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EFFECTIVE BOUNDS FOR ROTH’S THEOREM WITH SHIFTED SQUARE

COMMON DIFFERENCE

SARAH PELUSE, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let S be a subset of {1, . . . , N} avoiding the nontrivial progressions x, x+ y2 − 1, x+
2(y2−1). We prove that |S| ≪ N/ logm N , where logm is the m-fold iterated logarithm and m ∈ N

is an absolute constant. This answers a question of Green.

1. Introduction

This paper contributes to the program of proving reasonable bounds for sets lacking polynomial
progressions, a problem posed by Gowers [14, Problem 11.4] after his proof of the first reasonable
bounds in Szemerédi’s theorem on arithmetic progressions [13, 15].

In the late 1970’s, Furstenberg [11] and Sárközy [46] independently proved that any subset of the
natural numbers having positive upper density must contain a nontrivial1 instance of the progression
x, x + y2. Furstenberg’s proof, which appeared in the same paper in which he introduced his
eponymous correspondence principle and used it to give a proof of Szemerédi’s theorem via ergodic
theory, produced no quantitative bounds, but Sárközy’s proof, which was via the circle method,
showed that if S ⊆ {1, . . . , N} contains no nontrivial progressions x, x+ y2, then

|S| ≪ N

(logN)1/3−o(1)
.

Sárközy [47] extended his argument to all progressions of the form x, x+yn with bounds of the same
quality, which were later improved by Balog, Pelikán, Pintz, and Szemerédi [3] and then Bloom
and Maynard [7]. Slijepčević [48] further extended Sárközy’s argument to work for all two-term
polynomial progressions x, x+ P (y) where P (0) = 0.

Note that it cannot possibly be the case that the Furstenberg–Sárközy theorem holds for every
single polynomial progression x, x + P (y) with P ∈ Z[y]. Indeed, the set of multiples of 3 have
positive density in the integers, but contain no progressions of the form x, x+ y2 +1 because y2 +1
is never divisible by 3 when y is an integer. Polynomials P ∈ Z[y] for which any subset of the natural
numbers with positive upper density must contain a nontrivial polynomial progression of the form
x, x + P (y) are called intersective. Kamae and Mendés France [25] showed that a polynomial is
intersective if and only if it has a root modulo every natural number. Polynomials P ∈ Z[y] with
P (0) = 0 clearly satisfy this criterion, and so does y2− 1 and, more generally, any other polynomial
with an integer root. There also exist polynomials, like (y3 − 19)(y2 + y + 1), that are intersective
but have no rational roots. The argument of Kamae and Mendés France produced no quantitative
bounds, but Lucier [35] generalized Sárközy’s argument to show that if P ∈ Z[y] is intersective and
S ⊆ {1, . . . , N} contains no nontrivial progressions x, x+ P (y), then

|S| ≪P
N

(logN)1/(deg P−1)−o(1)
.

The bound has since been improved by Rice [44].

1Here, nontrivial means that both terms of the progression are distinct.
1

http://arxiv.org/abs/2309.08359v1


Bergelson and Leibman [5] proved that if P1, . . . , Pm ∈ Z[y] are any polynomials satisfying
P1(0) = · · · = Pm(0) = 0, then any subset of the natural numbers with positive upper density
must contain a nontrivial polynomial progression of the form

x, x+ P1(y), . . . , x+ Pm(y). (1.1)

Their argument, which was via ergodic theory, produced no quantitative bounds. Gowers’s proof of
Szemerédi’s theorem provides quantitative bounds in the case that P1, . . . , Pm are all linear. Green
[17] proved quantitative bounds for subsets of integers avoiding three-term arithmetic progressions
with common difference equal to the sum of two squares. This was substantially generalized in work
of Prendiville [43] to prove the existence of k-term arithmetic progressions with common difference
a perfect d-th power. Both papers [17,43] build on Gowers’s seminal work [13,15] and, in particular,
crucially rely on the homogeneous nature of these polynomial progressions to proceed via the the
density increment strategy using the local inverse theorems for the U s-norms. The progressions
considered by Prendiville are the most general to which Gowers’s methods can possibly apply, and
no effective results were known for any other progressions of length greater than two until recently.

Progress on effective bounds on the size of sets lacking more polynomial progressions was made
first in the finite field setting. Bourgain and Chang [8] proved that any S ⊆ Fp lacking nontrivial

nonlinear Roth configurations x, x+y, x+y2 has size |S| ≪ p14/15. Similar polynomial saving bounds
were proven in the case of more general progressions x, x+P1(y), x+P2(y) for linearly independent
polynomials P1(y) and P2(y) by the first author [38] and, independently, Dong, Li, and Sawin [10].
While the proofs of these results avoided the use of the inverse theory of the Gowers norms, the
arguments did not extend to longer polynomial patterns. The first result in this direction was due
to first author [39], who introduced the degree-lowering method and used it to prove power-saving
bounds for sets lacking arbitrarily long progressions (1.1) with linearly independent polynomials
P1, . . . , Pm. Degree-lowering was then used by Kuca [27] and Leng [33, 34] to give effective bounds
for subsets of finite fields avoiding various families of polynomial progressions of complexity2 1 or
greater.

The first author and Prendiville [41,42] adapted the degree-lowering method to the integer setting
to prove that any subset S of {1, . . . , N} lacking non-linear Roth configurations must satisfy

|S| ≪ N

(log logN)c

for some absolute constant c > 0. This was extended in work of the first author [40] to arbitrarily
long progressions (1.1) where the polynomials P1, . . . , Pm have all distinct degrees. Proving a fully
general quantitative polynomial Szemerédi theorem remains a very challenging open problem, and
effective bounds for sets lacking polynomial progressions (1.1) of complexity at least one where the
polynomials P1, . . . , Pm are not homogeneous of the same degree are unknown in the integer setting.

Our work establishes the first effective case of the polynomial Szemerédi theorem over the integers
where the underlying pattern has complexity higher than one and the polynomials involved are not
homogeneous of the same degree.

Theorem 1.1. There exists a positive integer m = m1.1 such that the following holds. If S ⊆
{1, . . . , N} is such that S does not contain a progression of the form

x, x+ y2 − 1, x+ 2(y2 − 1) (y 6= ±1), (1.2)

then

|S| ≪ N

logmN
.

2Here, complexity refers to true complexity, as defined in [28].
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The problem of proving quantitative bounds for sets lacking (1.2) was explicitly raised by Green
[16, Problem 11(i)].

Remark. By tracing through our proof, and the inputs from [39], we can take m = 200. By inserting
some plausible improvements in the quantitative aspects of the theory of nilsequences, our argument
would yield a bound of the form |S| ≪ N exp(−(log logN)c) in the theorem; see the discussion at
the end of Section 3.

We give an outline of our key definitions, method, and new techniques in Sections 2 and 3, and
describe the structure of the paper in Section 3.1.

Acknowledgments. The first author thanks Sean Prendiville for helpful conversations. The second
and third authors thank James Leng for helpful clarifications regarding [34, Lemma 6.1]. The third
author thanks Dmitrii Zakharov for help with computations with nilpotent groups. The authors
thank Ben Green for useful comments. The first author was supported by the NSF Mathematical
Sciences Postdoctoral Research Fellowship Program under Grant No. DMS-1903038. The second
author was supported by the PD Soros Fellowship. The second and third authors were supported
by NSF Graduate Research Fellowship Program DGE-2141064.

2. Notation and key definitions

We use standard asymptotic notation throughout, as follows. For functions f = f(n) and g =
g(n), we write f = O(g) or f ≪ g to mean that there is a constant C such that |f(n)| ≤ C|g(n)|
for sufficiently large n. Similarly, we write f = Ω(g) or f ≫ g to mean that there is a constant
c > 0 such that f(n) ≥ c|g(n)| for sufficiently large n. Finally, we write f ≍ g or f = Θ(g) to
mean that f ≪ g and g ≪ f , and we write f = o(g) or g = ω(f) to mean that f(n)/g(n) → 0 as
n→ ∞. Subscripts on asymptotic notation indicate quantities that should be treated as constants.
Furthermore, throughout the paper, we will use the standard notation T = R/Z, N = {1, 2, . . .},
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, [X] = {1, 2 . . . , ⌊X⌋}, [±X] = {−⌊X⌋, . . . , ⌊X⌋}. Finally given a
nonzero real t and a set Q we define t ·Q = {tq : q ∈ Q}.

One nonstandard piece of notation, following work of Tao and Teräväinen [50], is that we let

polym(Q) for Q ≥ 2 denote a quantity bounded above by exp(exp(mO(1)))Qexp(mO(1)). For 0 < δ ≤
1/2, we let polym(δ) denote a quantity bounded below by exp(− exp(mO(1)))δexp(m

O(1)). Throughout
the paper we will always assume δ ∈ (0, 1/2].

Given a function f : Z → C with ‖f‖ℓ1(Z) <∞, we normalize the Fourier transform by defining

f̂(θ) =
∑

x∈Z
f(x)e(−xθ),

where e(x) = exp(2πix). Using this normalization, the Fourier inversion formula for f satisfying
‖f‖ℓ1(Z) + ‖f‖ℓ2(Z) <∞ is

f(x) =

∫

T

f̂(Θ)e(xΘ) dΘ.

We define the normalized Fejér kernel on Z to be

µH(h) =
1

⌊H⌋

(
1− |h|

⌊H⌋

)

+

and write

µH(h) = µH(h1, . . . , hd) =
d∏

i=1

µH(hi) (2.1)

for h = (h1, . . . , hd) ∈ Zd.
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We define two types of multiplicative discrete derivatives; for any complex-valued function f on
Z and h, h1, h

′
1 ∈ Z, set

∆hf(x) := f(x)f(x+ h) and ∆′
(h1,h′

1)
:= f(x+ h1)f(x+ h′1).

We will occasionally write ∆
(x)
h f(x, y) and ∆

′(x)
(h,h′)f(x, y), for example, if there are multiple possible

variables to choose from, so that, for example, ∆
(x)
h f(x, y) = f(x, y)f(x+ h, y). With the definition

of ∆′ in hand, we can now define the Gowers box and uniformity norms. We will write expressions
such as ∆′

(h1,h′
1),(h2,h′

2)
f(x) as shorthand for ∆′

(h1,h′
1)
∆′

(h2,h′
2)
f(x), and so on, where convenient; note

the order of these operators does not matter.

Definition 2.1. Let d ∈ N, Q1, . . . , Qd ⊆ Z be finite subsets, and f : Z → C. We define the
Gowers box-norm of f with respect to Q1, . . . , Qd to be

‖f‖2d
�d

Q1,...,Qd

:=
∑

x∈Z
Ehi,h

′
i∈Qi

i=1,...,d

∆′
(h1,h′

1),...,(hd,h
′
d)
f(x).

For Q = Q1 = · · · = Qd define

‖f‖Ud
Q
:= ‖f‖�d

Q,...,Q
.

Note that our definition differs from that in [40, Definition 2.1], as the sum is not normalized.
For the entirety of the paper, we define

W =
∏

2≤p≤w
p prime

p, M = ⌊N1/2W−1/2⌋, and P (y) =Wy2 + y, (2.2)

for some parameter w. Eventually, w will be chosen to be a sufficiently slowly growing function
of N ; throughout the paper, we ensure that various implied constants are independent of W . It
is elementary to prove that W ≤ 4w. As stated, M is a function of a floating parameter N ; N ,
up to a constant factor, will always denote the size of the support of the sets or functions under
consideration.

Next, we define the critical counting operators to be used throughout the paper.

Definition 2.2. Given N and given finitely supported functions f1, f2, f3 : Z → C, we define the
trilinear operators ΛW and ΛModel by

ΛW (f1, f2, f3) =
∑

x∈Z
|k|≤M

f1(x)f2(x+ P (k))f3(x+ 2P (k))

and

ΛModel(f1, f2, f3) =
∑

x∈Z
d∈Z

f1(x)f2(z + d)f3(z + 2d)ν(d),

where

ν(d) =

√
N

d
11≤d≤N . (2.3)

We also define the “difference” counting operator

Λ̃(f1, f2, f3) := (NW )1/2ΛW (f1, f2, f3)− ΛModel(f1, f2, f3).

Finally, we will repeatedly encounter the following dual functions when carrying out our degree-
lowering argument.
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Definition 2.3. Given functions f1, f2, f3 : Z → C, we define

D1(f2, f3)(x) = Ey∈[±M ]f2(x+ P (y))f3(x+ 2P (y)),

D2(f3, f1)(x) = Ey∈[±M ]f1(x− P (y))f3(x+ P (y)),

and

D3(f1, f2)(x) = Ey∈[±M ]f1(x− 2P (y))f2(x− P (y)).

These dual functions arise in a key maneuver in the degree-lowering method known as stashing, a
term coined by Manners. More discussion on stashing can be found in [36], but for us it will almost
always refer to the procedure of noting that if f1, f2, f3 : Z → C are 1-bounded functions supported
in [N ] and ∣∣ΛW (f1, f2, f3)

∣∣ ≥ 2δNM,

then
∣∣ΛW

(
D1(f2, f3), f2, f3

)∣∣ ,
∣∣ΛW

(
f1,D2(f1, f3), f3

)∣∣ ,
∣∣ΛW

(
f1, f2,D3(f1, f2)

)∣∣ ≫ δ2NM.

This is a simple consequence of the Cauchy–Schwarz inequality. For example, we have

ΛW (f1, f2, f3) =
∑

x∈Z
f1(x) ·


 ∑

k∈[±M ]

f2(x+ P (k))f3(x+ 2P (k))


 ,

which is bounded above by

N1/2


∑

x∈Z

∑

k,k′∈[±M ]

f2(x+ P (k))f3(x+ 2P (k))f2(x+ P (k′))f3(x+ 2P (k′))




1/2

= N1/2




∑

x∈Z
k′∈[±M ]


 ∑

k∈[±M ]

f2(x+ P (k))f3(x+ 2P (k))


 f2(x+ P (k′))f3(x+ 2P (k′))




1/2

by the Cauchy–Schwarz inequality. Rearranging now yields
∣∣ΛW (D1(f2, f3), f2, f3)

∣∣ ≫ δ2NM , and
the other two inequalities are proved similarly.

