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ON THE SPIELMAN-TENG CONJECTURE

ASHWIN SAH, JULIAN SAHASRABUDHE, AND MEHTAAB SAWHNEY

Abstract. Let M be an n × n matrix with iid subgaussian entries with mean 0 and variance 1

and let σn(M) denote the least singular value of M . We prove that

P
(
σn(M) 6 εn

−1/2) = (1 + o(1))ε+ e
−Ω(n)

for all 0 6 ε ≪ 1. This resolves, up to a 1+ o(1) factor, a seminal conjecture of Spielman and Teng.

1. Introduction

For an n× n matrix A, the least singular value of A is defined to be σn(A) = minx∈Sn−1 ‖Ax‖2.
This fundamental quantity has been extensively studied in the context of random matrices and goes

back, at least, to the seminal work of von Neumann [33], in the 1960s, on approximate solutions

to linear systems of equations. More recently, it has played a central role in breakthroughs on the

limiting spectral laws of random matrices, for example in the proof of the famous “circular law” of

Tao and Vu [28], and on the “smoothed analysis” of algorithms [23].

In this paper we consider large matrices with iid entries; let M be an n × n iid random matrix

with entries that have mean 0 and variance 1. Here we expect that σn(M) ≈ n−1/2 and one is

naturally led, in theory and applications, to the study of the quantity

P
(
σn(M) 6 εn−1/2

)
. (1)

Aside from the several prominent applications mentioned above, this research direction has been

stimulated by the work of Spielman and Teng, who formulated a precise conjecture concerning (1)

in the case of Rademacher random matrices, that is, when the entries of M are iid uniform in

{−1, 1}. Let B be such an n× n Rademacher matrix; they conjectured that

P
(
σn(B) 6 εn−1/2

)
6 ε+ e−Ω(n), (2)

for all ε > 0. This conjecture, put forward in their 2002 ICM survey [25], has since become known

as the Spielman–Teng conjecture and has stimulated a great deal of work on the least singular value

of iid matrices in the past 20 years. Most notably Rudelson and Vershynin [20] proved (2) up to a

constant factor, and Tao and Vu [27] proved (2) in the regime when ε > n−c.
In this paper we prove the Spielman–Teng conjecture, up to a 1 + o(1) factor, for all ε > 0. In

fact, we prove the same result holds for all random matrices with iid subgaussian entries.

Theorem 1.1. Let M be an n × n random matrix with iid subgaussian entries, with mean 0 and

variance 1. Then, for all ε > 0,

P
(
σn(M) 6 εn−1/2

)
6 (1 + o(1))ε + e−Ωξ(n), (3)

where the o(1) term decays as Cξ(log n)
−1/16, where Cξ > 0 depends only on ξ.

We suspect that our theorem is best possible in the sense that the 1 + o(1) factor cannot be

removed for this wider class of matrices. Indeed, for complex valued iid matrices, examples were

given by Edelman, Guionnet, and Péché [7], suggesting that the 1+ o(1) factor is indeed necessary.

In other words, we believe that the specific bound (2) conjectured by Spielman and Teng, if true,
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is not a “universal phenomenon”, independent of the entry distribution, but depends specifically

on the properties of the uniform distribution on {−1, 1}.
We also show the corresponding lower bound in Theorem 1.1 when ε = o(1). We do this by

showing that the distribution of σn(M) agrees with the corresponding quantity for a Guassian

random matrix, all the way down to exponentially small scales, up to a 1 + o(1) factor.

Theorem 1.2. Let M an n × n random matrix with iid subgaussian entries ξ of mean 0 and

variance 1 and let G be an n× n matrix with iid standard normal entries. Then, for all ε > 0,

P
(
σn(M) 6 εn−1/2

)
=
(
1 + o(1)

)
P
(
σn(G) 6 εn−1/2

)
+ e−Ωξ(n), (4)

where the o(1) term decays as Cξ(log n)
−1/16, where Cξ > 0 depends only on ξ.

Since the distribution of the least singular value is well understood in the Gaussian case, due to

the work of Edelman [5] in the 1980s, we can quickly deduce the following.

Corollary 1.3. Let M an n × n random matrix with iid subgaussian entries ξ of mean 0 and

variance 1. Then

P
(
σn(M) 6 εn−1/2

)
= (1 + o(1))ε + e−Ωξ(n),

for all 0 6 ε≪ 1.

1.1. Universality in random matrix theory. These results can be cast in the context of the

wider project of proving “universality” for eigenvalue statistics of random matrices. This idea goes

back to the pioneering work of Wigner in the 1950s, who put forward the bold hypothesis that the

behaviour of the eigenvalues of random matrices depends very little on the underlying distribution

of the entries.

In recent years there have been spectacular advances towards the project of confirming and

fleshing out Wigner’s hypothesis. Prominent among these is the famous “circular law”, which was

finally settled in full by Tao and Vu [28] after a long sequence of advances [1,6,9,11,16]. This result

tells us that the macroscopic “shape” of the eigenvalues M (i.e. the spectral distribution) is largely

independent of the entry distribution and converges in the limit to the uniform distribution on the

unit disc, when properly renormalized.

Another flagship advance has come in the context of random symmetric matrices: let A be an

n × n random symmetric matrix where the entries on and above the diagonal are iid with mean

0 and variance 1. Also let Λ(A) = {λ1(A)n−1/2, . . . , λn(A)n
−1/2} be the set of (renormalized)

eigenvalues. The extraordinary results of Tao and Vu [29] and Erdős, Schlein and Yau [8] tell us

that if I ⊆ (−2, 2) is an interval with |I| = Θ(n−1) then

P
(
Λ(A) ∩ I 6= ∅

)
= P

(
Λ(G0) ∩ I 6= ∅

)
+Θ(n−c), (5)

where G0 is the n×n random symmetric matrix with iid standard normal entries on and above the

diagonal. Informally (5) states that the probability that a (polynomially) small interval contains a

eigenvalue is independent of the underlying entry distribution. More generally, the results of [8,29]

imply that the microscopic distribution of the eigenvalue gaps is independent of the underlying

distribution of the entries, up to probability scales of order n−c. We note that a polynomial

probability error is expected in these statements; in particular the dependence on E[A4
ij ] appears

when considering fine asymptotics of the mean of λi(A) (see [15, Theorem 1.4]).

Another important universality result, and most relevant for us here, was proved by Tao and

Vu [27], in the setting of iid matrices. They showed that the distribution of the least singular value
2



of σn(M) is similarly universal. Specifically they proved that

P
(
σn(M) 6 εn−1/2

)
= P

(
σn(G) 6 εn−1/2

)
+Θ(n−c), (6)

where G is an iid random matrix with standard normal entries. Again, since the distribution of

σn(G) is known exactly (due to the special symmetries in this case), Tao and Vu were able to

deduce that the Spielman–Teng conjecture holds for all ε > n−c.
In this paper we make what is perhaps the first incursion into the project of studying a “sub–

microscopic” universality phenomena, by showing that this same universality phenomena persists

all the way down to exponentially small scales, if one allows for a 1 + o(1) factor.

1.2. History of the least singular value problem. The study of the least singular value of iid

random matrices goes back to the work of von Neumann (see [33, pg. 14, 477, 555]) in the context

of computing approximate solutions to systems of linear equations. He suggested that if B is an

n× n Rademacher random matrix then one has

σn(B) ≈ n−1/2. (7)

This was later formally conjectured by Smale [24] and then proved by Szarek [26] and Edelman [5]

when B is replaced with the n × n matrix G with iid standard Gaussian entries. In this case,

Edelman found an exact expression for the density of the least singular value which implies that

P
(
σn(G) 6 εn−1/2

)
6 ε, (8)

for all ε > 0 (see e.g. [25]). While this gives us an essentially complete picture in the Gaussian case,

Edelman’s proof relies fundamentally on the explicit formulae for the distribution of the singular

values of G that are not available for other entry distributions.

One challenging feature of general entry distributions, and in particular of discrete distributions,

is that such matrices are non-singular with non-zero probability. This singularity event corresponds

to the case ε = 0 and exhibits a very different behaviour from the situation for ε > e−o(n). In fact,

the problem of estimating the singularity probability of discrete random matrices has enjoyed

something of its own history, going back to the pioneering work of Komlós [14] in the 1960s, and

has since been the subject of intense activity [2,13,20,30]. Today, the best known result on random

Radamacher matrices is due to Tikhomirov who, in a breakthrough paper [32], proved

P(det(B) = 0) = 2−n+o(n).

For general ε > 0, a key breakthrough was made by Rudelson [18], and independently by Tao

and Vu [31], who gave the first bounds on the least singular value beyond the Gaussian case. Then

Rudelson and Vershynin [20] proved

P
(
σn(B) 6 εn−1/2

)
6 Cε+ e−cn, (9)

thereby resolving the Spielman–Teng conjecture, up to constant factors and, as a consequence,

Smale’s original problem (7).

This was then later complemented by the work of Tao and Vu [27], mentioned above (6), who

proved that the constant C can be taken to be 1 in the case ε > n−c. In this work we, in a sense,

“unite” these two results by showing the constant C is universal and equal to 1 for all ε > 0.

In the next section we give an outline of the proof Theorem 1.2, which implies Theorem 1.1 and

Corollary 1.3. We then proceed to prove Theorem 1.2 in Section 3 through Section 9.
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2. Outline of proof

Throughout we assume that M is an n×n matrix with iid subgaussian entries. We assume that

ε > e−cn, and that ε < n−c, otherwise we can apply the theorem of Rudelson and Vershynin, or

the theorem of Tao and Vu, respectively. To reduce on clutter, in our discussion here, we will not

worry about tracking the exact error term and be content with multiplicative losses of 1+o(1). We

shall also just focus our discussion here on proving the “6” direction of Theorem 1.2, since this is

the direction that implies Theorem 1.1. Of course, we have corresponding lower bounds for each of

the crucial steps below.

