))sin(ωt+β). \psi = \begin{pmatrix} A_x \sin(\mathcal K_x x + \alpha_x) \sin(\mathcal K_y y + \gamma_x) \sin(\mathcal K_z z + \delta_x) \\ A_y \sin(\mathcal K_x x + \alpha_y) \sin(\mathcal K_y y + \gamma_y) \sin(\mathcal K_z z + \delta_y) \\ A_z \sin(\mathcal K_x x + \alpha_z) \sin(\mathcal K_y y + \gamma_z) \sin(\mathcal K_z z + \delta_z) \end{pmatrix} \cdot \sin(\omega t + \beta).

Let’s look at why this is a solution to the wave equation. First consider only the xx component.

2ψx=2ψxx2+2ψxy2+2ψxz2=(Kx2Ky2Kz2)ψx2ψxt2=ω2ψx. \begin{align*} \nabla^2 \psi_x &= \frac{\partial^2 \psi_x}{\partial x^2} + \frac{\partial^2 \psi_x}{\partial y^2} + \frac{\partial^2 \psi_x}{\partial z^2} = (-\mathcal K_x^2 - \mathcal K_y^2 - \mathcal K_z^2) \psi_x \\ \frac{\partial^2 \psi_x}{\partial t^2} &= -\omega^2 \psi_x. \end{align*}

To satisfy the wave equation, 2ψt2=vp22ψ\frac{\partial^2 \psi}{\partial t^2} = v_p^2 \nabla^2 \psi, so ω2=vp2(Kz2+Ky2+Kz2)\omega^2 = v_p^2 (\mathcal K_z^2 + \mathcal K_y^2 + \mathcal K_z^2). The propagation velocity vpv_p is a property of the gas in the box. We have shown the xx component solves the wave equation. The same reasoning holds for yy and zz.

Now consider the physical meaning of these boundaries. The gas cannot pass through the walls of the box, so the displacement in the xx direction at x=0,ax=0,a ψxx=0,a=0\left.\psi_x\right|_{x=0,a}=0. The displacements in the other directions can still be nonzero at the xx boundary. We plug this condition in the same way as for any standing wave.

ψx=Axsin(Kxx+αx)sin(Kyy+γx)sin(Kzz+δx)sin(ωt+β)ψxx=0=0=sin(αx)αx=0,ψxx=a=0=sin(Kxa)Kx=lπa. \begin{align*} \psi_x &= A_x \sin(\mathcal K_x x + \alpha_x) \sin(\mathcal K_y y + \gamma_x) \sin(\mathcal K_z z + \delta_x) \sin(\omega t + \beta) \\ \left.\psi_x\right|_{x=0} &= 0 = \sin(\alpha_x) \\ \alpha_x &= 0, \\ \left.\psi_x\right|_{x=a} &= 0 = \sin(\mathcal K_x a) \\ \mathcal K_x &= \frac{l \pi}{a}. \end{align*}

We follow the same steps for yy and zz to find αx=αy=αz=0\alpha_x=\alpha_y=\alpha_z=0, Kx=lπa\mathcal K_x = \frac{l\pi}{a}, Ky=mπb\mathcal K_y=\frac{m\pi}{b}, Kz=nπc\mathcal K_z=\frac{n\pi}{c}. Note that there is a different normal mode number for each dimension, and the wavenumbers depend on the geometry of the box.

We conclude that the frequency of our solutions is

ω=vpK=vp(lπa)2+(mπb)2+(nπc)2 \omega = v_p \mathcal K = v_p \sqrt{\left( \frac{l\pi}{a} \right)^2 + \left( \frac{m\pi}{b} \right)^2 + \left( \frac{n\pi}{c} \right)^2}