3. Proof sketch

The starting point of our work is to use the W -trick of Green [18] to compare the count of certain
three-term arithmetic progressions with shifted square common difference to the count of all three-
term arithmetic progressions in a set, and then apply quantitative lower bounds for the number
of three-term arithmetic progressions coming from Roth’s theorem. This is closely motivated by
work of Wooley and Ziegler [51], who proved a version of the polynomial Szemerédi theorem with y
restricted to the set of shifted primes via such an approach.

We will show for any 1-bounded functions f1, f2, f3 : Z → C with support in [N ] that
∣∣∣∣(NW )1/2ΛW (f1, f2, f3)− ΛModel(f1, f2, f3)

∣∣∣∣ ≪
N2

logmN
(3.1)

for some absolute constant m ∈ N (recall that W will ultimately be chosen to be slowly growing
with N). Theorem 1.1 then follows by dividing S into classes modulo 4W , shifting an appropriately
dense congruence class of S and scaling by (4W )−1, noting that differences in this rescaled set of
the form Wy2 + y correspond to differences of the form y2 − 1 in the original set, and applying
supersaturation results for Roth’s theorem.
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The crux of our proof of Theorem 1.1 is establishing that the “difference” counting operator

Λ̃(f1, f2, f3) = (NW )1/2ΛW (f1, f2, f3)− ΛModel(f1, f2, f3)

is controlled by the U2-norm of the functions fi (or, more precisely, the U2
W ·[N/W ]-norm). Given such

norm control, combining a variant of stashing with the U2-inverse theorem implies that there exist

linear phase functions ψ1, ψ2, ψ3 such that the counting operator Λ̃
(
ψ11[N ], ψ21[N ], ψ31[N ]

)
is large.

The existence of such phase functions is ruled out by a direct Fourier analytic computation. Indeed,
the weight function ν(d) is chosen so that the corresponding exponential sums closely matches that
of P (k), and the W -trick serves to remove the major arc contributions initially present in the Fourier
transform of the squares.

It follows from the triangle inequality that in order to establish U2-norm control of the counting

operator Λ̃, it suffices to establish the result for the counting operators ΛW and ΛModel separately.
The (far) simpler of these two tasks is establishing U2-norm control for ΛModel(f1, f2, f3). Note that
if ν(d) were absent, then this is precisely the fact that the U2-norm controls the count of three-term
arithmetic progressions weighted by f1, f2, and f3. The result for ΛModel follows by noting that the
Fourier transform of ν(d) (after a bit of smoothing) is appropriately bounded in L1.

The vast majority of the paper, therefore, is devoted to establishing U2-control of the operator
ΛW . We will do this by using the degree-lowering method, following work of the first author [39]
and the first author and Prendiville [41, 42]. This method, in our setting, can be broken down into
two steps. First, we establish that ΛW is controlled by some high degree Gowers U s-norm, and
then we show (essentially) that U t-norm control of ΛW implies U t−1-norm control of ΛW whenever
t ≥ 3. These two steps taken together imply the desired U2-norm control. The first step is
proven by combining the PET induction scheme of Bergelson and Leibman [5] with the quantitative
concatenation results of [40], which we can use as a black box. The majority of our effort, therefore,
is concentrated on the second step of the argument.

Via an application of stashing, the key to the second step of our argument is establishing that

‖D1(f2, f3)‖2
k

Uk
W ·[N/W ]

≥ δN =⇒ ‖fi‖2
k−1

Uk−1
W ·[N/W ]

≥ δ′N (3.2)

for k ≥ 3 and i ∈ {2, 3} (and the analogous statement for D3(f1, f2)). This, combined with
further applications of stashing, implies U2-norm control of ΛW . By dual-difference interchange
(Lemma 6.4), it is essentially sufficient to prove the result when k = 3, and for the remainder of the
sketch we will focus on this special case.

First, let us pretend, for the sake of illustration, that the U3-inverse theorem implied large
correlation with a global quadratic form e(αx2 + βx). This is, of course, a lie due to the existence
of bracket-polynomials, but will help to motivate the main technical considerations. Furthermore,
suppose for the sake of discussion that ‖D1(f2, f3)‖Uk

[N]
is large; this is a rather minor technical

point that can be handled by splitting into congruence classes modulo W . It then follows from our
“fake” U3-inverse theorem that∣∣∣∣

1

N

∑

x∈Z
e(αx2 + βx)Ey∈[±M ]f2(x+ P (y))f3(x+ 2P (y))

∣∣∣∣ (3.3)

is large. Setting

f̃2(x) := f2(x) · e(2αx2 + 2βx)

and

f̃3(x) := f3(x) · e(−αx2 − βx),

and, as in work of Leng [34], using the polynomial identities

x2 = 2(x+ P (y))2 − (x+ 2P (y))2 + 2P (y)2

6



and

x = 2(x+ P (y))− (x+ 2P (y)),

we get, by rearranging (3.3), that
∣∣∣∣
1

N

∑

x∈Z
Ey∈[±M ]f̃2(x+ P (y))f̃3(x+ 2P (y))e(2αP (y)2)

∣∣∣∣

is large. By applying Fourier inversion to f̃2 and f̃3 and then using orthogonality of characters and
Parseval’s identity, it follows that

sup
κ∈T

∣∣∣∣Ey∈[±M ]e(2αP (y)
2 + κP (y))

∣∣∣∣

is large. Using Weyl’s inequality, and carefully analyzing various terms in the expansion of P (y)2,
shows that α and κ are essentially major arc. More precisely, there exists a positive integer q
such that q ≤ δ−O(1) and ‖qα‖T ≤ δ−O(1)/N2 and ‖qκ‖T ≤ δ−O(1)/N . This computation is a bit
delicate; one needs that the coefficients of P (y) are coprime in order to avoiding sacrificing factors
of W . To simplify the rest of our discussion, we will pretend that, in fact, Weyl’s inequality implies
that α, κ = 0; by passing to intervals of length δO(1)N and spacing at most δ−O(1), one can turn
this fantasy into a reality.

Note that if α = 0, we would have that
∣∣∣∣
1

N

∑

x∈Z
e(βx)Ey∈[±M ]f2(x+ P (y))f3(x+ 2P (y))

∣∣∣∣

is large. Applying the second of our two identities, we may rewrite the above quantity as
∣∣∣∣
1

N

∑

x∈Z
Ey∈[±M ]f2(x+ P (y))e(2β(x + P (y))f3(x+ 2P (y))e(−β(x + 2P (y))

∣∣∣∣,

which, by making the change of variables x 7→ x− P (y), equals
∣∣∣∣
1

N

∑

x∈Z
Ey∈[±M ]f2(x)e(2βx)f3(x+ P (y))e(−β(x + P (y))

∣∣∣∣.

That f2 and f3 must have large U2-norms then follows by U2-control for the configuration (x, x+
P (y)), which is implicit in work of Sárközy [46]; this is a simple consequence of Fourier inversion,
orthogonality of characters, and the Gowers–Cauchy–Schwarz inequality.

To rigorously prove the implication (3.2) we must use the U3-inverse theorem of Green and
Tao [19] in place of our “fake” U3-inverse theorem. The Green–Tao inverse theorem produces a
Lipschitz function F on a degree 2 nilmanifold G/Γ and a polynomial sequence g : Z → G (in the
sense of Definition A.2) such that

∣∣∣∣
∑

x∈Z
F (g(x))Ey∈[±M ]f2(x+ P (y))f3(x+ 2P (y))

∣∣∣∣ ≥ exp(−δ−O(1))N.

Mimicking our simplified sketch above, we now want to “factor” F (g(x)) into terms involving x +
P (y), x+2P (y), and P (y). Leng [34] accomplishes such a maneuver for the pattern (x, x+P (y), x+
Q(y), x + P (y) +Q(y)) over finite fields via a vertical Fourier expansion of F and noting that the
Host-Kra cube of dimension 3 has a constrained orbit for any degree 2 polynomial sequence on a
nilmanifold.

In our case, however, the constraints coming from the Host-Kra cube are insufficient, and to
proceed directly one would require a suitable understanding of the orbits of the linear forms (x, y, x+
y, x + 2y) for a degree 2 polynomial sequence on a nilmanifold. The understanding of such an

7



orbit is rather delicate, as this set of forms does not satisfy the flag condition, and the underlying
equidistribution theory has only recently been addressed in work of Altman [1]. However, by using
an earlier “lifting” trick of Altman [2], which amounts to a simple change of variables in our setting,
it instead suffices to constrain the orbit of 6x given the images of (6y, 3(x + y), 2(x + 2y)). As
the pattern (6x, 6y, 3(x + y), 2(x + 2y)) is translation invariant, the flag-equidistribution theory
developed in work of Green and Tao [21] applies, and one can then derive the necessary constraint.
We do this by following [19, Section 14], which establishes the analogous result for k-term arithmetic
progressions, although various related results appear earlier in the ergodic theory literature [4,12,52].

Having obtained a suitable constraint, we will next require a suitable analogue of Weyl’s inequality
for nilsequences. This can be found in the seminal paper of Green and Tao on the equidistribution
of polynomial orbits on nilmanifolds [23]. The main technical result of this work [23, Theorem 1.9]
essentially proves that if a polynomial sequence g(·) fails to equidistribute on a nilmanifold, one can
identify an abelian reason for it. Using this result we will prove that if the polynomial sequence
g(P (6y)) fails to equidistribute, then one can factor the polynomial sequence g. By tracking carefully
with Mal’cev coordinates (analogously to the sketch with Weyl’s inequality earlier), one can prove
that the factorization is of the same quality as if one knew that instead g(y) failed to equidistribute.
While such a factorization itself is not immediately useful, via iterating the factorization (as in the
factorization results of [23]), one can prove that instead of correlating with a degree two nilsequence,
one, in fact, correlates with a degree one nilsequence. The form of our result is closely motivated by
earlier work of Leng [34, Lemma 6.1]. Given such a result, and then Fourier expanding the degree
one nilsequence, we can reduce to dealing with pure polynomial phases, and the analysis follows as
sketched earlier.

We end our discussion with a brief remark on bounds in the implication (3.2). Our bounds are
of iterated logarithmic type, as δ′ is ultimately doubly-exponentially small in δ. The first of these
exponential terms is derived from the fact that we use the the U3-inverse theorem of Green and Tao
[19]; given more recent work of Sanders [45] the correlation could be improved to quasi-polynomial.
The second source of exponentials comes from the double-exponential dependence on dimension
implicit in [23, Theorem 7.1]; this dependence was quantified explicitly in recent work of Tao and
Teräväinen [50]. Therefore, even using the results of Sanders [45], our bounds involve a large number
of logs. Recently, however, the dimension dependence in results of Green and Tao [23] have been
improved to exponential for periodic nilsequences in work of Leng [33]; Leng has also announced
analogous results for all nilsequences, and, by inputting such results into our work (along with the
necessary quantitative versions of results in [23, Appendix A]), a substantially reduced number of
logs would be achieved (likely yielding ≪ N exp(−(log logN)c) in Theorem 1.1).

3.1. Organization of the paper. In Section 4, we prove U2-control for ΛModel. In Section 5, we
prove the constraints for degree 2 nilmanifold orbits (in Section 5.1) and the necessary factorization
theorem (in Section 5.2). In Section 6 we prove the main degree-lowering statement in this work.
In Section 7, we complete proof of Theorem 1.1. In Appendix A, we collect various definitions and
basic properties regarding nilmanifolds. In Appendix B, we collect various standard exponential
sum estimates for the polynomial P (y) =Wy2+ y. Finally in Appendix C, we collect various basic
estimates regarding changing parameters in the box-norm.

4. Control for ΛModel

In this section, we will establish U2-norm control of ΛModel and deduce a uniform lower bound
for ΛModel from the best known bounds in Roth’s theorem.

Lemma 4.1. Let f1, f2, f3 : Z → C be 1-bounded functions supported on [±δ−1N ]. If N ≫ δ−O(1)

and ∣∣∣ΛModel(f1, f2, f3)
∣∣∣ ≥ δN2,
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then

min
i∈[3]

‖fi‖4U2
[N]

≫ δO(1)N.

Proof. By adjusting implicit constants, we may assume that δ is smaller than an absolute constant.
Define

ν(1)(d) =

√
N

d
1δ5N≤d≤N

and

τ(d) =
1|d|≤δ10N

2δ10N
.

Noting that ν(1)(d) is δ−8/N -Lipschitz away from the boundary of its support and recalling the
definition (2.3) of ν, we have

∑

d∈Z
|(τ ∗ ν(1))(d) − ν(d)| ≤

∑

d∈Z

(
|(τ ∗ ν(1))(d) − ν(1)(d)|+ |ν(1)(d) − ν(d)|

)
≤ δ2N.

Therefore, since the fi are 1-bounded,
∑

x,d∈Z
f1(x)f2(x+ d)f3(x+ 2d)(τ ∗ ν(1))(d) ≥ δN2/2.

Furthermore, we have by orthogonality of characters, Cauchy–Schwarz, and Parseval that
∣∣∣∣
∑

x,d∈Z
f1(x)f2(x+ d)f3(x+ 2d)(τ ∗ ν(1))(d)

∣∣∣∣

=

∣∣∣∣
∫

T2

f̂1(Θ1)f̂2(−2Θ1 +Θ2)f̂3(Θ1 −Θ2)(
̂τ ∗ ν(1)(Θ2)) dΘ1dΘ2

∣∣∣∣

≤
∫

T

| ̂τ ∗ ν(1)(Θ2)| dΘ2 · sup
Θ2∈T

∫

T

|f̂1(Θ1)| · |f̂2(−2Θ1 +Θ2)| · |f̂3(Θ1 −Θ2)| dΘ1

≤
∫

T

|τ̂(Θ2)||ν̂(1)(Θ2)| dΘ2 · sup
T

|f̂1(Θ1)| · sup
Θ2∈T

∫

Θ1∈T
|f̂2(−2Θ1 +Θ2)| · |f̂3(Θ1 −Θ2)| dΘ1

≤ ‖τ‖ℓ2(Z)‖ν(1)‖ℓ2(Z) sup
Θ1∈T

|f̂1(Θ1)| · ‖f2‖ℓ2(Z)‖f3‖ℓ2(Z)

≪ (δ−10N−1)1/2 · (N log(1/δ))1/2 · sup
Θ1∈T

|f̂1(Θ1)| ·N

≪ δ−5(log(1/δ))1/2N sup
Θ∈T

∣∣∣f̂1(Θ)
∣∣∣ .