2.1. A geometric reduction. The first key idea in the work of Rudelson and Vershynin is to

show that one can control the event σn(M) 6 εn−1/2 in geometric terms. In particular, the first

key step in their proof is to show

P
(
σn(M) 6 εn−1/2

)
6 C · EM∗ PX

(
|〈v,X〉| 6 ε

)
+ o(ε), (10)

where C > 1 is an absolute constant, X denotes the last row of the matrix M , M∗ denotes the

matrix M with the last row removed, and v is an arbitrary unit vector in ker(M∗). This simple

and powerful idea allows one to access the least singular value σn through an understanding of the

kernel vector v and its inner product with a independent random vector X. However, for us, there

is a serious drawback in this first step as we necessarily lose a crucial constant factor C > 1.

In this paper, our first step draws inspiration from (10), though is much more refined and (as

one might imagine) more difficult to work with. Our version of (10) takes the shape

P
(
σn(M) 6 εn−1/2

)
6 EM∗ PX

Ä
|〈v,X〉| 6

(
1 + ε1/4

)
εn−1/2χ̃(X)

ä
+ o(ε), (11)

where v ∈ ker(M∗) is a unit vector and χ̃(X) = χ̃M∗(X) is the “correction” term defined by

χ̃2(X) = 1 +

n−1∑

i=1

〈vi,X〉2
σi(M∗)2

. (12)

Here vn−1, . . . , v1 are the unit singular vectors corresponding to σn−1(M
∗) 6 · · · 6 σ1(M

∗), the
singular values of the matrix M∗. Note here that once we fix M∗, the probability on the right

hand side of (11) depends only on the inner product of X with singular directions of M∗, in the

geometric spirit of (10).

2.2. A truncation step. The major challenge in working with (11) is, perhaps unsurprisingly,

getting a handle on the sum (12), which fluctuates at the scale of Θ(n1/2). Here our first major

step in the paper is to show that we can truncate this sum to the terms corresponding to the

smallest
√
log n singular values, while conceding only marginal losses. More precisely, in Sections 4

through 7, we prove the following “truncated” version of (12)

P
(
σn(M) 6 εn−1/2

)
6 EM∗ PX

(
|〈v,X〉| 6 (1 + δn)εn

−1/2χ(X)
)
+ o(ε), (13)

where we define, here and throughout the paper,

δn = (log n)−c, ℓ =
√

log n, and χ2(X) =

ℓ∑

i=1

〈vn−i,X〉2
σn−i(M∗)2

, (14)

for some c > 0.
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The proof of (13) is fairly involved and will consume our attention from Section 4 to Section 7.

Our first step here will be to show that (13) follows fairly easily if the matrix M satisfies a “regu-

larity” event R. While it is a bit technical to define this event (as we do in Section 4) for now it is

enough to think of R as an approximation of the events

σn−r(M
∗) ≈ Eσn−r(M

∗) ≈ rn−1/2 and 〈vi,X〉2 ≈ E 〈vi,X〉2 = 1.

From here most of the work comes from showing that the probability that R fails is negligible.

More precisely we need to show that

P
(
σn(M) 6 εn−1/2 ∧Rc

)
= o(ε).

To prove this we shall need to bootstrap several tools, developed in previous work, to deal with

this complicated intersection of events. Of particular interest is the challenge in “decoupling” the

intersections

σn(M) 6 εn−1/2 ∧ 〈X, v〉2 ≪ 1 and σn(M) 6 εn−1/2 ∧ 〈X, v〉2 ≫ 1,

for which we use and develop the “negative correlation inequalities” introduced recently in the work

of Campos, Jenssen, Michelen, and the second author [4] and [3]. We also crucially lean on work of

Rudelson and Vershynin [21] on the least singular value of random rectangular matrices to control

the event that σn−1(M
∗) is atypically small.

2.3. A Gaussian replacement step. Now to understand the right hand side of (13), we think

of fixing M∗ ∈ E∗, where E∗ is the event that M∗ is appropriately quasi-random. We then consider

the probability PX on the right hand side of (13) in isolation and relate this quantity to a similar

quantity where the random vector X is replaced with a Gaussian random vector Z = (Z1, . . . , Zn),

with iid standard Gaussian entries. In particular, we show that

PX

(
|〈v,X〉| 6

(
1 + δn

)
εn−1/2χ(X)

)
6 PZ

(
|〈v, Z〉| 6

(
1 + 2δn

)
εn−1/2χ(Z)

)
+ o(ε). (15)

This “replacement” maneuver echoes the so-called “Lindeberg exchange” method, which has been

used to great effect in both random matrix theory (e.g. in [29]) and more widely in mathematics

and computer science. The novelty in our replacement step (15) is that we show that this exchange

of X for Z can be done at probability scales of order o(ε), which, indeed, can be exponentially

small. This is in contrast to the above applications, where one obtains polynomial-type losses in

probability. To perform this “exchange”, we rely crucially on the quasi-randomness properties of

M∗ ∈ E∗.
Once we have (15), we see that some of the challenge in working with the sum χ(X) immediately

falls away. By the rotational invariance of G and the fact that the vi are orthonormal, we have that
(
〈X, v〉 ,

∑

i

〈vi, G〉2
σi(M∗)2

)
is distributed as

(
Wn ,

∑

i

W 2
i

σi(M∗)2

)
, (16)

where Wi are iid standard normals.

2.4. Rescaling and passing back to the singular value. With the observation (16) in tow,

it is not too difficult to see that in right hand side of (15), we are able to “replace” ε, which can

be exponentially small, with a much larger (and therefore much more tractable) ε0 = n−c
′

. More

precisely, we show that

PZ

(
|〈v, Z〉| 6

(
1 + 2δn

)
εn−1/2χ(G)

)
6 (ε/ε0)PZ

(
|〈v, Z〉| 6

(
1 + 2δn

)
ε0n

−1/2χ(Z)
)
+ o(ε). (17)

5



Putting these steps together shows that

P
(
σn(M) 6 εn−1/2

)
6 (ε/ε0)EM∗ PZ

(
|〈v, Z〉| 6

(
1 + δn

)
ε0n

−1/2χ(Z)
)
+ o(ε). (18)

We now turn to “mix in” the randomness of M∗. The most direct route here would be to try to

compute the expectation in (18) by estimating the joint distribution of σn−1(M
∗), . . . , σn−ℓ(M∗).

This is in fact possible, thanks to the work1 of Tao and Vu, which gives us a very good understanding

of the spectrum when ε0 > n−c. The trouble is that these results are technical to apply directly, so

we instead take a simpler and more indirect route, by relating the quantity on the right hand side

of (18) back to the probability that the least singular value of a certain matrix is small.

More precisely, we prove, using a version of the inequality (13) in reverse, that

EM∗ PZ

(
|〈v,G〉| 6

(
1 + δn

)
ε0n

−1/2χ(Z)
)
6 P

(
σn(M̃ ) 6 ε0n

−1/2
)
+ o(ε), (19)

where M̃ is the matrix M∗ with a Gaussian row Z appended. We may now apply the powerful

results of Tao and Vu which tell us that the distribution of σn is universal at these scales. Thus we

can replace M̃ with an iid Gaussian matrix G, for which the distribution of σn is known. We have

P
(
σn(M̃) 6

(
1 + δn

)
ε0n

−1/2
)
= P

(
σn(G) 6

(
1 + δn

)
ε0n

−1/2
)
+O(n−c) = ε0 + o(ε0). (20)

This, when taken together with the above, proves our main theorem, Theorem 1.2.

2.5. Organization of the paper. In Section 3 we “warm up” by proving the first geometric

reduction described at (11). We then endeavour to truncate the sum χ̃, which appears there in

(11) and prove (13). This “truncation step” takes place over the course of Sections 4 to Section 7.

In Section 8, we turn to prove our Gaussian replacement step, described at (15). Then, in

Section 9 we prove the “rescaling step”, described in (17) and then pass back to the singular value

problem in the matrix M̃ , a step described in (19). We finally put the pieces together and prove

Theorem 1.2 and derive Theorem 1.1.

2.6. Global notation. In an effort to reduce clutter, this paper is written with a few global

assumptions on notation. Throughout ξ with be a subgaussian random variable with subgaussian

constant

B = ‖ξ‖ψ2 := sup
p>1

p−1/2
(
Eξ‖ξ‖p

)1/p
.

Throughout M will denote our n×n random matrix with entries distributed as ξ, where n is fixed

but sufficiently large. We also M∗ be the (n− 1)× n matrix formed of the first n− 1 rows and we

will let X denote the last row.

Throughout we also assume that v is a kernel vector of M∗ and that vn−1, . . . , v1 are the right

singular vectors of M∗ corresponding to σn−1(M
∗) 6 · · · 6 σ1(M

∗). As mentioned above at (14)

we shall also assume that δn = (log n)−c, for c > 0 sufficiently small.

3. An easy geometric reduction of the singular value problem

In this short warm-up section we prove our easy initial geometric reduction of the singular value

problem as described at (11). We will then go on to prepare for the rather involved proof of (13).

1Specifically, [27, Theorem 6.2].
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Lemma 3.1. Let ε > e−cn. Then

P
(
σn(M) 6 εn−1/2

)
6 P

(
|〈v,X〉| 6

(
1 + ε1/4

)
εn−1/2χ̃(X)

)
+O(δnε).

and conversely

P
(
σn(M) 6 εn−1/2

)
> P

(
|〈v,X〉| 6

(
1− ε1/4

)
εn−1/2χ̃(X)

)
−O(δnε).

We recall that χ̃(X) is defined at (12). To prove this we use the following deterministic “rank-1

update” formula from linear algebra (see e.g. [10, (5.1)]). We include a short proof.

Lemma 3.2. Let A be a real n × n matrix, let A∗ be the matrix A with the last row Y removed,

and let un, . . . , u1 be the orthogonal vectors corresponding to the singular values 0 = σn(A
∗) 6

σn−1(A
∗) 6 · · · 6 s1(A

∗). Then the singular values of A are the positive solutions, in x, to the

polynomial equation
n∏

i=1

(σi(A
∗)2 − x) ·

Å
1 +

n∑

i=1

〈ui, Y 〉2
σi(A∗)2 − x2

ã
= 0.

Proof. Note that ATA = (A∗)TA∗ + Y TY . Thus, by the matrix determinant lemma, we have

det(ATA− xI) = det((A∗)TA+ Y TY − xI) = det((A∗)TA− xI) · (1 + Y T ((A∗)TA− xI)−1Y ).