An analogous inequality holds for f2 and f3, and therefore

inf
i∈[3]

sup
Θ∈T

|f̂i(Θ)| ≫ δO(1)N ;

the result now follows from the converse of the U2-inverse theorem (see, e.g., Lemma C.5). �

We next establish a uniform lower bound on ΛModel using recent breakthrough work of Kelley
and Meka [26].

Lemma 4.2. Suppose that f : Z → [0, 1] with supp(f) ∈ [N ] and
∑

x∈Z f(x) ≥ δN . Then

ΛModel(f, f, f) ≫ exp
(
− log(2/δ)O(1)

)
N2.

Proof. Noting that w(d) ≥ 1 for all 1 ≤ d ≤ N , the result follows from [26, Theorem 1.2]. �
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5. Nilmanifold considerations

Throughout this section, we will assume familiarity with standard terminology related to nilse-
quences and nilmanifolds. All terminology used is defined in Appendix A; our conventions match
those in [23, 50]. Furthermore, throughout this section, we will require various quantitative ra-
tionality claims from [23, Appendix A], but with explicit dimensional dependencies. As stated

in [50, pg. 52], all bounds of the form QOm(1) in [23, Appendix A] may in fact be taken to be
polym(Q) (where m is the dimension of the underlying nilmanifold). We will cite bounds from
[23, Appendix A], but assume this more explicit dimensional quantification.

5.1. Leibman group considerations. Throughout this subsection, define

τ(x, y) := (2(x+ 2y), 3(x + y), 6y, 6x)

for all x, y ∈ Z. We will write τi(x, y), for i = 1, . . . , 4, to refer to the i-th coordinate of τ(x, y). The
key output of this subsection will be Lemma 5.1, which relates the values of a degree 2 polynomial
sequence at the first three coordinates of τ(x, y) to the value at the fourth coordinate.

Lemma 5.1. Let G/Γ be a filtered nilmanifold of dimension m, degree 2, and complexity at most
L. Let F be a function on G/Γ with vertical frequency ξ with |ξ| ≤ L and ‖F‖Lip ≤ L. Let g(·) be
a polynomial sequence with respect to G/Γ (and the corresponding degree 2 filtration). There exist
G and Fj,α such that for all x, y ∈ Z,

F (g(τ4(x, y))Γ) =
∑

α

∏

j∈[3]
Fj,α(g(τj(x, y))Γ) +G(x, y),

where

• ‖G‖∞ ≤ L−1;
• for all α, F1,α has vertical frequency −9ξ, F2,α has vertical frequency 8ξ, and F3,α has vertical

frequency 2ξ;
• there are polym(L) summand indices α; and
• we have ‖Fj,α‖Lip ≤ polym(L) for all α and j ∈ {1, 2, 3}.

The key input into Lemma 5.1 is that the image of τ(x, y) under a polynomial sequence on
a nilmanifold is constrained. An analogous result k-term arithmetic progressions appears in [19,
Lemma 12.7], and for the Host-Kra cube in [22, Proposition 11.5]. Our proof is essentially identical
to that of [19, Lemma 12.7] modulo certain algebraic issues regarding the Leibman group [32].

We first require the notion of being continuous right-invertible.

Definition 5.2. Let N1, N2 be compact topological spaces, let π : N1 → N2 be a continuous map,
and let Σ ⊆ N1. We say that π is continuously right-invertible on Σ if, for all w ∈ π(Σ), there
exists a neighborhood Vw ⊆ N2 of w and a continuous map π−1

w : Vw → N1 such that π−1
w ◦ π is the

identity map on Σ ∩ π−1(Vw).

Now we can precisely described the aforementioned constraint.

Lemma 5.3. Let G/Γ be a be a filtered nilmanifold of dimension m, degree 2, and complexity at
most L. Let G• denote the degree two filtration G0 = G1 > G2 > IdG on G and X denote the
chosen Mal’cev basis for G/Γ. Furthermore, define

Gτ := {(g0, g0g1, g0g−2
1 g2, g0g

4
1g

2
2) : gi ∈ Gi}.

Let π : (G/Γ)4 → (G/Γ)3 denote the standard projection onto the first three coordinates. Then there
exists a compact set Σ ⊆ (G/Γ)3 and a continuous function Q : Σ → G/Γ such that

• π(GτΓ4) ⊆ Σ;
• Q(π(gΓ4)) = g4Γ for all g = (g1, g2, g3, g4) ∈ Gτ ; and
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• Q is polym(L)-Lipschitz, where the metric on Σ is given by restricting

d̃((x1, x2, x3), (z1, z2, z3)) =
∑

i∈[3]
dX (xiΓ, ziΓ)

to Σ.

Remark 5.4. By GτΓ4 we mean the image of Gτ under taking Γ-cosets.

Proof. Take Σ = π(GτΓ4), and define

Gτ
0 = Gτ ;

Gτ
1 = {(IdG, g1, g−2

1 g2, g
4
1g

2
2) : gi ∈ Gi};

Gτ
2 = {(IdG, IdG, g2, g22) : g2 ∈ G2}; and

Gτ
3 = {(IdG, IdG, IdG, IdG)}.

Our argument is identical to [19, Section 14], aside from verifying that Gτ
i are groups. This can be

verified using general results of Green and Tao [21]; we provide a short argument specialized to our
case. It is trivial to verify that Gτ

2 and Gτ
3 are groups. That Gτ

0 is a group follows from noting that

{(g(0), g(1), g(−2), g(4)) : g ∈ Poly(Z, G•)} =
{
(g0, g0g1, g0g

−2
1 g32 , g0g

4
1g

6
2) : gi ∈ Gi for i = 0, 1, 2

}

=
{
(g0, g0g1, g0g

−2
1 g2, g0g

4
1g

2
2) : gi ∈ Gi for i = 0, 1, 2

}

= Gτ
0 ,

where we have used that G2 is divisible (since G2, being a connected nilpotent Lie group, has
surjective exponential map), and recalling that Poly(Z, G•) is a group. That Gτ

1 is a group simply
follows from noting that it is the intersection of two groups:

Gτ
1 = Gτ

0 ∩ (IdG ×G0 ×G0 ×G0).

Finally, observe that the groups Gτ
i have the nesting property

Gτ
3 ⊆ Gτ

2 ⊆ Gτ
1 ⊆ Gτ .

Next, we will prove inductively that the restriction of π is continuously right-invertible on Gτ
i /Γ

4,
starting at i = 3 and proceeding downwards. The crucial point is that the first non-identity
coordinate in a generic element of Gτ

i is gi and, by inverting the quotient map Gi → Gi/Γ locally,
we can “remove” gi and proceed inductively. We now give a formal proof following [19, Section 14].

Note that Gτ
3 is isomorphic to the trivial group, and therefore π is trivially continuously right

invertible on Gτ
3/Γ

4. Suppose that the restriction of π to Gτ
i+1/Γ

4 is continuously right invertible

for some 0 ≤ i ≤ 2; we will show that the same holds for the restriction of π to Gτ
i /Γ

4.
Since Γ acts freely and properly on the manifold G (on the right) and the quotient G/Γ is

compact, the quotient maps ρi : Gi → Gi/Γ are covering maps. Therefore, for any point zi ∈ Gi/Γ,
there exists a neighborhood Vzi ⊆ Gi/Γ and a continuous function f : Vzi → Gi such that ρi ◦ f is
the identity map on Vzi .

Now, consider a point π(z) ∈ π(Gτ
i /Γ

4), with z = (z1, z2, z3, z4). Note that the first i co-
ordinates of π(z) are IdGΓ. Consider the (i + 1)-st coordinate, zi+1 ∈ Gi/Γ, of π(z), and let
x = (x1, x2, x3, x4) ∈ Gτ

i /Γ
4 be such that xi+1 ∈ Vzi+1 (with Vzi+1 defined as in the previous

paragraph). This implies that (ρi+1 ◦ f)(xi+1) = xi+1, i.e., xi+1 = f(xi+1)Γ. Define

Fi(xi+1) =





(f(x1), f(x1), f(x1), f(x1)) if i = 0

(IdG, f(x2), f(x2)
−2, f(x2)

4) if i = 1

(IdG, IdG, f(x3), f(x3)
2) if i = 2
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for all such x. We write F = Fi as shorthand. Note that F (xi+1) is continuous as a function
of xi+1, and hence of π(x) (as 0 ≤ i ≤ 2), which means that F defines a continuous function in
an open neighborhood of π(z). By definition, if x ∈ Gτ

i /Γ
4, then there exists g ∈ Gτ

i such that
gΓ4 = (g1, g2, g3, g4)Γ

4 = x (which we choose arbitrarily). Observe that f(xi+1)
−1gi+1 is an element

of both Gi and Γ. Now, let

g̃i =





(f(x1)
−1g1, f(x1)

−1g1, f(x1)
−1g1, f(x1)

−1g1) if i = 0

(IdG, f(x2)
−1g2, (f(x2)

−1g2)
−2, (f(x2)

−1g2)
4) if i = 1

(IdG, IdG, f(x3)
−1g3, (f(x3)

−1g3)
2) if i = 2

if x is in a sufficiently small open neighborhood of z. Again let g̃ = g̃i as shorthand. Observe that
g̃ ∈ Gτ

i and g̃ ∈ Γ4 by construction. Define h to be such that

g = F (xi+1)hg̃.

The (i+1)-st coordinate of h is the identity (as are the first i coordinates). So, h must lie in Gτ
i+1.

Therefore,
x = gΓ4 = F (xi+1)hg̃Γ

4 = F (xi+1)hΓ
4,

since g̃ ∈ Γ4. Thus,
F (xi+1)

−1x = hΓ4.

Note that, as F (xi+1) depends continuously on π(x) in a neighborhood of π(z), and is defined
via a local continuous right-inverse, we have that π(F (xi+1)

−1x) is within a neighborhood of
π(F (zi+1)

−1z). Furthermore, note that, as h ∈ Gτ
i+1, the (i + 1)-st coordinate of F (xi+1)

−1x
is IdGΓ, and therefore we are in position to apply induction. By induction, we may write

F (xi+1)
−1x = hΓ4 = π−1

(F (zi+1)−1z)
(π(F (xi+1)

−1x)), (5.1)

and therefore
x = F (xi+1)π

−1
F (zi+1)−1z

(π(F (xi+1)
−1x)),

where π−1
F (zi+1)−1z

is the (localized) continuous right-inverse we have constructed for Gτ
i+1/Γ

4. Note

that π(F (xi+1)x) = π̃(F (xi+1))π(x), where π̃ is the projection onto the first three coordinates in
G4. By the previous discussion, the right-hand-side of (5.1) depends continuously on π(x) and is
defined in a sufficiently small neighborhood of π(x). Thus, the right-hand-side of (5.1) provides the
desired continuous right-inverse and the result follows.

We now glue these local right-inverses into a global continuous right-inverse Π: Σ → GτΓ4 satisfy-
ing (Π◦π)(x) = x for all x ∈ GτΓ4. We can perform such gluing as long as all our local right-inverses
agree on intersections. To see this, it suffices to show that π is injective on GτΓ4. Suppose π(x) =
π(y) for x, y ∈ GτΓ4. We can find g ∈ Gτ such that g−1y ∈ Γ4, so π(g−1x) = (IdGΓ, IdGΓ, IdGΓ)
since the right-action of G on G/Γ is compatible with π. Now g−1x ∈ GτΓ4 and has first three
coordinates being IdGΓ. This implies that if we write g−1x = (g0Γ, g0g1Γ, g0g

−2
1 g2Γ, g0g

4
1g

2
2Γ), then

g0 ∈ Γ hence g1 ∈ Γ hence g2 ∈ Γ (since Γ is a subgroup of G). Thus the final coordinate of g−1x
is also IdGΓ, and hence g−1x, g−1y ∈ Γ4. This implies x = y as cosets, completing the proof of
injectivity (and hence existence of a global inverse).

We now define Q to be the fourth coordinate of this global right-inverse of π on GτΓ4. By the
above arguments, the first two bullet points are satisfied.

We finally briefly sketch how to obtain the necessary Lipschitz bound on Q. First, note from above
that Q is unique and, as (G/Γ)4 has diameter bounded by polym(L) [23, Lemma A.16], it suffices to
consider points which are within distance polym(L−1) of each other to prove Lipschitz bounds on Q.
Furthermore, looking at our inductive construction, it suffices to show we can invert ρi for x′ ∈ Gi/Γ
such that the preimage in Gi is suitably bounded and in a Lipschitz manner. The remainder of
the analysis then consists of left multiplication by bounded group elements, which is Lipschitz by
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[23, Lemma A.5] for left-multiplication and right-multiplication is always Lipschitz due to right-
invariance of the metric on G. Note here the fact that if g ∈ G is bounded, then gk for bounded k

and g−1 are as well since d(gk, IdG) ≤
∑k

i=1 d(g
i, gi−1) = kd(g, IdG) and d(g, IdG) = d(g−1, IdG).

To invert ρi in the neighborhood of a point x′ ∈ Gi/Γ, first note that Gi is a closed rational
subgroup of G and the last dim(Gi) elements of X are a valid Mal’cev basis for Gi. Therefore, by
combining [23, Lemmas A.16 and A.17], there exists g′ ∈ Gi such that g′Γ = x′ and d(g′, IdG) ≤
polym(L). Taking a sufficiently small neighborhood around g′, of size polym(L−1), for any points

g(1) and g(2) in this neighborhood, we have

inf
γ∈Γ\{0}

d(g(1), g(2)γ) ≥ polym(L−1) · inf
γ∈Γ\{0}

d((g(2))−1g(1), γ)

≥ polym(L−1) ·
(

inf
γ∈Γ\{0}

d(IdG, γ)− d((g(2))−1g(1), IdG)

)

≥ polym(L−1).

The last inequality comes from the fact that ψ(γ) ∈ Zm, where ψ are Mal’cev coordinates of the
second kind (with respect to an implicit Mal’cev basis X giving the complexity bound). As ψ(γ) is
nonzero, [23, Lemma A.4] then gives the lower bound.

Thus, in a small neighborhood of g′, we have that dG(g
(1), g(2)) = dG/Γ(g

(1)Γ, g(2)Γ). Further-

more, the pushforward under ρi of the neighborhood of g′ in Gi surjects onto a small neighborhood
of x′ = g′Γ in Gi/Γ. Therefore, given z′ ∈ Gi/Γ near x′, the map f(z′) can be defined by taking
the closest point to g′z to g′ in Gi such that g′zΓ = z′. This gives the desired inverse map in the
neighborhood of x′ which is Lipschitz by the above equality of metrics and, furthermore, we have
that the inverse image of x′ in Gi is polym(L)-bounded, as desired. �

We are now in position to prove Lemma 5.1.

Proof sketch of Lemma 5.1. Let the filtration G• be denoted by G = G0 = G1 > G2 > IdG. Let τ [i]

denote the span in R4 of the set of vectors
{
(τ1(x, y)

i, τ2(x, y)
i, τ3(x, y)

i, τ4(x, y)
i) : x, y ∈ Z

}
.

We find that

τ [1] = R(1, 1, 1, 1) ⊕R(0, 1,−2, 4)

τ [2] = R(1, 1, 1, 1) ⊕R(0, 1,−2, 4) ⊕R(0, 0, 1, 2)

τ [3] = R(1, 1, 1, 1) ⊕R(0, 1,−2, 4) ⊕R(0, 0, 1, 2) ⊕R(0, 0, 0, 1) = R4.

Therefore τ satisfies the flag condition (which also follows from the fact that τ(x, y) is translation-
invariant) and by [21, Lemma 3.2] we have that g(τ(x, y)) takes values within Gτ (abusively ex-
tending g to vectors coordinate-wise).

Furthermore, by Lemma 5.3, for (g1, g2, g3, g4) ∈ Gτ we have

F (g4Γ) = F (Q(g1Γ, g2Γ, g3Γ)),

with Q as in Lemma 5.3. Using the partition of unity argument suggested in [50, Footnote 10] and
the quantitative bounds on Q proven in Lemma 5.3, we have that for (g1, g2, g3, g4) ∈ Gτ ,

F (g4Γ) =
∑

α∈A

∏

j∈[3]
Fj,α(gjΓ) +G((g1, g2, g3, g4)Γ),

where

• ‖G((g1, g2, g3, g4)Γ)‖∞ ≤ L−1/2 for all (g1, g2, g3, g4) ∈ Gτ ;
• there are polym(L) terms in the sum over α; and
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• the functions Fj,α(gjΓ) are polym(L)-Lipschitz.

Note here that a qualitative version follows simply by applying the Stone–Weierstrass theorem (and
noting that (G/Γ)3 is compact).

This procedure, however, does not immediately yield that the Fj,α’s have the desired vertical
frequencies. Applying Lemma A.9 (vertical expansion), we have may assume that the Fj,α’s each
have vertical frequencies ξj,α bounded by polym(L). The crucial idea at this point (due to Leng
[34, Lemma A.3]) is noting that for (g1, g2, g3, g4) ∈ Gτ and g′ ∈ G2, we have

(g1g
′, g2g

′, g3g
′, g4g

′) ∈ Gτ , (g1, g2g
′, g3g

′−2, g4g
′4) ∈ Gτ , and (g1, g2, g3g

′, g4g
′2) ∈ Gτ .

Thus, if g′1, g
′
2, g

′
3 ∈ G2, then g̃ = (g1g

′
1, g2g

′
1g

′
2, g3g

′
1g

′−2
2 g′3, g4g

′
1g

′4
2 g

′2
3 ) ∈ Gτ , and

F (g4Γ) = e(−ξ(g′1))e(−4ξ(g′2))e(−2ξ(g′3))F (g4g
′
1g

′4
2 g

′2
3 Γ)

= e(−ξ(g′1))e(−4ξ(g′2))e(−2ξ(g′3))
∑

α

∏

j∈[3]
Fj,α(g̃jΓ) + G̃((g1, g2, g3, g4)Γ, g

′
1, g

′
2, g

′
3).

We now integrate over each g′i ∈ G2/(Γ ∩ G2) (this is well-defined because G2/(Γ ∩ G2) is a torus
onto which e(·) descends). Note that the integral of a nontrivial character ξ over G2/(Γ ∩ G2) is
zero, and therefore a term α only remains if the vertical frequencies solve the following system of
linear equations:

0 = −ξ + ξ1,α + ξ2,α + ξ3,α,

0 = −4ξ + ξ2,α − 2ξ3,α,

0 = −2ξ + ξ3,α,

using the formulas for g̃j and the vertical frequencies of the Fj,α. The unique solution is ξ1,α = −9ξ,
ξ2,α = 8ξ, and ξ3,α = 2ξ. Thus, after performing this integration, we find

F (g4Γ) =
∑

α∈A∗

∏

j∈[3]
Fj,α(gjΓ) +

∫

(G2/(Γ∩G2))3
G̃((g1, g2, g3, g4)Γ, g

′
1, g

′
2, g

′
3) dg

′
1dg

′
2dg

′
3.

where all α ∈ A∗ are such that Fj,α has vertical frequencies −9ξ, 8ξ, 2ξ for j = 1, 2, 3 respectively.
This is valid for all (g1, g2, g3, g4) ∈ Gτ , hence it applies to g(τ(x, y)) ∈ Gτ and we have the desired
expression. �

5.2. Factorization result. The next lemma serves as the crucial analogue of Weyl’s inequality
for degree 2 nilsequences. Although the statement is motivated by work of Leng [34, Lemma 6.1],
our proof mimics the factorization of polynomial sequences on nilmanifolds due to Green and Tao
[23, Theorem 1.19]. However, our analogue of the basic decomposition result [23, Proposition 9.2]
assumes that the polynomial sequence g(P (6y)) is not equidistributed, instead of the sequence g(y).
The crucial point, analogous to the case of polynomial phases sketched in Section 3, is that one can
still deduce a useful factorization of g(y) from this.

The key input into our argument is the following result on equidistribution of polynomial orbits
in nilmanifolds due to Green and Tao [23, Theorem 2.9] with the explicit dimension dependencies
given in work of Tao and Teräväinen [50].

Theorem 5.5 ([50, Theorem A.3]). Let m ≥ 0, δ ∈ (0, 1/2), and N ≥ 1. Let G/Γ be a filtered
nilmanifold of degree d with complexity at most 1/δ. Let g : Z → G be a polynomial sequence.
If (g(n)Γ)n∈[N ] is not δ-equidistributed (Definition A.5), then there exists a horizontal character

0 < |η| ≤ δ− exp((2m)Od(1)) such that

‖η ◦ g‖C∞[N ] ≤ δ− exp((2m)Od(1)),

where the implicit constant Od(1) only depends on d.
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Recall the C∞[N ]-norm from Definition A.7. We now state our analogue of [23, Proposition 9.2].

Proposition 5.6. Fix δ ∈ (0, 1/2) and P and W as in (2.2). Let G/Γ be an m-dimensional filtered
nilmanifold of degree 2 and complexity L with filtration G = G0 = G1 > G2 > IdG denoted by G•.
Furthermore, let X denote the Mal’cev basis of G/Γ and let F : G/Γ → C be such that ‖F‖Lip ≤ L
and F has a nonzero vertical frequency 2 · ξ such that ‖ξ‖∞ ≤ L. Let g : Z → G be a polynomial
sequence with respect to G• with g(0) = IdG. For all r ∈ [W ], define

Pr(y) :=
P (Wy + r)− P (r)

W
.

Let I ⊆ [±δ−1N1/2W−1] be an arithmetic progression of difference at most δ−1. Suppose that

W ≤ N1/104 , N ≥ polym(δ−1L), and
∣∣∣∣
∑

y∈I
F (g(6Pr(y))Γ)

∣∣∣∣ ≥ δN1/2W−1.

Then, there exists a factorization g = εg′γ with polynomial sequences ε, g′, γ : Z → G such that

• for all n ∈ [±δ−1N ], d(ε(n), ε(n − 1)) ≤ polym(Lδ−1)/N and d(ε(n), IdG) ≤ polym(Lδ−1);
• γ is polym(Lδ−1)-rational and γ(n)Γ is periodic with period at most polym(Lδ−1); and
• g′ takes values only in G′, a simply connected proper polym(Lδ−1)-rational subgroup with

respect to X , and may be viewed as a polynomial sequence with respect to the filtration G′
•

where Gi = G′ ∩Gi.

Here the condition N ≥ polym(δ−1L) is used abusively to express that there is some such polyno-
mial expression such that this condition on N is sufficient; we use similar conventions later without
comment. Now, we first state the following explicit binomial coefficient identities. While the precise
constant coefficients are unimportant, various powers of A and B will indeed be used in our analysis.

Claim 5.7. We have (
An2 +Bn

1

)
= 2A

(
n

2

)
+ (A+B)

(
n

1

)

and (
An2 +Bn

2

)
= 12A2

(
n

4

)
+ (18A2 + 6AB)

(
n

3

)
+ (7A2 + 6AB −A+B2)

(
n

2

)

+

(
AB +

(
A

2

)
+

(
B

2

))(
n

1

)
.

We also require the following claim regarding polynomial sequences and the C∞[N ]-norm.

Claim 5.8. Fix a constant C ≥ 1. Suppose that S is a nonzero integer such that |S| ≤ C and I is

an integer such that |I| ≤ CN . If p is a polynomial of degree at most d, there exists S′ ≤ COd(1)

such that
‖S′p(x)‖C∞[N ] ≤ COd(1)‖p(Sx+ I)‖C∞[N ].

Proof. Let q(x) = p(Sx+ I) and I ′ ∈ [S] be such that I ′ ≡ I mod S. Note that

‖p(Sx+ I ′)‖C∞[N ] = ‖q(x+ (I ′ − I)/S)‖C∞ [N ].

Vandermonde’s identity implies
(
n+ I

j

)
=

∑

0≤t≤j

(
n

t

)(
I

j − t

)
.
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As |(I − I ′)/S| ≤ CN , using Vandermonde’s identity we have by expansion that

‖q(x+ (I − I ′)/S)‖C∞ [N ] ≤ COd(1)‖q(x)‖C∞ [N ].

Putting it together, we have

‖p(Sx+ I ′)‖C∞[N ] ≤ COd(1)‖p(Sx+ I)‖C∞[N ].

Finally, by [23, Lemma 8.4] (applicable since the heights of S, I ′ are bounded by C) we can find

appropriate S′ so that ‖S′p(x)‖C∞[N ] ≤ COd(1)‖p(Sx+ I ′)‖. This completes the proof. �

Proof of Proposition 5.6. Let min(I) = I, S denote the difference of the progression I , and T the
length of I . By assumption, we have that∣∣∣∣

∑

y∈[T ]

F (g(6Pr(Sy + I))Γ)

∣∣∣∣ ≥ δN1/2W−1.

Next, as 2 · ξ is a nonzero vertical frequency for F , we have∫

y∈G/Γ
F (y) dy = 0.

Therefore, by definition we see the polynomial sequence g(6Pr(Sy+I)) is not 3δ2L−1-equidistributed.

(Notice that g(6Pr(Sy + I)) is a polynomial sequence with respect to the filtration G̃• defined by

G = G̃0 = G̃1 = G̃2 = G̃3 = G̃4 > G̃5 = G2 > IdG.)
Let ψ(g) denote the Mal’cev coordinates of g ∈ G with respect to X . By the classification of

polynomial sequences in terms of Mal’cev coordinates [21, Lemma 6.7] and the assumption that
g(0) = IdG, we have

ψ(g(n)) =

(
n

2

)
t2 +

(
n

1

)
t1,

where ti ∈ Rm and the first m − dim(G2) coordinates of t2 are zero. As g(6Pr(Sy + I)) is not
3δ2L−1-equidistributed, by Theorem 5.5 there exists a nonzero horizontal character η such that

‖(η ◦ g)(6Pr(Sy + I))‖C∞[N1/2W−1] ≤ polym(δ−1L).

The implied constants in polym(·) are absolute, as the degree of the filtration under consideration

is always bounded by 5. By Claim 5.8 there exists a positive integer Q ≤ δ−O(1) such that

‖Q(η ◦ g)(6Pr(y))‖C∞[N1/2W−1] ≤ polym(δ−1L). (5.2)

By a direct computation, we have

6Pr(y) = Ay2 +By,

where

A = 6W 2 and B = 6(2Wr + 1).

Now let the horizontal character η be represented by k ∈ Zm in Mal’cev coordinates. Thus
(η ◦ g)(n) = k · (

(n
2

)
t2 +

(n
1

)
t1). Plugging into (5.2) and using Claim 5.7, and unwrapping the

definition of the C∞[N1/2W−1]-norm, we can initially deduce that

‖12QA2 · (t2 · k)‖T ≤ polym(δ−1L)W 4

N2
, ‖(18A2 + 6AB)Q · (t2 · k)‖T ≤ polym(δ−1L)W 3

N3/2
.

Therefore, there exists a positive integer Q1 ≤ δ−O(1) such that

‖Q1W
4 ·(t2 ·k)‖T ≤ polym(δ−1L)W 4

N2
, ‖Q1(3W

4+W 2(2Wr+1))·(t2 ·k)‖T ≤ polym(δ−1L)W 3

N3/2
.

(5.3)
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Combining these bounds yields

‖Q1W
2(2Wr + 1) · (t2 · k)‖T ≤ polym(δ−1L)W 3

N3/2
.

We now, crucially, use that gcd(W, 2Wr + 1) = 1. Note that

Q1(t2 · k) =
T1
W 4

+ E1 =
T2

W 2(2Wr + 1)
+ E2

with |E1|, |E2| ≤ N−1 (say) and T1, T2 ∈ Z. However,∣∣∣∣
T1
W 4

− T2
W 2(2Wr + 1)

∣∣∣∣ ≥ N−1/2

unless T1 ·W 2(2Wr + 1)− T2 · (W 4) = 0. It follows that W 2 | T1 and, therefore,

‖Q1W
2 · (t2 · k)‖T ≤ polym(δ−1L)W 2

N2
,

using the first bound in (5.3). Noting that W 2 | A and using that |B| ≪W 2, we have

‖Q1(7A
2 + 6AB −A)(t2 · k)‖T +

∥∥∥∥2Q1

(
AB +

(
A

2

))
(t2 · k)

∥∥∥∥
T

≤ polym(δ−1L)W 4

N2
. (5.4)

Now we use (5.2) again but applied to the lower coefficients, and we appropriately cancel out the
contributions from the terms in (5.4). We find

‖2Q1(B
2(t2 · k) + 2A(t1 · k))‖T ≤ polym(δ−1L)W 2

N
and ∥∥∥∥2Q1

((
B

2

)
(t2 · k) + (A+B)(t1 · k)

)∥∥∥∥
T

≤ polym(δ−1L)W

N1/2
.