We then evaluate the right hand side to be

n∏

i=1

(σi(A
∗)2 − x) ·

Å
1 +

n∑

i=1

〈ui, Y 〉2(σi(A∗)2 − x)−1

ã
,

which implies the lemma. �

The proof of Lemma 3.1 is based on the following deterministic lemma which says that our

reduction goes through if have some basic control on the least singular value of M∗.

Lemma 3.3. Let A be a real n × n matrix, let Y be the last row of A, let A∗ be the matrix A

with the last row removed, let u ∈ ker(A∗), and let χ̃(Y ) = χ̃A∗(Y ). Let ε > 0 be such that

σn−1(A
∗) > ε3/4n−1/2. Then

σn(A) 6 εn−1/2 =⇒ |〈u, Y 〉| 6
(
1 + ε1/4

)
εn−1/2χ̃(Y ). (21)

Conversely,

σn(A) > εn−1/2 =⇒ |〈u, Y 〉| > εn−1/2χ̃(Y ). (22)

Proof. Let σi = σi(A
∗), for i = 1, . . . , n − 1 be the singular values of A∗ and let ui be the corre-

sponding unit singular vectors. The least singular value σn(A) is the unique2 solution of

1 +

n−1∑

i=1

〈ui, Y 〉2
σ2i − x2

=
〈u, Y 〉2
x2

for 0 6 x 6 σn−1. (23)

For x in this range, we can bound the left hand side of (23) above and below by

1 +

n−1∑

i=1

〈ui, Y 〉2
σ2i

6 1 +

n−1∑

i=1

〈ui, Y 〉2
σ2i − x2

= 1 +

n−1∑

i=1

〈ui, Y 〉2
σ2i

· 1

1− (x/σi)2
. (24)

2Note this solution is easily seen to be unique as the left hand side is monotonically increasing to +∞ in this

interval while the right hand side is monotonically decreasing from +∞.
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Now assume σn−1(A
∗) > ε3/4n−1/2. If x = σn(A) 6 εn−1/2 then (24) is at most (1 + 2ε1/4)χ̃2(Y ),

which together with (23), implies (21). Conversely, if x = σn(A) > εn−1/2 then (22) follows by

putting the lower bound at (24) together with (23). �

To finish the proof of Lemma 3.1 we need the following theorem of Rudelson and Vershynin [21].

Theorem 3.4. For all γ > 0, we have

P
(
σn−1(M

∗) 6 γn−1/2
)
6 Cγ2 + 2e−Ω(n),

where C > 0 and the implicit constant may depend on entry distribution of M∗.

Proof of Lemma 3.1. Simply note that we may assume that σn−1(M
∗) > ε3/4n−1/2 since we may

apply Theorem 3.4 to see P
(
σn−1(M

∗) 6 ε3/4n−1/2
)
= O(δnε). Thus assuming σn−1(M

∗) >
ε3/4n−1/2, we now apply Lemma 3.3. �

4. Truncation step I: an initial reduction

In the next few sections we set up our main “truncation step”, described in (13) in the proof

outline. We then prove that this truncation is possible assuming that a “regularity event” R (to

be defined in just a moment) is extremely unlikely. Indeed, we shall need that

P(σn(M) 6 εn1/2 ∧Rc) = O(δnε). (25)

In the following sections (Sections 5 through 7) we shall then have to work rather hard to show

that each of these properties indeed hold with this very high probability. The following lemma is

the formal version of our main truncation step.

Lemma 4.1. For e−cn < ε < n−c we have

P
(
σn(M) 6 εn−1/2

)
6 P

(
|〈v,X〉| 6

(
1 + δn

)
εn−1/2χ(X)

)
+O(δnε)

and conversely we have

P
(
σn(M) 6 εn−1/2

)
> P

(
|〈v,X〉| 6

(
1− δn

)
εn−1/2χ(X)

)
+O(δnε).

We now define our regularity event R = R1 ∩R2 ∩R3 ∩R4, where R1 is defined to be the event

σn−1(M
∗) > (log n)−3n−1/2, (26)

R2 is defined to be the event

|〈vn−k,X〉| 6 max{k1/8, log log n}, for all 1 6 k 6 n− 1

intersected with the event

σn−k(M
∗) > k3/4n−1/2, for all k > log log n.

We then define R3 and R4 to be the events

σn−(log logn)2(M
∗) 6 (log log n)3n−1/2 and

∑

i6(log logn)2

〈vn−i,X〉2 > log log n,

respectively. The major objective of the next sections will be to show that

Lemma 4.2. For all e−cn < ε < n−c, we have that

P
(
σn(M) 6 εn−1/2 ∧Rc

)
= O(δnε).
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But before we come to the proof of Lemma 4.2, we motivate the definition of the event R by

showing that Lemma 4.2 implies Lemma 4.1. We first show the following deterministic lemma.

Lemma 4.3. Let 0 6 ε 6 (log n)−4 and let A be an n × n matrix with A ∈ R. Let A∗ be A with

the last row Y removed, let u ∈ ker(A∗), and write χ = χA∗. Then

σn(A) 6 εn−1/2 =⇒ |〈u, Y 〉| 6
(
1 + δn

)
εn−1/2 · χ(Y ).

Conversely,

σn(A) > εn−1/2 =⇒ |〈u, Y 〉| >
(
1− δn

)
εn−1/2 · χ(Y ).

Proof. Let ui be the unit singular vector corresponding to σi(A
∗). We show that if A ∈ R we have

χ̃2(Y ) = 1 +
n−1∑

i=1

〈ui, Y 〉2
σi(A∗)2

=
(
1 +O(δn)

) ℓ∑

i=1

〈un−i, Y 〉2
σn−i(A∗)2

=
(
1 +O(δn)

)
χ2(Y ).

Once we have have shown this, the result follows from Lemma 3.3. Now, since A ∈ R ⊂ R3 ∩R4,

1 +

n−1∑

i=1

〈ui, Y 〉2
σi(A∗)2

>
1

σn−(log logn)2(A
∗)2

∑

i6(log logn)2

〈un−i, Y 〉2 > n

(log log n)5
. (27)

Further, since A ∈ R ⊂ R2, and since ℓ =
√
log n, we bound the tail of the sum χ̃ as

n∑

i=ℓ+1

〈un−i, Y 〉2
σn−i(A∗)2

6 n

n∑

i=ℓ+1

i1/4

i3/2
.

n

(log n)3/16
,

thus implying (27) and thus completing the proof. �

Proof of Lemma 4.1 assuming Lemma 4.2. Simply write

P
(
σn(M) 6 εn−1/2

)
= P

(
σn(M) 6 εn−1/2 ∩Rc

)
+ P

(
σn(M) 6 εn−1/2 ∩R

)
,

and use Lemma 4.2 to deal with the first term on the right hand side and use Lemmas 4.3 and 3.1

to deal with the second. For the lower bound, apply Lemma 4.2 an additional time to get rid of

the event R. �

5. Truncation step II: preparation for the proof of Lemma 4.2

In the next sections we prove Lemma 4.2 and therefore complete the proof of Lemma 4.1. In

this section we prove the following three lemmas that will be quite useful towards this goal.

Lemma 5.1. Let E be an event which is measurable given M∗. Let ε 6 1 and δ ∈ [ε3/4, 1]. Then

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > δn−1/2 ∧ E
)
. n

(
ε/δ
)
· P(E) + e−Ω(n).

The second main lemma in this section is a refinement of Lemma 5.1, under the additional event

Er, a cousin of R2, which we define to be the event

|〈X, vn−k〉| 6 max{k1/8, r}, for all 1 6 k 6 n− 1 (28)

intersected with the event

σn−k(M
∗) > k3/4n−1/2, for all k > r. (29)

In this section we also prove the following.

Lemma 5.2. Let ε 6 1, δ ∈ [ε3/4, 1] and let E be an event which is measurable given M∗. Then

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > δn−1/2 ∧ Er ∧ E
)
. r3/2

(
ε/δ
)
· P(E) + e−Ω(n). (30)

9



The next lemma gives us an analogue of the above two lemmas in the case of the non-M∗-
measurable event E = {〈X,w〉 > t}. To prove this result, we will need a decoupling result from the

work of Campos, Jenssen, Michelen, and the second author [4].

Lemma 5.3. Let ε 6 1, δ ∈ [ε3/4, 1], t > 1 and let w ∈ S
n−1 be measurable given M∗. Then

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > δn−1/2 ∧ |〈w,X〉| > t
)
. n

(
ε/δ
)
· e−Ω(t2) + e−Ω(n). (31)

Furthermore,

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > δn−1/2 ∧ Er ∧ |〈w,X〉| > t
)
. r3/2

(
ε/δ
)
· e−Ω(t2) + e−Ω(n). (32)

In the remainder of this section we proceed to prove these lemmas. The first step in this direction

is to prove the following geometric reductions, based on Lemma 3.3.

5.1. Proof of Lemma 5.1.

Lemma 5.4. Let ε > 0, δ ∈ [ε3/4, 1] and let E be an event. Then

P
(
σn(M) 6 εn−1/2 ∧ σn(M∗) > δn−1/2 ∧ E

)
6 P

(
|〈v,X〉| 6 2

(
ε/δ
)
(‖X‖22 + 1)1/2 ∧ E

)
.

Proof. Since δ > ε3/4 we use Lemma 3.3. We replace the event σn(M) 6 εn−1/2 with the event

|〈v,X〉| 6 2εn−1/2

Å
1 +

n−1∑

i=1

〈vi,X〉2
σi(M∗)2

ã1/2
6 2
(
ε/δ
)
(‖X‖22 + 1)1/2,

where the last inequality holds since σn−1(M
∗) > δn−1/2 and since the vi are orthogonal. �

The proof of Lemma 5.1 now follows quickly from Lemma 5.4, along with two key results of

Rudelson and Vershynin [20]. For the first we define, for a vector v ∈ R
n and α, γ > 0, the least

common denominator of v as

LCDα,γ(v) = inf
{
θ > 0: dist(θv,Zn) < min{γ‖θv‖2,

√
αn}

}
. (33)

The following fundamental result of Rudelson and Vershynin tells us that kernel vectors of random

matrices have large least common denominator.