Multiplying the first equation by A + B and the second equation by 2A and subtracting, we find
that

‖2Q1(B
2(A+B)−AB(B − 1))(t2 · k)‖T ≤ polym(δ−1L)W 3

N1/2
.

As W 2 | A, we find by similar argumentation that

‖2Q1B
3(t2 · k)‖T ≤ polym(δ−1L)W 3

N1/2
.

Again, crucially, gcd((2Wr + 1)3,W ) = 1. As Q1(t2 · k) is near a fraction with denominator W 2,

repeating fraction comparison arguments similar to above we find that for Q2 = 4Q1 ≤ δ−O(1) we
have

‖Q2(t2 · k)‖T ≤ polym(δ−1L)

N2
.

We may substitute this bound into earlier equations, and using the size bounds on B deduce that

‖Q2A(t1 · k)‖T ≤ polym(δ−1L)W 2

N
, ‖Q2(A+B)(t1 · k)‖T ≤ polym(δ−1L)W

N1/2
.

As gcd(A,A+B) = gcd(A,B) = 6, another fraction comparison argument shows

‖6Q2(t1 · k)‖T ≤ polym(δ−1L)

N
.

Thus for Q3 = 6Q2 ≤ δ−O(1) we have

‖Q3(t2 · k)‖T ≤ polym(δ−1L)

N2
, ‖Q3(t1 · k)‖T ≤ polym(δ−1L)

N
.
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Note that the quality of major arc control here is comparable to a situation where we knew that
g(y) itself were poorly equidistributed on [N ].

The remaining proof is now essentially identical to the argument in [23, Proposition 9.2], as we
are in the same essential position. We will define G′ to be the connected component of ker(η) (as
a subgroup of G) and, due to the size bounds on η, we have that G′ is a polym(δ−1L)-rational
subgroup. It is seen to be simply connected by considering the Mal’cev coordinate representation
for η.

We choose vectors u1, u2 ∈ Rm such that ‖tj − uj‖∞ ≤ polym(δ−1L)N−j for j = 1, 2, such that
Q3(u1 · k) and Q3(u2 · k) are integers, and such that the first m − dim(G2) coordinates of u2 are
zero. We then choose vectors v1 and v2 with coordinates rationals with denominator bounded by
polym(δ−1L) and such that k · uj = k · vj for j = 1, 2.

Let ε and γ be the polynomial sequences Z → G for which

ψ(ε(n)) =

(
n

2

)
(t2 − u2) +

(
n

1

)
(t1 − u1)

and

ψ(γ(n)) =

(
n

2

)
v2 +

(
n

1

)
v1,

and set
g′ = ε−1gγ−1.

By construction, g′ takes values in G′ since η is a horizontal character. We have that γ is rational, as
the denominators of vi are polym(δ−1L)-bounded, and therefore by [23, Lemma A.11(iv), A.12(ii)]
we have that γ(·) is polym(δ−1L)-rational and periodic of period at most polym(δ−1L). The claimed
smoothness bounds for ε follow using that ‖tj − uj‖∞ ≤ polym(δ−1L)N−j and [23, Lemma A.4],
which converts between distance in the metric dX and differences in Mal’cev coordinates. This
completes the proof. �

Note that subgroup G′ obtained from Proposition 5.6 is not dependent on the vertical character
ξ in any manner; we only needed that the mean of F on G/Γ is 0. However, we may iterate
Proposition 5.6 until ξ is trivial on G′

2 = G2 ∩G′.

Lemma 5.9. Fix δ ∈ (0, 1/2) and P and W as in (2.2). Let G/Γ be an m-dimensional filtered
nilmanifold of degree 2 and complexity L. Furthermore, let X denote the Mal’cev basis of G/Γ and
let F : G/Γ → C be such that ‖F‖Lip ≤ L and F has vertical frequency 2 · ξ such ‖ξ‖∞ ≤ L. Let
g : Z → G be a polynomial sequence with respect to the filtration G = G0 = G1 > G2 > IdG, denoted
by G•, and g(0) = IdG. Finally, for r ∈ [W ], define

Pr(y) =
P (Wy + r)− P (r)

W
.

Suppose that W ≤ N1/104 , N ≥ polym(δ−1L), and that
∣∣∣∣

∑

y∈[±T ]

F (g(6Pr(y))Γ)

∣∣∣∣ ≥ δN1/2W−1

for some T ∈ [δ−1N1/2W−1]. Then there exists a factorization g = εg′γ and subgroup G′ with
polynomial sequences ε, g′, γ : Z → G such that

• for all n ∈ [±δ−2N ], d(ε(n), ε(n − 1)) ≤ polym(Lε−1)/N and d(ε(n), IdG) ≤ polym(Lδ−1);
• γ is polym(Lδ−1)-rational and γ(n)Γ is periodic with period at most polym(Lδ−1);
• g′ takes values in a connected polym(Lδ−1)-rational subgroup G′ and is a polynomial sequence

with respect to the filtration G′
•, where G′

j = Gj ∩G′; and

• ξ is trivial on G′
2 = G2 ∩G′.
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Proof. We first handle the trivial case where ξ = 0. This case is dispatched via setting G′ = G,
g′ = g, and ε and γ to both be identically IdG.

Otherwise, we iteratively define a sequence of parameters (δi) with δ−1
1 = δ−1L and δ−1

i+1 =

polym(δ−1
i L) and a sequence of rational connected subgroups (G(i)) with G(1) = G and G(i) being

δ−1
i -rational with respect to G. We write G

(i)
j = Gj ∩G(i). At each stage, we have the factorization

g = εigiγi

with gi(0) = IdG, gi taking values in G(i), εi satisfying, for n ∈ [±δ−2N ], that d(εi(n), εi(n− 1)) ≤
δ−1
i N−1 and d(εi(n), IdG) ≤ δ−1

i , and γi being δ−1
i -rational and periodic with period at most δ−1

i .
We let ε1 = γ1 = IdG and g1 = g to start.

Now given i, we define the next factorization data. If ξ is trivial on G
(i)
2 then we terminate,

providing our desired final factorization. Else, decompose [±T ] into arithmetic progressions that
are N1/2W−1 polym(δiL

−1) in length and with common difference divisible by the period of γi.
Then, by the pigeonhole principle, there exists such a progression Q for which∣∣∣∣

∑

y∈Q
F (g(6Pr(y))Γ)

∣∣∣∣ ≥ polym(δiL
−1)N1/2W−1.

By the smoothness of εi, the rationality of γi, and the Lipschitz bound for F , there exist group
elements εQ and γQ, each of size polym(δ−1

i L), with γQ being polym(δ−1
i L)-rational, such that

∣∣∣∣
∑

y∈Q
F (εQgi(6Pr(y))γQΓ)

∣∣∣∣ ≥ polym(δiL
−1)N1/2W−1.

Note here that γQ is essentially a “representative” for γi in this modular class that is bounded, and
not the value of γi itself. Such a representative exists, as any group element can be made bounded
by right-multiplying by an element of the Γ [23, Lemma A.14] and the product of two rational
elements is rational with appropriate height bounds [23, Lemma A.11].

Set Fi(x) = F (εQγQx). Note that Fi is polym(δ−1
i L)-Lipschitz, as left-multiplication by bounded

elements approximately preserves the metric [23, Lemma A.5]. Furthermore, letting g′i = γ−1
Q giγQ,

we have ∣∣∣∣
∑

y∈Q
Fi(g

′
i(6Pr(y))Γ)

∣∣∣∣ ≥ polym(δiL
−1)N1/2W−1.

Since G(i) is a polym(δ−1
i L)-rational subgroup of G, the conjugate subgroup γ−1

Q G(i)γQ is similarly

rational by [23, Lemma A.13]. Furthermore, note that γ−1
Q G

(i)
2 γQ = G

(i)
2 , as G

(i)
2 ⊆ G2 is in the

center of G because we have a degree 2 filtration on G. Therefore, as ξ is nonzero on γ−1
Q G

(i)
2 γQ =

G
(i)
2 , and since G

(i)
2 being simply connected implies that if ξ is nonzero then 2 · ξ is nonzero, we can

apply Proposition 5.6 to obtain
g′i = ε̃i+1gi+1γ̃i+1

where γ̃i+1 is polym(δ−1
i L)-rational and periodic, d(ε̃i+1(n), ε̃i+1(n − 1)) ≤ polym(δ−1

i L)N−1 and

d(ε̃i+1(n), IdG) ≤ polym(δ−1
i L) for n ∈ [±δ−2N ], and gi+1 lives in a subgroup G(i+1) that is

polym(δ−1
i L)-rational with respect to G(i). Thus,

gi = γQε̃i+1gi+1γ̃i+1γ
−1
Q

and, so,
g = εiγQε̃i+1gi+1γ̃i+1γ

−1
Q γi.

Taking εi+1 = εiγQε̃i+1 and γi+1 = γ̃i+1γ
−1
Q γi completes the iteration. In particular, γQε̃i+1 is

seen to be sufficiently smooth as left-multiplication by bounded elements approximately preserves
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distances [23, Lemma A.5], and εi is sufficiently smooth as the product of smooth sequences is
sufficiently smooth by [23, Lemma 10.1]. The rationality claims for γi+1 follow immediately from
[23, Lemma A.11, A.12].

Note that at each step of the iteration we have δ−1
i+1 = polym(Lδ−1

i ), where the implied constants
in polym(·) are absolute. Note also that there are at most m iterations, as each iteration decreases

the dimension of G(i) (since the G′ produced by Proposition 5.6 is a connected proper subgroup),
and therefore we obtain the desired result (up to slightly increasing the implicit constants in the
underlying notation). �

6. Degree-lowering

The main purpose of this section is to deduce the following key degree-lowering result.

Proposition 6.1. Fix a positive integer k ≥ 3, let w, W , and P be as in (2.2), and let δ ∈ (0, 1/2).
Let f1, f2, f3 : Z → C be 1-bounded functions such that supp(fi) ⊆ [±δ−1N ] for i = 1, 2, 3. Suppose
that

‖D1(f2, f3)‖2
k

Uk
W ·[N/W ]

≥ δN.

Furthermore, suppose that N ≥WΩ(1) · exp(exp(δ−Ωk(1))). Then,

min
i=2,3

‖fi‖2
k−1

Uk−1
W ·[N/W ]

≫ exp(− exp(δ−Ok(1))) ·N.

We will also require the following variant of the above result; the proof is identical, just replacing
the polynomial P (y) =Wy2 + y with −Wy2 − y.

Proposition 6.2. Fix a positive integer k ≥ 3, and let w, W , and P be as in (2.2), and let δ ∈
(0, 1/2). Let f1, f2, f3 : Z → C be 1-bounded functions such that supp(fi) ⊆ [δ−1N ] for i = 1, 2, 3.
Suppose that

‖D3(f1, f2)‖2
k

Uk
W ·[N/W ]

≥ δN.

Furthermore, suppose that N ≥WΩ(1) · exp(exp(δ−Ωk(1))). Then,

min
i=1,2

‖fi‖2
k−1

Uk−1
W ·[N/W ]

≫ exp(− exp(δ−Ok(1))) ·N.

Remark. The methods in this paper do not prove the analogous statement for D2(f3, f1), as our
methods do not prove the needed statement corresponding to Lemma 5.3. By symmetry, the con-
straints required for D1(f2, f3) and D3(f1, f2) are identical.

6.1. U2-control for Sárközy-type configurations. We first require U2-control for Sárközy-type
configurations. The proof we give is identical to that of Green [17, Section 3], modulo standard
circle method computations that we place in Appendix B.

Lemma 6.3. There exists a constant c = c6.3 > 0 such that the following holds. Let W be as in
(2.2) with W ≤ N c and let fi : Z → C be 1-bounded with supp(fi) ⊆ [±δ−1N ]. Define

Pk(y) =
P (Wy + k)− P (k)

W

for k ∈ [W ], and suppose that
∣∣∣∣
∑

x∈Z
Ey∈[±N1/2W−1]f1(x+ Pk(y))f2(x+ 2Pk(y))

∣∣∣∣ ≥ δN.

Then,

min
i∈{1,2}

sup
Θ∈T

|f̂i(Θ)| ≫ δO(1)N.
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Proof. We have ∣∣∣∣
∑

x∈Z

∑

y∈[±N1/2W−1]

f1(x+ Pk(y))f2(x+ 2Pk(y))

∣∣∣∣ ≥ δN3/2W−1.

Let F (t) denote the indicator of the set {Pk(y) : y ∈ [±N1/2W−1]}3, and thus we have∣∣∣∣
∑

x∈Z

∑

y∈Z
f1(x+ t)f2(x+ 2t)F (t)

∣∣∣∣ ≥ δN3/2W−1.

Applying Fourier inversion, this is equivalent to∣∣∣∣
∫

T

f̂1(Θ)f̂2(−Θ)F̂ (Θ) dΘ

∣∣∣∣ ≥ δN3/2W−1.

We now prove the result for i = 1; the result for i = 2 is analogous. Note that

δN3/2W−1 ≤
∣∣∣∣
∫

T

f̂1(Θ)f̂2(−Θ)F̂ (Θ) dΘ

∣∣∣∣ ≤ sup
Θ∈T

|f̂1(Θ)|1/3 ·
∫

T

|f̂1(Θ)|2/3|f̂2(−Θ)||F̂ (Θ)| dΘ

≤ sup
Θ∈T

|f̂1(Θ)|1/3 ·
(∫

T

|f̂1(Θ)|2 dΘ
)1/3(∫

T

|f̂2(−Θ)|2 dΘ
)1/2(∫

T

|F̂ (Θ)|6 dΘ
)1/6

≪ δ−O(1)N5/6 sup
Θ∈T

|f̂1(Θ)|1/3
(
N2W−6

)1/6

≪ δ−O(1)N7/6W−1 sup
Θ∈T

|f̂1(Θ)|1/3,

where we have used Lemma B.7 (with N replaced by N1/2W−1) to bound the L6-norm of F̂ . �

6.2. Dual-difference interchange. The version of dual-difference interchange we use is a minor
variant of [40, Lemma 7.4]; we include a proof for completeness.

Lemma 6.4. Consider a 1-bounded function f : Z × S → C such that supp f(·, y) ⊆ [−CN,CN ]
for all y ∈ S, and integers T1, T2 such that T1 · T2 ≤ CN . Set F (x) := Ey∈Sf(x, y), fix integers
1 ≤ ℓ ≤ k, and suppose that

∑

x∈Z
Ehi,h′

i∈T1·[T2]
1≤i≤k

∆′
(hi,h′

i)
k
i=1
F (x) ≥ δN.