Theorem 5.5. There exist constants α, γ, c > 0, depending only ‖ξ‖ψ2 , for which

PM∗

(
∃v ∈ ker(M∗) with LCDα,γ(v) < ecn

)
6 2e−cn.

Since the parameters α, γ will be uninteresting for us, we simply fix them so that Theorem 5.5

holds and write LCD = LCDα,γ .

We shall also use another fundamental result of Rudelson and Vershynin (see [19, Theorem 6.2])

which tells us that vectors with large least common denominator have good anti-concentration

properties.

Theorem 5.6. For ε > 0, let u ∈ R
n, with ‖u‖2 = 1, and let Y = (Y1, . . . , Yn) be a random vector

where the Yi are iid, mean 0 and subgaussian. If LCD(u) > C/ε then

PY

(
|〈u, Y 〉| 6 ε

)
6 C(ε+ e−cn),

where C, c > 0 depend only the the subgaussian constant ‖Yi‖ψ2 .

We are now in a position to prove Lemma 5.1. For this, let us define the event

Elcd =
{
∀v ∈ ker(M∗) we have LCM(v) > ecn

}
, (34)

where the constant c > 0 matches that in Theorem 5.5.
10



Proof of Lemma 5.1. Note that P(‖X‖22 > n log n) 6 exp(−Ω(n log n)), since X is subgaussian.

Also Theorem 5.5 tells us that P(Eclcd) 6 e−cn. Applying these observations and Lemma 5.4 gives

P
(
σn(M) 6 εn−1/2 ∧ σn(M∗) > δn−1/2 ∧ E

)
6 P

(
|〈v,X〉| 6 4

(
ε/δ
)
(n log n)1/2 ∧ E ∧ Elcd

)
+ e−Ω(n).

Now using the fact that Elcd and E depend only on M∗, we have that the above is

6 max
M∗∈E∩Elcd

PX

(
|〈v,X〉| 6 4

(
ε/δ
)
(n log n)1/2 |M∗) · PM∗

(E) + e−Ω(n) 6 n(ε/δ) · P(E) + e−Ω(n),

where the last inequality follows from an application of Theorem 5.6. �

5.2. Proof of Lemma 5.2. We now modify the proof of the Lemma 5.4 to prove the refined

Lemma 5.2.

Lemma 5.7. Let ε > 0, δ ∈ [ε3/4, 1] and E be an event. Then

P
(
σn(M) 6 εn−1/2∧σn−1(M

∗) > δn−1/2∧E∗
r∧E

)
6 P

(
|〈v,X〉| 6 Cr3/2

(
ε/δ
)
∧σn−1(M

∗) > δn−1/2∧E
)
,

where C > 0 is an absolute constant.

Proof. Since δ > ε3/4 we use Lemma 3.3 to see that

σn(M) 6 εn−1/2 =⇒ |〈v,X〉| 6 2εn−1/2

Å
1 +

n−1∑

i=1

〈vi,X〉2
σi(M∗)2

ã1/2
.

Now the sum on the right hand side, under the event E∗
r and given σn−1(M

∗) > δn−1/2, is

1 +

n−1∑

i=1

〈vi,X〉2
σi(M∗)2

6

r∑

i=1

r2

σn−i(M∗)2
+
∑

i>r

(r + (i+ 1)1/8)2

(i3/4/
√
n)2

6
Cnr3

δ2
.

Thus we may replace σn(M) 6 εn−1/2 by |〈v,X〉| 6 Cr3/2ε/δ in the probability. �

The proof of Lemma 5.2 now follows in the same manner as the proof of Lemma 5.1.

Proof of Lemma 5.2. We apply Theorem 5.5, then Lemma 5.7 and then condition on M∗, as in the

proof of Lemma 5.1, to see the left hand side of (30) is

6 max
M∗∈E∩Elcd

PX

(
|〈v,X〉| 6 4r3/2

(
ε/δ
)
|M∗) · PM∗

(E) + e−Ω(n) . r3/2(ε/δ) · P(E) + e−Ω(n),

where the last inequality follows from an application of Theorem 5.6. �

5.3. Proof of Lemma 5.3. We now turn to prove one more variant of the above lemmas. Again

the proof is similar to that of Lemma 5.1, but this time we incorporate a tool developed by Campos,

Jenssen, Michelen, and the second author [4], which tells us that “anti-concentration” events are

approximately negatively correlated with “large-deviation” events.

Theorem 5.8. For ε > 0, let u,w ∈ R
n have ‖u‖2 = ‖w‖2 = 1 and let Y = (Y1, . . . , Yn) be a

random vector, where the Yi are iid, mean 0 and subgaussian. If t > 0 and LCD(u) > C/ε then

P
(
|〈u, Y 〉| 6 ε ∧ 〈w, Y 〉 > t

)
6 Cε · e−ct2 + e−c(n+t

2),

where C, c > 0 depend only on the subgaussian constant ‖Yi‖ψ2 .

We now prove Lemma 5.3.
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Proof of Lemma 5.3. Here there are two items to prove. For (31), apply Theorem 5.5 to deal with

Elcd then apply Lemma 5.4 with E = {〈vn,X〉 > t} to the left hand side of (31) to see it is

6 P
(
|〈v,X〉| 6 4

(
ε/δ
)
(n log n)1/2 ∧ E ∧ Elcd

)
+ e−Ω(n).

Conditioning on the worst M∗ ∈ Elcd, we see, using Theorem 5.8, the above is at most

max
v,w

PX

(
|〈v,X〉| 6 4

(
ε/δ
)
(n log n)1/2 ∧ 〈w,X〉 > t

)
. n

(
ε/δ
)
e−ct

2
+ e−Ω(n),

where the maximum is taken over all v,w with ‖v‖2 = ‖w‖2 = 1 and LCD(v) > ecn. This proves

(31). The proof of (32) is the same with Lemma 5.7 applied in place of Lemma 5.4. �

6. Truncation step III: taking care of the events R1 and R2

The goal of this sections will be to prove the first “half” of our main regularity lemma, Lemma 4.2.

Lemma 6.1. For all e−cn < ε < n−c we have

P
(
σn(M) 6 εn−1/2 ∧ (R1 ∧R2)

c
)
= O(δnε).

Recall that R1 is the event σn−1(M
∗) > (log n)−3n−1/2 and that R2 is the event

|〈vn−k,X〉| 6 max{k1/8, log log n}, for all 1 6 k 6 n− 1,

intersected with the event

σn−k(M
∗) > k3/4n−1/2, for all k > log log n.

We prove Lemma 6.1 by first proving a weaker analogue of it which we then “bootstrap” to the

full result.

6.1. A weaker version of Lemma 6.1. We prove a weak version of Lemma 6.1 forR1 by applying

Theorem 3.4, discussed in Section 3, which says that

P
(
σn−1(M

∗) 6 γn−1/2
)
6 Cγ2 + 2e−Ω(n). (35)

Lemma 6.2. For e−cn < ε < n−c we have

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) 6 n−5/2
)
= O(δnε). (36)

Proof. From Theorem 3.4, we see the probability that σn−1(M
∗) 6 ε3/4n−1/2 is O(ε3/2). Thus the

left hand side of (36) is at most

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) ∈ [ε3/4n−1/2, n−5/2]
)
+O(δnε). (37)

We now dyadically split up the interval [ε3/4n−1/2, n−5/2] by setting γj = 2j · ε3/4 for all j > 0 such

that γjn
−1/2 6 n−5/2. We now put Ej = {σn−1(M

∗) 6 2γjn
−1/2}. Thus, summing over j, (37) is

6
∑

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > γjn
−1/2 ∧ Ej

)
+O(δnε).

We now apply Lemma 5.1 to each summand to see the above is at most
∑

n
(
ε/γj

)
P(Ej) +O(δnε) 6

∑
n
(
ε/γj

)
·
(
γ2j + e−Ω(n)

)
+ o(ε) 6 ε/n+O(δnε) = O(δnε),

as desired. Here we applied Theorem 3.4 for the first inequality. �
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We now prove that a weaker version of the regularity event R2 fails with probability o(ε), under

the event σn(M) 6 εn−1/2. To define this event, recall the definition of Er, which we defined at

(28) and (29). We define our “weak” version ‹R2 of R2 to be

‹R2 = Elogn. (38)

To handle ‹R2 need the following control on the lower tails of σi(M
∗). The following theorem is an

immediate consequence (using interlacing) of [17, Theorem 1.4].

Theorem 6.3. For all k > 1, we have

P(σn−k(M
∗) < ck · n−1/2

)
6 e−k

2/8 + 2e−cn,

where c > 0 is a constant depending only on ‖ξ‖ψ2 .

Lemma 6.4. For e−cn < ε < n−c we have

P
(
σn(M) 6 εn−1/2 ∧ ‹Rc

2

)
= O(δnε). (39)

Proof. By Lemma 6.2, we may intersect the right hand side of (39) with the event σn−1(M
∗) > n−5/2

at a loss of O(δnε) in probability. Set ri = max{(n− i+1)1/8, log n} and note that, by Lemma 5.3,

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > n−5/2 ∧ |〈vi,X〉| > ri
)
. n3ε · e−Ω(r2i ) + e−Ω(n), (40)

which is at most εn−ω(1).
Now note that if Fk = {σn−k(M∗) < k3/4n−1/2}, from Lemma 5.1, we have

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > n−5/2 ∧ Fk
)
. n3ε · P(Fk) + e−Ω(n) 6 εn−ω(1), (41)

where the last inequality holds by Theorem 6.3, when k > log n, as in the definition of the ‹R2.

Now observe that the event on the left hand side of (39) is the union of n events of the type

found on the left and side of (40) and of the type found on the left hand side of (41), with k > log n.

Thus we can union bound over (40) and (41) to complete the proof of the Lemma. �

6.2. Bootstrapping to the proof of Lemma 6.1. We can now bootstrap these results to prove

Lemma 6.1, which follows from combining Lemma 6.5 and Lemma 6.6. In both cases the proof

closely follows the proof of the “weaker” counterpart.

Lemma 6.5. For e−cn < ε < n−c we have

P
(
σ(M) 6 εn−1/2 ∧ σn−1(M

∗) < (log n)−3n−1/2
)
= O(δnε). (42)

Proof. Apply Theorem 3.4, Lemma 6.2, and Lemma 6.4 to see that we may intersect the event in

the left hand side of (42) with the events σn−1(M
∗) > ε3/4, σn−1(M

∗) > n−5/2, and ‹R2, at the loss

of O(δnε) in probability. Thus we are interested in the event

σn−1(M
∗) ∈ [max{ε3/4, n−5/2}, (log n)−3n−1/2].

Again we dyadically partition this interval, by setting γjn
−1/2 = 2j ·max{ε3/4, n−5/2} for all j > 0

such that γj 6 (log n)−3. Now put Fj = {σn−1(M
∗) 6 2γjn

−1/2} so the probability in (42) is

6
∑

j

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > γjn
−1/2 ∧›R2 ∧ Fj

)
+O(δnε).

Thus, recalling that ‹R2 = Elogn (defined at (38)), we apply Lemma 5.2 to each summand with

r = log n to see that the above is at most

. (log n)3/2
∑(

ε/γj
)
P(σn−1(M

∗) 6 2γjn
−1/2

)
+O(δnε) . (log n)3/2ε

∑
γj +O(δnε),
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where we applied Theorem 3.4 to the probability in each summand. This is at most O(δnε). �

We now note that {σn(M) 6 εn−1/2} ∧ Rc
2 occurs with negligible probability.

Lemma 6.6. For e−cn < ε < n−c we have

P(σn(M) 6 εn−1/2 ∧Rc
2

)
= O(δnε).

Proof. Follow the proof of Lemma 6.4, but use Lemma 6.5 in place of Lemma 6.2. We note that

instead of taking a union bound over n events, we only need to consider at most 2(log n)8 events

not covered by R̃2. �

7. Truncation step IV: Taking care of the events R3 and R4

Our goal in this section is to prove the following lemma which amounts to the “second half”

of Lemma 4.2. This, when taken together with the work in Section 4, completes the proof of our

“truncation step”, Lemma 4.1.

Lemma 7.1. For e−cn < ε < n−c we have

P
(
σn(M) 6 εn−1/2 ∧ (R3 ∧R4)

c
)
= O(εδn).

Recall we defined R3 and R4 to be the events (respectively)

σn−(log logn)2(M
∗) 6 (log log n)3n−1/2 and

∑

i6(log logn)2

〈vn−i,X〉2 > log log n.

7.1. Dealing with R3. To ensure that we can assume R3, we need the following result on the

upper tails of the σi.

Lemma 7.2. Let k 6 nc, and t > C then

P
(
σn−k(M

∗) > tk · n−1/2
)
. e−(tk)2/C + n−c,

where C, c > 0 depend only on the subgaussian constant.

This result concerns only the “macroscopic” properties of the spectrum and thus falls into a

category of statements that we now have a good understanding of. Indeed, this result can be

extracted from combining the work of Szarek [26] and Tao and Vu [27].

We now deal with R3 and, since it is convenient, we also deal with a related event that we will

use in Section 8.

Lemma 7.3. For e−cn < ε < n−c we have

P
(
σn(M) 6 εn−1/2 ∧Rc

3

)
= O(δnε). (43)

and

P
(
σn(M) 6 εn−1/2 ∧ σn−√

logn(M
∗) > (log n)n−1/2

)
= O(δnε). (44)

Proof. Here we prove (43) and simply note that the proof of (44) is almost identical. From

Lemma 6.4 and Lemma 6.5 we intersect with the events ‹R2 and σn−1(M
∗) > (log n)−3n−1/2 at a

loss of O(δnε) in probability. Now apply Lemma 5.2 with E = Rc
3 to see

P
(
σn(M) 6 εn−1/2 ∧ σn−1(M

∗) > (log n)−3n−1/2 ∧ Elogn ∧Rc
3

)
6 (log n)9/2ε · P(Rc

3) + e−Ω(n).

which is O(δnε), since we may apply Lemma 7.2 to see

P(Rc3) = P
(
σn−log logn(M

∗) > (log log n)3n−1/2
)
6 (log n)−ω(1). �
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7.2. Dealing with R4. For this we use a simpler variant of a negative correlation theorem due to

Campos, Jenssen, Michelen and the second author.

Theorem 7.4. Let u ∈ R
n satisfy ‖u‖2 = 1 and let w1, . . . , wk ∈ R

n be orthogonal unit vectors.

Furthermore let Y = (Y1, . . . , Yn) be a random vector where the Yi are iid, mean 0 and subgaussian.

If LCD(u) > C/ε and k · ‖u‖∞ +
∑k

i=1‖wi‖∞ 6 (log n)−3 then

P

Å
|〈u, Y 〉| 6 ε ∧

k∑

j=1

|〈ui, Y 〉|2 6 ck

ã
6 C(εe−ck + e−cn),

where C, c > 0 depend only on the subgaussian constant ‖Yi‖ψ2 .

This theorem can be thought of as a weaker version of Theorem 1.2 in the paper of Campos,

Jenssen, Michelen, and the second author [4]. Interestingly, this theorem admits a significantly

simpler proof which we give in Appendix B.

We also need the following lemma that we will use to say that the unit vectors corresponding to

the smallest singular values are relatively flat.

Lemma 7.5. We have

PM∗

(
∃v ∈ R

n with ‖v‖2 = 1, ‖v‖∞ > Cn−c, and ‖M∗v‖2 < 1
)
< n−ω(1),

where c > 0 is absolute and C > 0 depends only on the subgaussian constant.

As the proof of this lemma is based on somewhat standard techniques, we defer the proof to

Appendix A.

Now recall the event Elcd = {∃v ∈ ker(M∗) : LCD(v) > ecn}, which we defined at (34), and recall

that P(Eclcd) < e−cn by Theorem 5.5.

Lemma 7.6. For e−cn < ε < nc, we have

P
(
σn(M) 6 εn−1/2 ∧R4

)
= O(εδn). (45)

Proof. Let Eflat denote the event in Lemma 7.5. By Lemma 6.4, Lemma 6.5, Lemma 7.3, Theo-

rem 5.5 and Lemma 7.5 we may intersect with the events

‹R2, σn−1(M
∗) > (log n)−3n−1/2, σn−(log logn)2(M

∗) 6 (log log n)3n−1/2, Elcd, and Eflat,

with only O(δnε) loss in probability. Let E be the intersection of these events and let E ′ be the

intersection of all but the first event. Note that E ′ is M∗ measurable.

Now apply Lemma 5.7 to see that the left hand side of (45) is at most

EM∗
1(M∗ ∈ E ′) · PX

Å
|〈v,X〉| 6 ε(log n)10 ∧

∑

i6(log logn)2

〈vn−i,X〉2 6 log log n

ã
+O(δnε). (46)

We now look to apply Theorem 7.4 to deal with the probability in (46). For this, note that 1)

LCD(v) > C/ε since M∗ ∈ Elcd, and 2) we have ‖v‖∞, ‖vn−1‖∞, . . . , ‖vn−(log logn)2‖∞ 6 n−Ω(1),

which holds by the fact that ‖Mv‖2, ‖Mvn−1‖2, . . . , ‖Mvn−log logn‖2 6 (log log n)n−1/2 < 1 and the

assumption that M∗ ∈ Eflat. Thus we apply Theorem 7.4 to see (46) is

. ε(log n)10 · e−Ω((log logn)2) + e−Ω(n) = O(δnε). �
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8. A Gaussian replacement step

In this section we show that we can “replace”, without much loss, the random vector X with the

a Gaussian random vector Z = (Z1, . . . , Zn) in our quantities of interest. Throughout this section

we will think of the (n−1)×n matrixM∗ as fixed withM∗ ∈ E∗, where E∗ is a “quasi-randomness”

event (to be defined shortly) that fails with negligible probability. Our main objective in this section

is to prove the following.

Lemma 8.1. Let M∗ ∈ E∗ and let χ = χM∗. Then

PX

(
|〈v,X〉| 6 εn−1/2 · χ(X)

)
6 PZ

(
|〈v, Z〉| 6 (1 + δn) · εn−1/2 · χ(Z)

)
+O(δnε) (47)

and

PX

(
|〈v,X〉| 6 εn−1/2 · χ(X)

)
> PZ

(
|〈v, Z〉| 6 (1− δn) · εn−1/2 · χ(Z)

)
−O(δnε) (48)

The proofs of the two inequalities are similar to each other and are proved in two steps. To show

(47), we let F(X) = FM∗(X) be the event on the left hand side of (47) and let G(Z) = GM∗(Z) be

the event on the right hand side. We first construct a pair of (very similar) smooth bump functions

f+, f− for which

PX

(
F(X)

)
6 EX f

+(X) +O(δnε) and EZ f
−(Z) 6 PZ

(
G(Z)

)
+O(δnε)

and for which |EZ
(
f+(Z)−f−(Z)

)
| = O(δnε). We then show, in the most subtle of the steps, that

we can replace X with Z in the context of this smooth bump function

∣∣EX f+(X) − EZ f
+(Z)

∣∣ = O(δnε). (49)

These together imply (47). The proof of the lower bound at (48) is similar.

8.1. Definition of E∗. This “microscopic” replacement is possible at these exponentially small

probability scales as a consequence of several quasirandomness properties that we may assume of

M∗ and which we isolate here. We define E∗ to be the intersection of the events

σn−1(M
∗) > (log n)−3n−1/2 and σn−k(M

∗) > k3/4n−1/2 for all k > log log n.

along with the events

σn−(log logn)2(M
∗) 6 (log log n)3n−1/2 and σn−

√
logn(M

∗) 6 (log n)n−1/2 (50)

intersected with the events Elcd and E ′
flat , which are (respectively)

LCD(v) > ecn and ‖v‖∞, ‖vn−1‖, . . . , ‖vn−ℓ‖∞ < n−Ω(1). (51)

From our work in earlier sections, it is not hard to see the following.

Lemma 8.2. For e−cn < ε < n−c we have

P
(
σn(M) 6 εn−1/2 ∧ (E∗)c

)
= O(δnε).
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8.2. Approximation by smooth bump functions. ForM∗ fixed we note that the event F(X) =

FM∗(X) is defined in terms of a smooth function of the random vector

H =
(
〈v,X〉, 〈vn−1,X〉, . . . , 〈vn−ℓ,X〉

)
,

while the right hand side is a smooth function of the random vector

K =
(
〈v,G〉, 〈vn−1, G〉, . . . , 〈vn−ℓ, G〉

)
,

where G ∼ N (0, 1)⊗n. Note that in fact K ∼ N (0, 1)⊗(ℓ+1), since vn, . . . , vn−ℓ are orthonormal.