Then, we have that

Ehi,h
′
i∈T1·[T2]
1≤i≤ℓ

‖Ey∈S∆
′(x)
(hi,h′

i)
ℓ
i=1

f(x, y)‖2k−ℓ

Uk−ℓ
T1·[T2]

≫ (C−1δ)Ok(1)N.

Proof. The proof is exactly as in [40, Lemma 7.4], noting that the properties of the dual function

are used only in the form of F given above. For the computation below, let ~h = (h1, . . . , hk−1)

and ~h′ = (h′1, . . . , h
′
k−1), and let Ct denote complex conjugation t times (which depends only on the

parity of t). We have, using Cauchy–Schwarz to duplicate h′k in the middle,
(∑

x∈Z
Ehi,h′

i∈T1·[T2]
1≤i≤k

∆′
(hi,h′

i)
k
i=1
F (x)

)2

=

(
E yω0,yω1∈S

ω∈{0,1}k−1

∑

x∈Z
Ehi,h

′
i∈T1·[T2]
1≤i≤k

∏

ω∈{0,1}k−1

C|ω|−1(f(x+ ~h · ω + ~h′ · (1− ω) + hk, yω0)

3Note that P (y1) = P (y2) implies (y1 − y2)(W (y1 + y2) + 1) = 0. Therefore, every element in the set occurs with
multiplicity 1.
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× f(x+ ~h · ω + ~h′ · (1− ω) + h′k, yω1))

)2

≤
(
E yω0,yω1∈S

ω∈{0,1}k−1

∑

x∈Z
Ehi,h

′
j∈T1·[T2]

1≤i≤k
1≤j≤k−1

∏

ω∈{0,1}k−1

|f(x+ ~h · ω + ~h′ · (1− ω) + hk, yω0)|2
)

·
(
E yω0,yω1∈S

ω∈{0,1}k−1

∑

x∈Z
Ehi,h′

j∈T1·[T2]

1≤i≤k
1≤j≤k−1

Eh′
k,1,h

′
k,2∈T1·[T2]

∏

ω∈{0,1}k−1

C|ω|−1(f(x+ ~h · ω + ~h′ · (1− ω) + h′k,1, yω1)

× f(x+ ~h · ω + ~h′ · (1− ω) + h′k,2, yω1))

)

≪ CN ·
(
E yω0,yω1∈S

ω∈{0,1}k−1

∑

x∈Z
Ehi,h

′
i∈T1·[T2]
1≤i≤k

∏

ω∈{0,1}k−1

C|ω|−1∆
′(x)
(hk,h

′
k)
f(x+ ~h · ω + ~h′ · (1− ω), yω1)

)

≪ CN ·
(
E yω∈S

ω∈{0,1}k−1

∑

x∈Z
Ehi,h′

i∈T1·[T2]
1≤i≤k

∏

ω∈{0,1}k−1

C|ω|−1∆
′(x)
(hk,h

′
k)
f(x+ ~h · ω + ~h′ · (1− ω), yω)

)
.

The result follows by replacing replacing f by ∆
′(x)
(hk,h

′
k)
f and applying iterating, for a total of ℓ

times. We use that T1 ·T2 is smaller than CN in order to guarantee appropriate support conditions
and bounds. �

6.3. Hensel’s lemma. We will also require an elementary result number-theoretic result; this is
ultimately why the W -trick can be used to treat arithmetic progressions with common difference of
the form y2 − 1, but not y2.

Proposition 6.5. Let Q(y) = ay2 + by and fix a prime p such that p | a but p ∤ b. Then, for all
k ≥ 1, Q(y) gives a bijective map Z/pkZ → Z/pkZ.

Proof. Note that for k = 1 this is immediate, as P (y) reduces to a nontrivial linear function on
Z/pZ. Furthermore, note that P ′(y) = 2ay+b is always nonzero when viewed modulo p. Therefore,
the desired result follows from Hensel’s lemma. �

6.4. Completing the proof of Proposition 6.1. Before proceeding with the main proof, we
require the U3-inverse theorem. The result stated follows by embedding the interval [N ] into a
slightly larger cyclic group and using the U3-inverse theorem of Green and Tao [19, Theorem 12.8]4.
We give a brief deduction of the inverse theorem stated below from [19, Theorem 12.8], since the
definition of U3-norm we use is slightly different from the standard version.

Theorem 6.6. Suppose that f : Z → C is a 1-bounded function such that supp(f) ⊆ [±N ] and

‖f‖8U3
[5N]

≥ δN.

Then, there exists a degree 2 nilmanifold G/Γ with dimension δ−O(1) and complexity exp(δ−O(1)), a

function F : G/Γ → C with ‖F‖Lip ≤ exp(δ−O(1)), and a polynomial sequence g : Z → G such that
∣∣∣∣
∑

n∈Z
f(n)F (g(n)Γ)

∣∣∣∣ ≥ exp(−δO(1))N.

4Note that the theorem stated in [19, Theorem 12.8] produces correlation of a shifted version of f with a nilsequence
but, as remarked after the theorem, the shift can be removed.
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Proof. Note that

δN ≤ ‖f‖8U3
[5N]

=
∑

h

µ5N‖∆hf‖2U2
[5N]

≍ Eh∈[±2N ]‖∆hf‖2U2
[5N]

,

where we have used that ∆hf = 0 for |h| > 2N and that there exist absolute constants c, C > 0
such that cN−1 ≤ µ5N (h) ≤ CN−1 for all |h| ≤ 2N . By Markov and Lemma C.4, we find that

Eh∈[±2N ] sup
β∈T

∣∣∣∣
∑

x∈Z
∆hf(x)e(βx)

∣∣∣∣ ≫ δO(1)N.

Note that if the β Fourier sum is large then so will the [β ± δO(1)/N ] Fourier sums. So, by the
identity ∑

x,h1,h2

f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2) =

∫

T

|f̂(Θ)|4 dΘ

and Markov, it follows that

Eh3∈[±2N ]

∑

x,h1,h2

(∆h3f)(x)(∆h3f)(x+ h1)(∆h3f)(x+ h2)(∆h3f)(x+ h1 + h2) ≫ δO(1)N3.

This implies ∑

x,h1,h2,h3

∆h1,h2,h3f(x) ≫ δO(1)N4.

Now treat f as a function on the cyclic group Z/(2L+1)Z, where L ∈ [25N, 50N ], 2L+1 is prime,
and we identify Z/(2L + 1)Z with [−L,L]. The above lower bound implies that f , viewed as a
function on Z/(2L + 1)Z, has large U3-norm in the sense of [19, Theorem 12.8], and therefore the
desired result follows from [19, Theorem 12.8]. �

We now perform a preliminary transformation of Theorem 6.6 that allow us to assume that
g(0) = IdG and that F has a vertical frequency.

Theorem 6.7. Suppose that f : Z → C is a 1-bounded function such that supp(f) ⊆ [±N ] and

‖f‖8U3
[5N]

≥ δN.

Then there exists a degree 2 nilmanifold G/Γ with dimension δ−O(1) and complexity exp(δ−O(1)),
a function F : G/Γ → C with ‖F‖Lip ≤ polyδ−1(δ−1) possessing a vertical frequency ξ with ‖ξ‖ ≤
polyδ−1(δ−1), and a polynomial sequence g : Z → G with g(0) = IdG such that∣∣∣∣

∑

n∈Z
f(n)F (g(n)Γ)

∣∣∣∣ ≥ polyδ−1(δ)N.

Proof. First apply Theorem 6.6 to find some G/Γ, F, g which appropriately correlated with f .
We may replace F by some F ′ which has a vertical frequency ‖ξ‖ ≤ polyδ−1(δ−1) by applying

Lemma A.9 with error parameter ε taken to be exp(−δ−O(1)) and using the pigeonhole principle.

The Lipschitz constant is now of quality polyδ−1(δ−1). Note here we are using that polyδ−1(exp(δ−O(1))) ≤
polyδ−1(δ−1) up to changing the implicit constants.

To force g(0) = IdG, by using [23, Lemma A.14] we can factor g(0) = {g(0)}[g(0)] with
‖ψ({g(0)})‖∞ ≤ 1 and [g(0)] ∈ Γ. Then, we have that

F ′(g(n)Γ) = F ′(g(n)g(0)−1g(0)Γ)

= F ′(g(n)g(0)−1{g(0)}Γ)
= F ′({g(0)}({g(0)}−1g(n)g(0)−1{g(0)})Γ),

and taking F̃ (x) = F ′({g(0)}−1x) and g̃(n) = {g(0)}−1g(n)g(0)−1{g(0)} gives the desired. �
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We are now in position to complete the proof of Proposition 6.1.

Proof of Proposition 6.1. Throughout the proof δ will be assumed to be smaller than an appropriate
absolute constant.
Step 1: Applying dual-difference interchange. By the definition of the box-norm, we have
that ∑

x∈Z
Ehi,h′

i∈W ·[N/W ]
1≤i≤k

∆′
(hi,h′

i)
k
i=1

D1(f2, f3) ≥ δN.

Recall that D1(f2, f3)(x) = Ey∈[±M ]f2(x+P (y))f3(x+2P (y)) with M = ⌊N1/2W−1/2⌋, and define

g(x, y) = f2(x+ P (y))f3(x+ 2P (y))1|y|≤M1|x|≤100δ−1N .

It follows via the support conditions on the fi that we immediately have
∑

x∈Z
Ehi,h′

i∈W ·[N/W ]
1≤i≤k

∆′
(hi,h′

i)
k
i=1

(Ey∈[±M ]g(x, y)) ≥ δN.

Applying Lemma 6.4, we deduce that

Ehi,h
′
i∈W ·[N/W ]
1≤i≤k−3

‖Ey∈[±M ]∆
′(x)
(hi,h′

i)
k−3
i=1

g(x, y)‖8U3
W ·[N/W ]

≫ δOk(1)N.

Therefore, there are at least δOk(1)(N/W )2(k−3) shifts (hi, h
′
i)
k−3
i=1 ∈ (W · [N/W ])2×(k−3) such that

‖Ey∈[±M ]∆
′(x)
(hi,h′

i)
k−3
i=1

g(x, y)‖8U3
W ·[N/W ]

≫ δOk(1)N.

Step 2: Setup for applying the U3-inverse theorem. For the next few labeled steps, we fix
shifts (hi, h

′
i)
k−3
i=1 ∈ (W · [N/W ])2×(k−3) such that

‖Ey∈[±M ]∆
′(x)
(hi,h′

i)
k−3
i=1

g(x, y)‖8U3
W ·[N/W ]

≫ δOk(1)N.

Furthermore, denote

f
(1)
j (x) = ∆

′(x)
(hi,h′

i)
k−3
i=1

fj(x)

for j ∈ {2, 3}.
Since all the differences defining the box-norm are divisible by W , we have

∑

j∈[W ]

‖Ey∈[±M ]f
(1)
2 (Wx+ j + P (y))f

(1)
3 (Wx+ j + 2P (y))‖8U3

[N/W ]
≫ δOk(1)N.

By the triangle inequality, we have
∑

j∈[W ]
k∈[W ]

‖Ey∈[±MW−1]f
(1)
2 (Wx+ j + P (Wy + k))f

(1)
3 (Wx+ j + 2P (Wy + k)))‖8U3

[N/W ]
≫ δOk(1)NW.

Defining

f
(2)
i,t (x) = f

(1)
i (Wx+ t), and Pr(y) =

P (Wy + r)− P (r)

W
,

we therefore have∑

j∈[W ]
k∈[W ]

‖Ey∈[±MW−1]f
(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))‖8U3

[N/W ]
≫ δOk(1)NW.

Thus, for at least a δOk(1) fraction of pairs (j, k) ∈ [W ]2, we have that

‖Ey∈[±MW−1]f
(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))‖8U3

[N/W ]
≫ δOk(1)NW−1.
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We fix such j and k for the next few labeled steps within the argument. We now perform a
certain set of artificial changes of variables; this change of variable is directly inspired by work of
Altman [2], and is used to reduce to considering the “flag” set of forms {2(x+ 2y), 3(x+ y), 6y, 6x}
that was considered in Section 5.

Define f
(3)
2,t (x) = f

(2)
2,t (x/3)13|x, f

(3)
3,t (x) = f

(2)
3,t (x/2)12|x,

H(x) = Ey∈[±MW−1]f
(3)
2,j+P (k)(3(x + Pk(y)))f

(3)
3,j+2P (k)(2(x+ 2Pk(y))),

and

H∗(x) = H(x/6)16|x.

Note that

‖H∗(x)‖8U3
[6N/W ]

≫ δOk(1)NW−1;

this follows via expanding the definition of the box-norm and noting that H∗ is only supported on
multiples of 6.
Step 3: Applying the U3-inverse theorem and reduction to Lemma 5.9. Note that, by
Corollary C.6, we have

‖H∗(x)‖8U3
[103δ−1N/W ]

≫ δOk(1)NW−1.

Therefore, by Theorem 6.7 (applied noting that H∗(x) has support contained in [±30δ−1N/W ]),
we have ∣∣∣∣

∑

x∈Z
H∗(x)F (g(x)Γ)

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1,

where G/Γ, F : G/Γ → C, and g are as in Theorem 6.7. Let the vertical character of F be ξ.
Unwinding the definition of H∗(x), we in fact that have that

∣∣∣∣
∑

x∈Z
H(x)F (g(6x)Γ)

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1.

Inserting the definition of H(x) yields
∣∣∣∣
∑

x∈Z
F (g(6x)Γ)Ey∈[±MW−1]f

(3)
2,j+P (k)(3(x+Pk(y)))f

(3)
3,j+2P (k)(2(x+2Pk(y)))

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1.

(6.1)
We will return to (6.1) eventually; we first deduce a series of structural claims regarding the poly-
nomial sequence g(·).