Thus we can think of the probabilities in Lemma 8.1 as expectations of the indicators 1(H ∈ S)

and 1(K ∈ S′) for some regions S, S′ ⊂ R
ℓ+1. Before we do the replacement we find smooth bump

functions to approximate these regions, which will be amenable to the Fourier methods that follow.

Lemma 8.3. Let M∗ ∈ E∗. There exist functions f−, f+ : Rℓ+1 → R for which

|EG f+(G)− f−(G)| = O(δnε)

and for f ∈ {f+, f−} we have

PX(F(X)) 6 EX f(H) +O(δnε) and EG f(K) 6 PG(F(G)) +O(δnε),

and for all θ ∈ R, ξ = (ξ1, . . . , ξℓ) ∈ R
ℓ, we have

|f̂(θ, ξ)| 6 ε · exp
(
(log n)2/3

)
exp

(
− c(log n)−26

(
|θ/ε|1/2 + |ξ1|1/2 + · · ·+ |ξℓ|1/2

))
,

where c > 0 is an absolute constant.

As this construction is based on fairly standard techniques, we postpone it to Appendix C.

8.3. Replacement step. Here we prove the replacement step described at (15) above. For this,

we will bolster a weaker version of this replacement step known as the Lindeberg exchange method

that gives us the analogue of our result up to probability scales of n−Ω(1). We include a short proof

for completeness.

Theorem 8.4. Let X1, . . . ,Xn, be independent random variables with mean 0, variance 1, let

Z1, . . . , Zn be iid standard normals, and let f : Rn → C be a smooth function. Then

∣∣E f(X1, . . . ,Xn)− Ef(Z1, . . . , Zn)
∣∣ 6
Å

max
16i6n

E |Xi|3 + E |Zi|3
ã
·
n∑

i=1

∥∥∥∥
d3f

dx3i

∥∥∥∥
∞
.

Proof. We have that

|E[f(X1, . . . ,Xn)− f(Z1, . . . , Zn)]|

6

n∑

i=1

∣∣E[f(X1, . . . ,Xi−1, Zi, . . . , Zn)]− E[f(X1, . . . ,Xi, Zi+1, . . . , Zn)]
∣∣

6

n∑

i=1

max
tj∈R

∣∣E[f(t1, . . . , ti−1, Zi, ti+1, . . . , tn)− f(t1, . . . , ti−1,Xi, ti+1, . . . , tn)]
∣∣.

Let g~t(y) = f(t1, . . . , ti−1, y, ti+1, . . . , tn) and note via Taylor’s theorem (with integral form for the

remainder) that ∣∣∣∣g~t(y)− g~t(0)− y · g′~t(0)−
y2

2
g′′~t (0)

∣∣∣∣ 6 y3 · sup
z∈R

g′′′~t (z).

The result follows immediately. �
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We now prove our main replacement result.

Lemma 8.5. Let M∗ ∈ E∗, let ε > e−cn and let f ∈ {f+, f−} be as above. Then
∣∣∣∣EX f(H)− EK f(K)

∣∣∣∣ 6 ε · n−Ω(1), (52)

Proof. We write ξ = (ξ1, . . . , ξℓ), and bound the left hand side of (52) above by
∫

(θ,ξ)∈Rℓ+1

|f̂(θ, ξ)| ·
∣∣E e−2πi(H0θ+〈ξ,H〉) − E e−2πi(θK0+〈ξ,K〉)∣∣ dθdξ, (53)

by using Fourier inversion and the triangle inequality. We now define the rectangular region

Ω =
{
(θ, ξ) : |θ| 6 ε−1(log n)28 and ‖ξ‖∞ 6 (log n)30

}
,

and truncate (53) to Ω. In particular, using the decay condition on f̂ , we see that (53) is

. ε · e2(log n)2/3 ·
∫

(θ,ξ)∈Ω

∣∣E e−2πi(H0θ+〈ξ,H〉) − E e−2πi(θK0+〈ξ,K〉)∣∣ dθdξ + εn−ω(1). (54)

We now write
∣∣EX e−2πi(H0θ+〈ξ,H〉) − EG e

−2πi(θK0+〈ξ,K〉)∣∣ =
∣∣ψ(θ, ξ)− ψ̃(θ, ξ)

∣∣

and address the integral in (54) in two different ranges.

In the case |θ| 6 (log n)30, we look to apply Theorem 8.4, for each fixed (θ, ξ) to bound the

integrand. Write x = (x1, . . . , xn) and u = u(θ, ξ) = θv +
∑

i ξivi and define

g(x) = gθ,ξ(x) = exp

Å
− 2πi

≠
x, θv +

ℓ∑

i=1

ξivi

∑ã
= exp

(
− 2πi〈x, u〉

)
.

so that ∣∣ψ(θ, ξ)− ψ̃(θ, ξ)
∣∣ =

∣∣EX g(X) − EG g(G)
∣∣. (55)

Now note that

‖u‖22 =

≠
θv +

ℓ∑

i=1

ξivi, θv +

ℓ∑

i=1

ξivi

∑
= ‖θ‖2 +

ℓ∑

i=1

|ξi|22 6 (log n)60ℓ.

Since |θ| 6 (log n)30 and M∗ ∈ E we have that

‖u‖∞ =

∥∥∥∥θv +
ℓ∑

i=1

ξivi

∥∥∥∥
∞

6 |θ|‖v‖∞ +

ℓ∑

i=1

|ξi|‖vi‖∞ 6 n−Ω(1).

So we apply Theorem 8.4 to see that

∣∣EX g(X) − EG g(G)
∣∣ .

n∑

i=1

∥∥∥∥
d3g

dx3i

∥∥∥∥ 6

n∑

i=1

u3i 6 ‖u‖∞‖u‖2 6 n−Ω(1).

Thus ∫

(θ,ξ)∈Ω, |θ|6(logn)30

∣∣ψ(θ, ξ)− ψ̃(θ, ξ)
∣∣ dθdξ 6 (log n)28ℓ+30n−Ω(1) = n−Ω(1)+o(1).

We now deal with the case |θ| > (log n)30, write Ω+ = Ω ∩ {|θ| > (log n)30}, and show that the

contributions from both ψ, ψ̃ are small. First note
∫

(θ,ξ)∈Ω+

|ψ(θ, ξ)| =
∫

(θ,ξ)∈Ω+

|E e−2πi(K0θ+〈ξ,K〉)| 6
∫

(θ,ξ)∈Ω+

exp(−Ω(‖ξ‖22 + |θ|2)
)
6 n−ω(1),
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which is small enough for us. To bound the contribution from ψ, we use that

I =

∫

(θ,ξ)∈Ω+

|ψ(θ, ξ)| dθdξ 6
∫

(θ,ξ)∈Ω
exp

(
−c
∥∥∥∥ξv +

ℓ∑

i=1

ξivi

∥∥∥∥
2

T

)
dθdξ. (56)

Now note that since |θ| 6 ε−1 · (log n)30 < ecn and thus ‖vθ‖T & min{|θ|,√n}, by property Elcd.
Therefore

∥∥∥∥θv +
ℓ∑

i=1

ξivi

∥∥∥∥
T

> ‖θv‖T −
∥∥∥∥

ℓ∑

i=1

ξivi

∥∥∥∥
2

> ‖θv‖T − (log n)28 · ℓ & min{|θ|,√n}

and therefore the integral on the left hand side of (56) is I 6 n−ω(1), which again is small. �

8.4. Proof of Lemma 8.1. We now finish the proof of Lemma 8.1.

Proof of Lemma 8.1. Apply the properties guaranteed by Lemma 8.3 and Lemma 8.5 to get

PX(F(X)) 6 EX f
+(H)+O(δnε) = EG f

+(K)+O(δnε) = E f−(K)+O(δnε) 6 P(G(G))+O(δnε),

thus proving (47). The proof of (48) is similar. �

9. Return to the singular value problem and proof of Theorem 1.2

In this section we prove our main theorem, Theorem 1.2. We do this by first proving the following

lemma, which, relates our main quantity of interest to the probability that the least singular value

of an n × n Gaussian matrix is small. Together with our work from earlier sections and the work

of Edelman [5], this will allow us to complete the proof of our main theorem.

Lemma 9.1. For 0 6 ε < n−c, we have

EM∗ PZ

(
|〈v, Z〉| 6 εn−1/2 · χ(Z)

)
=
(
1 +O(δn)

)
PG

(
σn(G) 6 εn−1/2

)
+O(δnε). (57)

To prove this we use the symmetry and smoothness of the distribution of Z to show that we

can “replace” the small ε on the left hand side of (57) with a much larger (and therefore more

tractable) ε0 = n−c. This step we described at (17) in the proof sketch.

Lemma 9.2. Let 0 6 ε 6 n−c, let ε0 > n−c and let σn−1(M
∗) > (log n)−1n−1/2. Then

PZ

(
|〈v, Z〉| 6 εn−1/2 · χ(Z)

)
= (ε/ε0) · PZ

(
|〈v, Z〉| 6 ε0n

−1/2χ(Z)
)
+O(δnε).

Proof. Since Z ∼ N(0, 1)⊕n and the vi are orthonormal, we can express |〈v, Z〉| 6 εn−1/2 · χ(Z) as

|W0| 6 εn−1/2

Å ℓ∑

i=1

W 2
i

σn−i(M∗)2

ã 1
2

=: f(W1, . . .Wℓ)

where (W0,W1, . . . ,Wℓ) ∼ N(0, 1)⊕(ℓ+1). Now note that, since W0 is independent of f and since

the Gaussian density function is flat about its mean, we have that

P
(
W0 6 f

∣∣ f < (log n)−1
)
= (ε/ε0)(1 +O(δn)) · P(W0 6 (ε0/ε)f

∣∣ f < (log n)−1
)
.