Applying Lemma 5.1 with ε = polyδ−1(δOk(1)) and using the pigeonhole principle to choose a
single α, there exist functions F1 with vertical character −9ξ, F2 with vertical character 8ξ, and F3

with vertical character 2ξ such that
∣∣∣∣
∑

x∈Z
Ey∈[±MW−1]F3(g(6Pk(y))Γ)f

(3)
2,j+P (k)(3(x + Pk(y)))F2(g(3(x + Pk(y)))Γ)

f
(3)
3,j+2P (k)(2(x+ 2Pk(y)))F1(g(2(x + 2Pk(y)))Γ)

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1

and ‖Fi‖Lip ≤ polyδ−1(δ−Ok(1)) for each i = 1, 2, 3. Set F̃1(z) := f
(3)
2,j+P (k)(3z)F2(g(3z)Γ) and

F̃2(z) := f
(3)
3,j+2P (k)(2z)F1(g(2z)Γ). By Parseval’s identity, we have

∣∣∣∣Ey∈[±MW−1]F3(g(6Pk(y))Γ)

∫

T

̂̃
F1(η)

̂̃
F2(η)e(ηPk(y))dη

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1
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or equivalently
∣∣∣∣
∫

T

̂̃
F1(η)

̂̃
F2(η)Ey∈[±MW−1]F3(g(6Pk(y))Γ)e(ηPk(y))dη

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1.

Thus, there exists β ∈ T such that
∣∣∣∣Ey∈[±MW−1]F3(g(6Pk(y))Γ)e(6βPk(y))

∣∣∣∣ ≥ polyδ−1(δOk(1)),

since max{‖F̃1‖22, ‖F̃2‖22} ≪ δ−1NW−1. Now, fix a choice of β∗ ∈ T such that 2β∗ = β.
Step 4: Applying Lemma 5.9. We now use Lemma 5.9 to reduce the degree of the polynomial
sequence g. The argument splits into two cases. In the case when ξ is zero, we will be able to
directly reduce the degree of the nilsequence; we defer this case until later.

If ξ is nonzero, let G• denote the degree 2 filtration G = G0 = G1 > G2 > IdG relative to
which g is a polynomial sequence. As ξ is nonzero, there exists h ∈ G2 such that ξ(h) = β∗.
Define g̃(n) = g(n)hn. Then g̃(0) = IdG and g̃ is a polynomial sequence with respect to G•. By
construction, we have that

∣∣∣∣Ey∈[±MW−1]F3(g̃(6Pk(y))Γ)

∣∣∣∣ ≥ polyδ−1(δOk(1)).

This is exactly the setup of Lemma 5.9. We may thus factor g̃(n) as g̃ = ε · g′ · γ with ε, g′, γ ∈
Poly(Z, G•), where

• for all t ∈ [±100δ−1 · N/W ], d(ε(t), ε(t − 1)) ≤ W polyδ−1(δ−Ok(1))/N and d(ε(t), IdG) ≤
polyδ−1(δ−Ok(1)),

• γ is polyδ−1(δ−Ok(1))-rational and γ(n)Γ is periodic with period at most polyδ−1(δ−Ok(1)),

• g′ takes values only G′, a connected proper polyδ−1(δ−Ok(1))-rational subgroup with respect
to X , and may be viewed as a polynomial sequence with respect to the filtration G′

•, where
G′

i = G′ ∩Gi,
• ξ is trivial on G′

2 = G′ ∩G2.

Step 5: Setup for degree-reduction. Recall from (6.1) that
∣∣∣∣
∑

x∈Z
F (g(6x)Γ)Ey∈[±MW−1]f

(3)
2,j+P (k)(3(x+Pk(y))f

(3)
3,j+2P (k)(2(x+2Pk(y)))

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1.

By the definitions of f
(3)
2,t , f

(3)
3,t , and g̃ and since F has vertical character ξ, it follows that

∣∣∣∣
∑

x∈Z
e(−6β∗x)F (g̃(6x)Γ)Ey∈[±MW−1]f

(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))

∣∣∣∣

≥ polyδ−1(δOk(1))NW−1.

We next break [±100δ−1N/W ] into nearly-equal length arithmetic progressions {Q1, . . . , Qt} of

length polyδ−1(δOk(1))N/W , with difference equal to the period of γ. By the pigeonhole principle,
there exists Q ∈ {Q1, . . . , Qt} such that

∣∣∣∣
∑

x∈Q
e(−6β∗x)F (g̃(6x)Γ)Ey∈[±MW−1]f

(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))

∣∣∣∣

≥ polyδ−1(δOk(1))|Q|.
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By choosing the implicit constant in the length of Q sufficiently large (so that the length is small),
we get, in fact, that

∣∣∣∣
∑

x∈Q
e(−6β∗x)F (εQg

′(6x)γQΓ)Ey∈[±MW−1]f
(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))

∣∣∣∣

≥ polyδ−1(δOk(1))|Q|,

where εQ is a polyδ−1(δ−Ok(1))-bounded element and γQ is polyδ−1(δ−Ok(1))-bounded and rational

element. (A similar argument appears in the proof of Lemma 5.9.) Let F̃ (x) = F (εQγQx) and

g(2) = γ−1
Q g′γQ, so that

∣∣∣∣
∑

x∈Q
e(−6β∗x)F̃ (g(2)(6x)Γ)Ey∈[±MW−1]f

(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))

∣∣∣∣

≥ polyδ−1(δOk(1))|Q|.

Note that g(2) is a polynomial sequence with respect to the filtration γ−1
Q G′

•γQ. We now claim

that ξ is trivial on γ−1
Q G′

2γQ. Indeed, G′
2 ⊆ G2 and [G,G2] = IdG, and thus G′

2 ⊆ Z(G) (the center

of G). It follows that γ−1
Q G′

2γQ = G′
2 and thus ξ is trivial on γ−1

Q G′
2γQ. Furthermore, note that F̃

has vertical frequency ξ, is polyδ−1(δ−Ok(1))-Lipschitz (with respect to a suitable Mal’cev basis on
γ−1
Q G′γQ), and that γ−1

Q G′γQ is polyδ−1(δ−Ok(1))-rational (see [23, Lemma A.13]) with respect to
G.

Let Γ′ = (γ−1
Q G′γQ) ∩ Γ. Since (γ−1

Q G′γQ)Γ/Γ ∼= (γ−1
Q G′γQ)/Γ′, we have

∣∣∣∣
∑

x∈Q
e(−6β∗x)F̃ (g(2)(6x)Γ′)Ey∈[±MW−1]f

(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))

∣∣∣∣

≥ polyδ−1(δOk(1))|Q|.

As γ−1
Q G′γQ is a sufficiently rational subgroup, one may put a Mal’cev basis X ′ on Γ′ such that

the Lipschitz bounds on F transfer to X ′. We note that until this point, we have been operating
under the assumption that ξ is nonzero. When ξ is zero, by taking β∗ = 0, we can immediately find
ourselves in the same situation by taking εQ = γQ = IdG, G′ = G, and Γ′ = Γ.

From these last couple steps, the key extra property we have guaranteed compared to (6.1) is

that we know g(2) lives in γ−1
Q G′γQ and also ξ is trivial on G2 ∩ (γ−1

Q G′γQ).
Step 6: Degree-reduction. We are finally in a position to obtain the necessary degree reduction.
Given the above setup, we define G∗ := γ−1

Q G′γQ/(γ
−1
Q G′

2γQ) and take g(3) ≡ g(2) mod γ−1
Q G′

2γQ to

be a polynomial sequence in G∗. Furthermore, let Γ∗ = Γ′/(Γ′∩γ−1
Q G′

2γQ) and F ∗ be the projection

of F̃ from the domain G′/Γ′ to the domain G∗/Γ∗ (which is well defined, as F̃ is invariant under
γ−1
Q G′

2γQ). We have

∣∣∣∣
∑

x∈Q
e(−6β∗x)F ∗(g(3)(6x)Γ∗)Ey∈[±MW−1]f

(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))

∣∣∣∣

≥ polyδ−1(δOk(1))|Q|.

Note, however, that now g(3) is a polynomial sequence of degree 1. Combining Lemma A.9, the

fact that the functions f
(2)
2,j+P (k), f

(2)
3,j+2P (k) are 1-bounded, and the fact that Q is an arithmetic
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progression of appropriate length and common difference, it follows using Lemma C.7 that

sup
α∈T

∣∣∣∣
∑

x∈Z
e(−αx)Ey∈[±MW−1]f

(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1.

Step 7: U2-control of Sárközy-type configurations Fix α such that
∣∣∣∣
∑

x∈Z
e(−αx)Ey∈[±MW−1]f

(2)
2,j+P (k)(x+ Pk(y))f

(2)
3,j+2P (k)(x+ 2Pk(y))

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1.

This is equivalent to
∣∣∣∣
∑

x∈Z
Ey∈[±MW−1]f

(2)
2,j+P (k)(x+ Pk(y))e(−2α(x + Pk(y)))

· f (2)3,j+2P (k)(x+ 2Pk(y))e(α(x + 2Pk(y))

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1.

This immediately implies, by Lemma 6.3, that

min
i∈{2,3}

sup
α∈T

∣∣∣∣
∑

x∈Z
e(αx)f

(2)
i,j+(i−1)P (k)(x)

∣∣∣∣ ≥ polyδ−1(δOk(1))NW−1

for our original choice of (j, k) ∈ [W ]2.
Step 8: Unwinding and deducing the final result. Note that if one samples j ∈ [W ] and
k ∈ [W ] uniformly, then j + (i− 1)P (k) is uniformly distributed modulo W for each i. Also, recall
that the correlation was deduced for a positive portion of j and k. So, we can deduce

min
i∈{2,3}

∑

j∈[W ]

sup
α∈T

∣∣∣∣
∑

x∈Z
e(αx)f

(2)
i,j (x)

∣∣∣∣ ≥ polyδ−1(δOk(1))N.

By the converse to the U2-inverse theorem (see, e.g., Lemma C.5), it follows that

min
i∈{2,3}

∑

j∈[W ]

‖f (2)i,j (x)‖4U2
[N/W ]

≥ polyδ−1(δOk(1))N.

Inserting the definition of f
(2)
i,j yields

min
i∈{2,3}

‖f (1)i (x)‖4U2
W ·[N/W ]

≥ polyδ−1(δOk(1))N.

We now unwind the definition of f
(1)
i . Recall from Step 1 that a positive proportion of shifts

(hi, h
′
i)
k−3
i=1 ∈ (W · [N/W ])k−3 were satisfied conditions sufficient for the analysis in Step 2 (and thus

subsequent steps) to follow. Therefore, using that the box-norm is always nonnegative, we obtain

min
i∈{2,3}

Ehj ,h
′
j∈W ·[N/W ]

1≤j≤k−3

‖∆(hj ,h′
j)

k−3
i=1

fi(x)‖4U2
W ·[N/W ]

≥ polyδ−1(δOk(1))N.

By the definition of the box-norm, this is equivalent to

min
i∈{2,3}

‖fi(x)‖2
k−1

Uk−1
W ·[±N/W ]

≥ polyδ−1(δOk(1))N.

This (finally) completes the proof. �
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7. Proof of Theorem 1.1

7.1. Initial U s-norm control and degree-lowering output. To obtain our initial U s-norm
control for the counting operator ΛW , we can, essentially, apply [40, Theorem 6.1] as a black-box.

Proposition 7.1. There exists a positive integer s = s7.1 such that the following holds. Fix 1-
bounded functions f1, f2, f3 : Z → C with supp(fi) ⊆ [±CN ] for i = 1, 2, 3, W , M , and P as in

(2.2), and N ≥ (Wδ−1)Ω(1). If ∣∣∣∣ΛW (f1, f2, f3)

∣∣∣∣ ≥ δMN,

then
min
i∈[3]

‖fi‖2
s

Us
W ·[N/W ]

≫C δO(1)N.

Proof. By shifting the fi, we may assume that they are supported in [2CN ] instead. The result
is then, essentially, an immediate consequence of [40, Theorem 6.1]. For f1, apply the result with
P1(y) = 2Wy2 + y and P2(y) = 4Wy2 + 2y; for f2, apply the result with P1(y) = −2Wy2 − y and
P2(y) = 2Wy2+ y; and for f3, apply the result with P1(y) = −2Wy2− y and P2(y) = −4Wy2− 2y.

In each case, we take M =
√
N/W and the desired result follows, except that the box-norm may

have shift parameters lying in qW · [δO(1)N/W ] with q ≪ 1. By applying Lemmas C.2 and C.3, we
may assume that the shift parameters are the same and thus instead a Gowers norm with parameter
qW · [δO(1)N/W ] with q ≪ 1. This Gowers norm can be upgraded to the one in the conclusion of
the proposition using Corollaries C.6 and C.8. �

By combining Proposition 7.1 with our key degree-lowering result, we can deduce that ΛW is
controlled by the U2-norm. For the statements below, we let expk denote the k-fold iterated
exponential.

Proposition 7.2. There exists a positive integer K = K7.2 such that the following holds. Suppose
that f1, f2, f3 : Z → C are 1-bounded functions with supp(fi) ⊆ [CN ] for i = 1, 2, 3, W , M , and P
are as in (2.2), and N ≥WΩ(1) expK(δ−1). If

∣∣∣∣ΛW (f1, f2, f3)

∣∣∣∣ ≥ δMN,

then
min
i∈[3]

‖fi‖4U2
W ·[N/W ]

≫C (expK(δ−1))−1N.

Proof. Let s = s7.1. We prove by downwards induction on k ∈ {2, . . . , s} that given appropriate

support and boundedness conditions on functions hi : Z → C, we have that |ΛW (h1, h2, h3)| ≥ δMN
implies

min
i∈[3]

‖hi‖4U2
W ·[N/W

≫C exp2(s−k)(δ−O(1))−1N.

For k = s, this is Proposition 7.1. The result for k = 2 with hi = fi is the desired.
Now suppose that we have established the result for k ≥ 3 and wish to prove it for k − 1. Note

that

δMN ≪ ΛW (h1, h2, h3) = (2M + 1)
∑

x∈Z
hi(x)D1(h2, h3)(x)

≤ (2M + 1)

(∑

x∈Z
|hi(x)|2

)1/2(∑

x∈Z
|D1(h2, h3)(x)|2

)1/2

≪M ·N1/2 · ΛW (D1(h2, h3), h2, h3)
1/2

29



and, therefore,

ΛW (D1(h2, h3), h2, h3) ≫ δ2MN.

Now apply the inductive hypothesis with h1 replaced by D1(h2, h3) (which still is bounded and with
appropriate support) and δ replaced by Ω(δ2). We deduce

‖D1(h2, h3)‖2
k

Uk
W ·[N/W ]

≫C exp2(s−k)(δ−O(1))−1N.

Similarly, we have

‖D3(h1, h2)‖2
k

Uk
W ·[N/W ]

≫C exp2(s−k)(δ−O(1))−1N.