So to finish we only need to show that P(f > (log n)−1) = O(δε). For this, simply note that

under the event σn−1(M
∗) > (log n)−1n−1/2 we have that

P
(
f > (log n)−1

)
6 P

Å
ε(log n)

Å ℓ∑

i=1

W 2
i

ã 1
2

> (log n)−1

ã
= O(δnε),
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where the last equality follows by standard concentration estimates and the assumption that ε <

n−c. Taking expectations EZ1,...,Zℓ
finishes the proof of the lemma. �

We now properly state the universality theorem of Tao and Vu, for the least singular value. The

following is Theorem 6.7 in [27].

Theorem 9.3. Let M̃ be an n×n random matrix, where M̃ij are independent with mean 0, variance

1 and subgaussian constants ‖M̃ij‖ψ2 6 B. Then

P
(
σn(M̃) 6 εn−1/2

)
= P(σn(G) 6 εn−1/2

)
+O(n−c),

for some c > 0, depending only on B.

We also need the following theorem of Edelman [5], mentioned in the introduction.

Theorem 9.4. Let G be an n× n random matrix with iid entries distributed as N(0, 1). Then

P
(
σn(G) 6 εn−1/2

)
6 ε.

We are now in a position to prove Lemma 9.1.

Proof of Lemma 9.1. Write Fε = {|〈v, Z〉| 6 εn−1/2 ·χ(Z)}. Using Lemma 9.2 with the right hand

side of (57) with ε0 = n−c, we have

EM∗PZ

(
Fε
)
= (ε/ε0) · EM∗

1

(
M∗ ∈ E∗) · PZ

(
Fε0
)
+O(δnε).

Here we have used Lemma 8.2 to deal with the case that σn−1(M
∗) < (log n)−1n−1/2. Now apply

Lemma 4.1 to see that

P
M̃

(
σn(M̃ ) 6

(
1−δn

)
ε0n

−1/2
)
+O(δnε) 6 EM∗PZ

(
Fε0
)
6 P

M̃

(
σn(M̃) 6

(
1+δn

)
ε0n

−1/2
)
+O(δnε),

where M̃ is the random matrix M∗ with a Gaussian row Z added. We now apply Theorem 9.3 to

the right hand side of the above to see

P
M̃

(
σn(M̃) 6

(
1 + δn

)
ε0n

−1/2
)
= PG(σn(G) 6 (1 + δn)ε0n

−1/2
)
+O(n−c) =

(
1 +O(δn)

)
ε0,

and similarly for the left hand side. Now apply Theorem 9.4 to obtain the desired result. �

9.1. Proof of Theorem 1.2 and Theorem 1.1. Here we prove our main theorem, Theorem 1.2,

by snapping together the results developed in the previous sections.

Proof of Theorem 1.2 . We prove the “6” direction of our main theorem and note that the other

direction is similar. We may assume that e−cn < ε < n−c, otherwise we can apply the results of

Rudelson and Vershynin or Tao and Vu, respectively. We first apply Lemma 4.1 and write

P
(
σn(M) 6 εn−1/2

)
6 EM∗PX

(
|〈v,X〉| 6

(
1 + δn

)
εn−1/2χ(X)

)
+O(δnε).

Now apply our Gaussian replacement step, Lemma 8.1, to write

EM∗PX

(
|〈v,X〉| 6 εn−1/2χ(X)

)
6 EM∗PZ

(
|〈v, Z〉| 6

(
1 + δn

)
εn−1/2 · χ(Z)

)
+O(δnε),

where we used Lemma 8.2, to deal with the event M∗ 6∈ E∗. Now we apply Lemma 9.1 to write

EM∗ PZ

(
|〈v, Z〉| 6

(
1 + δn

)
εn−1/2 · χ(Z)

)
=
(
1 +O(δn)

)
PG

(
σn(G) 6

(
1 + δn

)
εn−1/2

)
+O(δnε),

thus completing the proof. �

We now easily derive our approximate Spielman–Teng conjecture.
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Proof of Theorem 1.1. Apply Theorem 1.2 and Theorem 9.4 and write

P
(
σn(M) 6 εn−1/2

)
6
(
1 + o(δn)

)
P
(
σn(G) 6 εn−1/2

)
+ e−Ω(n) 6

(
1 + δn

)
ε+ e−Ω(n),

where G is a random n× n matrix with iid standard normal entries. �
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Appendix A. The flatness of the vi

We first require which follows from interlacing and the proof of [27, Lemma 4.1].

Lemma A.1. There exist c ∈ (0, 1/4) and c′ > 0 (potentially depending on the subgaussian constant

of ξ) such that with probability 1 − exp(−c′nc), there are at least c′n1−c singular values of Mn in

[n1/2−c/2, n1/2−c].

We now prove Lemma 7.5.

Proof of Lemma 7.5. Let c be as in lemma A.1; and suppose that there exists v ∈ S
n with ‖v‖∞ >

n−c/4 and ‖M∗
nv‖2 6 1. Applying the union bound by symmetry we may assume that |vn| > n−c/4

(at the cost of paying a negligible factor n in the probability). Let M̃ denote the first n − 1

columns of M∗
n,
‹X denote the last column of M∗

n, and v′ = (v1, . . . , vn−1). Since ‖M̃‖op 6 5
√
n

with exponentially good probability by [3, Theorem C.1], if ‖M∗
nv‖2 6 1 then

‖M̃T (M̃v′ + ‹Xvn)‖2 6 5
√
n.

Let F denote the set of singular values of size between [2−2n1/2−c, 2n1/2−c]. By lemma A.1 applied

to M̃ , with very high probability, we have |F | > c′n1−c. Letting πF denote the projection onto the

corresponding left-singular vectors of M̃ and note that

‖πF M̃T (M̃v′ + ‹Xvn)‖2 = ‖πF M̃T M̃v′ + πF M̃
T ‹Xvn‖2 6 5

√
n.

As vn > n−c/4, we have

‖πF M̃T ‹X‖2 6 v−1
n (‖πF M̃T M̃v′‖2 + 5

√
n) 6 5n1−7c/4.

Furthermore note that

E[‖πF M̃T ‹X‖22] = E[tr(πF M̃
T ‹X‹XT M̃πTF )] = n tr(πF M̃

T M̃πTF ) & c′n2−3c.

The desired result then follows via the Hanson–Wright inequality (see [22, Theorem 2.1]). �
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Appendix B. Proof of our negative dependence lemma

Theorem B.1. Let u ∈ R
n satisfy ‖u‖2 = 1 and let w1, . . . , wk ∈ R

n be orthogonal unit vectors.

Furthermore let Y = (Y1, . . . , Yn) be a random vector where the Yi are iid, mean 0 and subgaussian.

If LCD(u) > C/ε and k · ‖u‖∞ +
∑k

i=1‖wi‖∞ 6 (log n)−3 then

P

Å
|〈u, Y 〉| 6 ε ∧

k∑

j=1

|〈ui, Y 〉|2 6 ck

ã
6 C(εe−ck + e−cn),

where C, c > 0 depend only on the subgaussian constant ‖Yi‖ψ2 .

For this, we shall need the following basic estimate. If Y = (Y1, . . . , Yn) is a random vector where

Yi are iid and subgaussian and u ∈ R
n, we have

EY exp(i〈u, Y 〉) 6 exp
(
− c0 inf

r∈[1,c−1
0 ]

‖rv‖2T
)
, (58)

where c0 > 0 depends only on the random variable Y1.

Proof. We may assume that ε 6 e−ck/2; else adjusting c the result follows immediately from the

Hanson–Wright inequality (see [22, Corollary 3.1]). Furthermore we may assume that ε > e−cαn/2

by adjusting c appropriately. Furthermore note that we may assume that n is a sufficiently large

absolute constant else the estimate is vacous. For the remainder of the argument, let c be a

sufficiently small constant to be chosen later. We first bound

P

Å
|〈u, Y 〉| 6 ε ∧

k∑

j=1

|〈wi, Y 〉|2 6 ck

ã
6 2k max

|S|=k/2
P
(
|〈u, Y 〉| 6 ε ∧

∧

j∈S
|〈wi, Y 〉| 6 2

√
c
)
. (59)

We now approximate the event on the right hand side using the smooth bump function

f(t) = (sin(2πt)/(πt))2 for which f̂(θ) = (1[−1,1] ∗ 1[−1,1])(θ).

Assume, without loss, that S = {1, . . . , k/2}. Note that f(t) > 1 for t 6 1/4. Thus we have

P
(
|〈u, Y 〉| 6 ε ∧

∧

j∈S
|〈wi, Y 〉| 6 2

√
c
)
6 E f

(
〈u, Y 〉(4ε)−1

)∏

j∈S
f
(
〈wi, Y 〉(64c)−1/2

)
. (60)

Now note that the characteristic function of the random variable
(
〈v, Y 〉, 〈w1, Y 〉, . . . , 〈wk/2, Y 〉

)
is

ϕ(θ, ξ1, . . . , ξk/2) = E exp

Å
iθ〈X, v〉 +

∑

16j6k/2

iξj〈wj , Y 〉
ã
.

After putting ξ = (ξ1, . . . , ξk/2), we may rewrite the expression on the right hand side of (60) using

the Fourier transform as
∫

Rk/2+1

4εf̂
(
4εθ
)∏

j∈S

(
(64c)1/2 · f̂

(
8
√
cξj
))

· ϕ(θ, ξ) dθdξ 6 ε16k+1ck/4
∫

(θ,ξ)∈B
|ϕ(θ, ξ)| dθdξ, (61)

where we define B = {(θ, ξ) : |θ| 6 ε−1, |ξj | 6 c−1/2,∀j} and used that f̂ is supported on [−2, 2].

We now bound the integral in (61) in two regimes, based on |θ|. If |θ| 6 k · log n we define

u(θ) = θu+
∑

j6k/2

ξjwj and note ‖u(θ)‖∞ 6 (log n)−1,
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by using the bounds on k, ‖u‖∞ and ‖wi‖∞. Thus, ‖r · u(θ, ξ)‖T = ‖r · u(θ, ξ)‖2 for all scalars

r < (log n)/2. Thus, using the inequality in (58), we have

|ϕ(θ, ξ)| =
∣∣EY exp

(
i〈u(θ, ξ), Y 〉

)∣∣ 6 exp
(
− c0 inf

r∈[1,c−1
0 ]

‖ru(θ, ξ)‖2T
)
6 exp

(
− c0|θ|2 − c0‖ξ‖22

)
,

where c0 > 0 is a constant depending only on the distribution of Y1 and were we have used that

u, , w1, . . . , wk are orthonormal for the last inequality. As a result, if we set B− = {(θ, ξ) ∈ B : |θ| 6
k log n}, we have ∫

B−

|ϕ(θ, ξ)| dθdξ = exp(O(k)), (62)

where the implicit constant depends only on the distribution of Yi.

We now consider the other range of θ, where k log n 6 |θ| 6 ε−1. We have that
∥∥∥∥u(θ, ξ)

∥∥∥∥
T

> ‖θv‖T −
∥∥∥∥
∑

j

ξjwj

∥∥∥∥
2

> min{γ‖θv‖2,
√
αn} − k1/2c−1/2 > min{γ‖θv‖2,

√
αn}/2,

where the second inequality holds by the condition on the last common denomonator of u and the

L∞ bound on the wi. The last inequality holds when n is sufficiently large with respect to γ.

We now use this information along with the inequality in (58) to write

|ϕ(θ, ξ)| 6 exp
(
− c0 inf

r∈[1,c−1
0 ]

‖r · u(θ, ξ)‖2T
)
6 exp(−Ω(n)).

Integrating this expression over B+ = {(θ, ξ) : k log n 6 |θ| 6 ε−1} gives
∫

B+

|ϕ(θ, ξ)| dθdξ 6 |B+| · e−Ω(n) 6 ε−1(1/c)O(k)e−Ω(n) = o(1). (63)

Here we have used that ε > e−cαn

We now put (59) together with (61) and our estimates on the integral (62) and (63) to get

P

Å
|〈u, Y 〉| 6 ε ∧

k∑

j=1

|〈wi, Y 〉|2 6 ck

ã
6 εck/4eΩ(k).

Thus choosing c > 0 to be sufficiently small completes the proof. �

Appendix C. Construction of smooth bump functions

We will need the construction of a bump function with sufficiently fast Fourier decay.

Lemma C.1. There exists a function ψ : R → R such that ψ > 0, ψ̂ > 0, supp(ψ̂) ∈ [−1, 1],∫
R
ψ(x) dx = 1, and ψ(x) 6 exp(−c(|x|+ 1)1/2), where c > 0 is an absolute constant.

Proof. Omitting the first and fourth bullet point, ψ̂∗(x) = exp(−(1 − 4x2)−1)1|x|61/2 is sufficient.

The necessary Fourier decay property is proved in [12]. Taking ψ̂(x) = (ψ̂∗∗ψ̂∗)(x) and normalizing

fixes the remaining conditions. �

We now work towards defining the bump functions that are required Lemma 8.3. To construct

these functions, let (x, y1, . . . , yℓ) ∈ R
ℓ+1; and let y = (y1, . . . , yℓ). Define the functions

χ(y) = χM∗ =

(
ℓ∑

i=1

y2i
σn−i(M∗)2

)1/2

and Br(x, y) = 1

Å
(1 + rδn) · εn−1/2 · χ(y) > x

ã
.
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Here we will only use |r| 6 1. Note that the probabilities in Lemma 8.1 can be expressed as

EHB1(H) = PX

(
|〈v,X〉| 6 (1+δn)εn

−1/2·χ(X)
)
;EKB−1(K) = PX

(
|〈v,X〉| 6 (1−δn)εn−1/2·χ(X)

)
.

We now truncate the indicators Br(x, y) in two ways. Define τ = (log n)7, τ ′ = (log n)25 and

Q(x, y) = 1

(
‖y‖∞ 6 log n ∧ |x| 6 ε · (log n)5

)
and C(x, y) = 1

Å ∑

i6(log logn)2

y2i > 1

ã
.

We now define the “smoothed rectangle”

ρ(x, y1, . . . , yℓ) = (ε−1 · τ ′) · ψ(xτ ′ε−1)
ℓ∏

i=1

τ ′ · ψ(yi · τ ′)

where ψ is as in Lemma C.1. We then define our functions f+, f− as

f+(y) = (Br+τ−1(x, y)Q(x, y)C(x, y)) ∗ ρ and f−(y) = (Br−τ−1(x, y)Q(x, y)C(x, y)) ∗ ρ.
We now prove Lemma 8.3 by checking that the functions f+, f− satisfy the desired properties. It

is easiest to check the final property in Lemma 8.3 first.

Claim C.2. For f ∈ {f−, f+} and all θ ∈ R, ξ = (ξ1, . . . , ξℓ) ∈ R
ℓ, we have

|f̂(θ, ξ)| 6 ε · exp
(
(log n)2/3

)
exp

(
− c(log n)−26

(
|θ/ε|1/2 + |ξ1|1/2 + · · ·+ |ξℓ|1/2

))
,

where c > 0 is an absolute constant.

Proof. We check the claim for f = f+ and note the case f = f− is similar. We have that

|”f+(θ, ξ)| 6 ‖Br+τ−1(x, y)Q(x, y)C(x, y)‖L1(Rℓ+1) · |ρ̂(θ, ξ)| 6 ‖Q(x, y)‖L1(Rℓ+1) · |ρ̂(θ, ξ)|,

where we used ‘f ∗ g = f̂ · ĝ and that ‖f̂‖∞ 6 ‖f‖1. Recalling the definition of Q, the above is

6 ε · (log n)ℓ+10 · |ρ̂(θ, ξ)| 6 ε · exp
(
(log n)2/3

)
exp

(
− c(log n)−26

(
|θ/ε|1/2 + |ξ1|1/2 + · · ·+ |ξℓ|1/2

))
,

where we have used the definition of ρ for the last inequality. �

For the next two claims we use the following point-wise inequalities.

Br(x, y)Q(2x, 2y)C(x/2, y/2) 6 f+(y) 6 Br+2τ−1(x, y)Q(x/2, y/2)C(2x, 2y) + E(x, y) (64)

and

(1− n−ω(1))Br−2τ−1(x, y)Q(2x, 2y)C(x/2, y/2) 6 f−(y) 6 Br(x, y)Q(x/2, y/2)C(2x, 2y) + E(x, y).

(65)

where E(x, y) is the “error” function

E(x, y) =
∑

t>(log n)4

e−t
1/3
Q(x/t, y/t).

Claim C.3. Let G ∼ N(0, 1)⊗n. We have |EG f+(G)− f−(G)| = O(δnε).

Proof. Recall that K = (〈v,X〉, 〈vn−1,X〉, . . . , 〈vn−ℓ,X〉) which is distributed as N(0, 1)⊗(ℓ+1),

since the vi are orthonormal. Now note that

EQ(K) . ε · (log n)4 and similarly EE(K) 6 ε · n−ω(1), (66)

via standard Gaussian estimates. So from (64), (65) and (66) it is enough to show

E
∣∣Br+2τ−1(K)Q(K/2)C(2K) −Br−2τ−1(K)Q(2K)C(K/2)

∣∣ = O(δnε).
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Towards this goal, we note that the left hand side is at most

E
∣∣Q(K/2)−Q(2K)

∣∣+E
∣∣Q(2K)(C(2K)−C(K/2))

∣∣+E
∣∣Q(2K)C(K/2)(Br+2τ−1(K)−Br−2τ−1(K))

∣∣.
The first two terms are O(δnε) by a direct Gaussian computation. So the above is

6 P
(
|〈v,G〉 − rχ(K)| 6 2τ−1δnεn

−1/2χ(K)
)
+O(δnε) 6 2τ−1δn · εn−1/2

EKχ(K) +O(δnε).

Now since M∗ ∈ E∗, we have that σn−i > (log n)−3n−1/2 and thus

EKχ(K) 6
(
EK χ(K)2

) 1
2 6 n1/2(log n)3ℓ1/2.

Using this in the above completes the proof of the claim. �

We now complete the proof of Lemma 8.3 with the following claim.

Claim C.4. For f ∈ {f+, f−}, we have

PX(F(X)) 6 EX f(H) +O(δnε) and EG f(K) 6 PG(F(G)) +O(δnε). (67)

Proof. Here we prove the first inequality in (67) for f = f+ and note that the other cases are

similar or easier. Note it is enough to show that

E[f+(H)−Br(H)] > −ε(log n)−ω(1) and E[Br(H)− f−(H)] > −ε(log n)ω(1).
For the first inequality in the above, we write

E[f+(H)−Br(H)] > E[Br(H)(Q(2H)C(H/2) − 1)],

and note that

χ(y) 6 (σn−1(M
∗))−1ℓmax

i6ℓ
|yi| 6 (log n)11/4 max

i6ℓ
|yi|,

where we used that M∗ ∈ E∗ for the second inequality and thus

Br(x, y) 6 1

(
ε(log n)11/4 max

16i6ℓ
|yi| > x

)
.

Thus if Br(H) = 1 and |〈v,X〉| > ε · (log n)5/2 we have that max16i6ℓ |〈H, v〉| > (log n). Therefore

E[f+(H)−Br(H)] > E[Br(H)(Q(2H)C(H/2) − 1)]

> −E

ï
ε(log n)11/4 max

16i6ℓ
|〈H, vi〉| > |〈H, v〉| ∧

Å ∨

16i6ℓ

|〈H, vi〉| > (log n)/2 ∨
∑

16i6(log logn)2

|〈H, vi〉|2 6 1/2

ãò

> −E

ï
ε(log n)11/4 max

16i6ℓ
|〈H, vi〉| > |〈H, v〉| ∧

∨

16i6ℓ

|〈H, vi〉| > log n

ò

− E

ï
ε(log n)15/4 > |〈H, v〉| ∨

∑

16i6(log logn)2

|〈H, vi〉|2 6 1/2

ò

> −ε · (log n)−ω(1);
here we have used Theorem 5.8 and Theorem 7.4. For the corresponding lower bound, note that

E[Br(H)− f−(H)] > E[Br(H)(1 −Q(H/2)C(2H))] − E[E(H)] > −E[E(H)]

= −
∑

t>(logn)4

e−t
1/3

E[Q(H/t)] > −
∑

t>(log n)4

e−t
1/3

E[1[|〈v,H〉| 6 tε(log n)4]] > −ε · (log n)−ω(1).

�
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