(Note that the O(1) exponents here may decay with each induction step, but s = s7.1 is an absolute
constant so this will remain bounded at the end.)

Now using Propositions 6.1 and 6.2, it follows that

min
i∈[3]

‖hi‖2
k−1

Uk−1
W ·[N/W ]

≫C exp2(s−k)+2(δ−O(1))−1N,

using that Ok(1) = O(1) as k is bounded, which completes the induction. �

7.2. Completing the proof. We are now in position to complete the proof. The following result
states that, for 1-bounded functions, the counting operators ΛW and ΛModel agree up to a universal
scaling factor.

Proposition 7.3. There exists an integer K = K7.3 > 0 such that the following holds. Suppose
f1, f2, f3 : Z → C are 1-bounded functions such that supp(fi) ⊆ [N ] for i = 1, 2, 3, W , M , w, and

P are as in (2.2), and N ≫WΩ(1) and W ≫ expK(δ−1). Then,
∣∣∣∣(NW )1/2ΛW (f1, f2, f3)− ΛModel(f1, f2, f3)

∣∣∣∣ ≤ δN2.

Proof. Assume for the sake of contradiction that∣∣∣∣(NW )1/2ΛW (f1, f2, f3)− ΛModel(f1, f2, f3)

∣∣∣∣ ≥ δN2,

and define

Λ̃(f1, f2, f3) = (NW )1/2ΛW (f1, f2, f3)− ΛModel(f1, f2, f3).

For this proof, define the modified dual functions

D1,∗(f2, f3)(x) = N−1((NW )1/2
∑

|k|≤M

f2(x+ P (k))f3(x+ 2P (k)) −
∑

d∈Z
f2(z + d)f3(z + 2d)ν(d)),

D2,∗(f3, f1)(x) = N−1((NW )1/2
∑

|k|≤M

f1(x− P (k))f3(x+ P (k))−
∑

d∈Z
f1(z − d)f3(z + d)ν(d)),

D3,∗(f1, f2)(x) = N−1((NW )1/2
∑

|k|≤M

f1(x− 2P (k))f2(x− P (k)) −
∑

d∈Z
f1(z − 2d)f2(z − d)ν(d)).

By an application of the Cauchy–Schwarz inequality analogous to that used in Proposition 7.2 (and
at the end of Section 2), we have

∣∣∣∣Λ̃(D1,∗(f2, f3), f2, f3)

∣∣∣∣ ≫ δ2N2.

By the triangle inequality, we have that∣∣∣∣ΛModel(D1,∗(f2, f3), f2, f3)

∣∣∣∣ ≫ δ2N2 or

∣∣∣∣(NW )1/2ΛW (D1,∗(f2, f3), f2, f3)

∣∣∣∣ ≫ δ2N2.
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Therefore, by Lemma 4.1, Proposition 7.2, and Lemma C.3, we have

‖D1,∗(f2, f3)‖4U2
W ·[N/W ]

≫ expK7.2(δ−O(1))N.

Applying the U2-inverse theorem Lemma C.4 to each progression of spacing W and passing to the
interval [±C1N ] (which contains the support of D1,∗(f2, f3)), there exist constants αj,1, βj,1 for each
j ∈ [W ] such that

f̃1(x) := 1x∈[±C1N ]

∑

j∈[W ]

1W |(x−j)e(αj,1x+ βj,1)

satisfies ∑

x∈Z
f̃1(x)D

1,∗(f2, f3)(x) ≫ exp
K7.2(δ−O(1))−1N.

By construction, this implies that

|Λ̃(f̃1, f2, f3)| ≥ expK7.2(δ−O(1))−1N2.

Repeating this procedure, we find αj,i, βj,i for each j ∈ [W ] such that defining

f̃i(x) := 1x∈[±CiN ]

∑

j∈[W ]

1W |(x−j)e(αj,ix+ βj,i)

for i ∈ {2, 3} (with appropriate absolute constants Ci), we have

|Λ̃(f̃1, f̃2, f̃3)| ≫ exp3K7.2(δ−O(1))−1N2.

Unwinding the definition of ΛW and ΛModel (recall ν is supported on [1, N ]), we have
∣∣∣∣
∑

x∈Z
d∈[N ]

(
(NW )1/2f̃1(x)f̃2(x+ d)f̃3(x+ 2d)1d∈{P (k):k∈Z}∩[N ] − f̃1(x)f̃2(x+ d)f̃3(x+ 2d)ν(d)

) ∣∣∣∣

≫ exp
3K7.2(δ−O(1))−1N2.

Define ν∗(d) = (NW )1/2 · |{d = P (k) : k ∈ Z and |k| ≤M}|. Since P is injective on Z so this set is
only size 0 or 1. We have

∣∣∣∣
∑

x∈Z
d∈Z

f̃1(x)f̃2(x+ d)f̃3(x+ 2d)(ν∗(d)− ν(d))

∣∣∣∣ ≫ exp3K7.2(δ−O(1))−1N2.

Note that∣∣∣∣
∑

x∈Z
d∈Z

f̃1(x)f̃2(x+ d)f̃3(x+ 2d)(ν∗(d)− ν(d))

∣∣∣∣

≤
∑

k,ℓ∈[W ]

∣∣∣∣
∑

x∈Z
d∈Z

W |(x−ℓ)
W |(d−k)

f̃1(x)f̃2(x+ d)f̃3(x+ 2d)(ν∗(d)− ν(d))

∣∣∣∣

≤
∑

k,ℓ∈[W ]

∣∣∣∣
∑

x∈Z
d∈Z

f̃1(Wx+ ℓ)f̃2(W (x+ d) + ℓ+ k)f̃3(W (x+ d) + ℓ+ 2k)(ν∗(Wd+ k)− ν(Wd+ k))

∣∣∣∣

≤W 2 sup
α1,α2,α3∈T

k,ℓ∈[W ]

∣∣∣∣
∑

x∈Z
d∈Z

e(α1x)1|Wx+ℓ|≤C1Ne(α2(x+ d))1|W (x+d)+ℓ+k|≤C2N
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e(α3(x+ 2d))1|W (x+2d)+ℓ+2k|≤C3N (ν∗(Wd+ k)− ν(Wd+ k))

∣∣∣∣.

Letting τi,αi(x) = e(αix)1|x|≤CiNW−1 , we have

sup
α1,α2,α3∈T

k∈[W ]

∣∣∣∣
∑

x∈Z
d∈Z

τ1,α1(x)τ2,α2(x+d)τ3,α3(x+2d)(ν∗(Wd+k)−ν(Wd+k))

∣∣∣∣ ≫ exp
3K7.2(δ−O(1))−1N2W−2.

We now take a Fourier transform. Defining ν̃k(d) = (ν∗(Wd+ k)− ν(Wd+ k)) we have
∣∣∣∣
∑

x∈Z
d∈Z

τ1,α1(x)τ2,α2(x+ d)τ3,α3(x+ 2d)(ν∗(Wd+ k)− ν(Wd+ k))

∣∣∣∣

=

∣∣∣∣
∫

T2

τ̂1,α1(Θ1)τ̂2,α2(Θ2)τ̂3,α3(−Θ1 −Θ2)̂̃νk(Θ2) dΘ1dΘ2

∣∣∣∣

≤ ‖̂̃νk‖∞ ·
∫

T2

|τ̂1,α1(Θ1)| · |τ̂2,α2(Θ2)| · |τ̂3,α3(−Θ1 −Θ2)| dΘ1dΘ2

≤ ‖̂̃νk‖∞
(∫

T2

|τ̂1,α1(Θ1)|3/2 · |τ̂2,α2(Θ2)|3/2 dΘ1dΘ2

)1/3

(∫

T2

|τ̂1,α1(Θ1)|3/2 · |τ̂3,α3(−Θ1 −Θ2)|3/2 dΘ1dΘ2

)1/3

(∫

T2

|τ̂2,α2(Θ2)|3/2 · |τ̂3,α3(−Θ1 −Θ2)|3/2 dΘ1dΘ2

)1/3

= ‖̂̃νk‖∞
∏

i∈[3]

(∫

T

|τ̂i,αi(Θ)|3/2dΘ
)2/3

≪ ‖̂̃νk‖∞ · (N/W ),

where in the final line we have used standard fact that the Lp-norm of the Fourier transform of an
interval of length N is ≪p N

(p−1)/p for p > 1. However, by Lemma B.8, we have

sup
k∈[W ]

‖̂̃νk‖∞ ≪ N

W
· 1√

w
.

We have our desired contradiction if w (i.e., W ) is sufficiently large with respect to δ−1. �

The main result now follows in a straightforward manner.

Proof of Theorem 1.1. Let S be a subset of density δ in [N ] and W be a sufficiently large parameter
to be chosen at the end of the proof. By the pigeonhole principle, there exists j ∈ [4W ] such that
Sj = S∩(4WZ+j) has size at least δN/(4W ). Set S∗

j = (Sj−j)/(4W ) ⊆ [N/(4W )]. Note that, since

4W 2y2+4Wy = (2Wy+1)2−(2Wy+1), differences of the form ((2Wy+1)2−1)/(4W ) =Wy2+y
in the set S∗

j lift to differences of the form z2 − 1 in S. By Lemma 4.2, we have

ΛModel(1S∗
j
,1S∗

j
,1S∗

j
) ≥ exp(− log(2/δ)O(1))N2W−2.

Taking N ≥ WΩ(1) expK+1(δ−1) and W ≥ expK+1(δ−1) with K = K7.3, Proposition 7.3 with N
replaced by N/W (note this alters the value of M) and δ appropriately changed implies

ΛW (1S∗
j
,1S∗

j
,1S∗

j
) ≥ exp(− log(2/δ)O(1))N3/2W−2.

However, if S is free of nontrivial progressions of the form x, x+ y2 − 1, x+ 2(y2 − 1), we have

ΛW (1S∗
j
,1S∗

j
,1S∗

j
) ≪ N/W.
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Therefore, if δ ≥ logK+2(N)−1, taking N = WΩ(1) expK+1(δ−1) and W = expK+1(δ−1), we obtain
a nontrivial progression of the form x, x+ y2 − 1, x+ 2(y2 − 1) in S, as desired. �
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Appendix A. Conventions regarding nilsequences and effective equidistribution

We begin this appendix by giving the precise definition of the complexity of a nilmanifold; this
definition is exactly as in [50, Definition 6.1].

Definition A.1. Let s ≥ 1 be an integer and let K > 0. A filtered nilmanifold G/Γ of degree s and
complexity at most K consists of the following:

• a nilpotent, connected, and simply connected Lie group G of dimension m, which can be
identified with its Lie algebra logG via the exponential map exp: logG→ G;

• a filtration G• = (Gi)i≥0 of closed connected subgroups Gi of G with

G = G0 = G1 > G1 > · · · > Gs > Gs+1 = IdG

such that [Gi, Gj ] ⊆ Gi+j for all i, j ≥ 0;
• a discrete cocompact subgroup Γ of G; and
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• a linear basis X = {X1, . . . ,Xm} of logG, known as a Mal’cev basis.

We, furthermore, require that this data obeys the following conditions:

(1) for 1 ≤ i, j ≤ m, one has Lie algebra relations

[Xi,Xj ] =
∑

i,j<k≤m

cijkXk

for rational numbers cijk of height at most K;
(2) for each 1 ≤ i ≤ s, the Lie algebra logGi is spanned by {Xj : m− dim(Gi) < j ≤ m}; and
(3) the subgroup Γ consists of all elements of the form exp(t1X1) · · · exp(tmXm) with ti ∈ Z.

We note that the conditions imply [G,Gs] = IdG, i.e., Gs is contained in the center of G (com-
mutes with every element).

Next, we will define polynomial sequences in filtered nilpotent groups. This concrete definition
is equivalent (by [23, Lemma 6.7]) to the one given in [23].

Definition A.2. We adopt the conventions of Definition A.1. Let G be a filtered nilpotent group
of degree s. A function g : Z → G is a polynomial sequence if there exist elements gi ∈ Gi for
i = 0, . . . , s such that

g(n) = g0g
(n1)
1 · · · g(

n
s)

s ,

where
(n
i

)
= 1

i!

∏i−1
j=0(n− j), for all n ∈ Z

We will denote the set of polynomial sequences g : Z → G relative to the filtration G• of G by
Poly(Z, G•). It turns out that Poly(Z, G•) is a group under the natural multiplication of sequences–
this is due to Lazard [29] and Leibman [30,31].

We will also require the definition of rational points, sequences, and subgroups.

Definition A.3. We adopt the conventions of Definition A.1. We say that γ ∈ G is Q-rational if
there exists an integer 0 < r ≤ Q such that γr ∈ Γ. A Q-rational point in G/Γ is any point of the
form γΓ for some γ ∈ G that is Q-rational. A sequence (γ(n))∞n=1 in G is Q-rational if all elements
in the sequence are Q-rational.

Finally, we say a closed connected subgroup G′ of G is Q-rational relative to X if its Lie algebra
g′ is spanned by linear combinations of the form

∑
i∈[m] aiXi with a1, . . . , am ∈ Q all of height at

most Q.

Now we can define Mal’cev coordinates, the explicit metrics on G and G/Γ used in our work,
and the precise definition of the Lipschitz norm of functions on G/Γ. These definitions are exactly
as in [23, Appendix A].

Definition A.4. We adopt the conventions of Definition A.1. Given a Mal’cev basis X and g ∈ G,
there exists (u1, . . . , um) ∈ Rm such that

g = exp(u1X1) · · · exp(umXm),

and we define the Mal’cev coordinates ψ = ψX : G→ Rm for g relative to X by

ψ(g) := (u1, . . . , um).

We then define a metric d = dX on G by

d(x, y) :=

{ n∑

i=1

min(|ψ(xix−1
i+1)|, |ψ(xi+1x

−1
i )|) : n ∈ N, x1, . . . , xn+1 ∈ G,x1 = x, xn+1 = y

}
,

where | · | denotes the ℓ∞-norm on Rm, and define a metric on G/Γ by

d(xΓ, yΓ) = inf
γ,γ′∈Γ

d(xγ, yγ′).
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Furthermore, for any function F : G/Γ → C, we define

‖F‖Lip := ‖F‖∞ + supx,y∈G/Γ
x 6=y

|F (x)− F (y)|
d(x, y)

.

We now define the notion of equidistribution of a sequence on G/Γ which we will require.

Definition A.5. Given a length N , a sequence (g(n)Γ)n∈Γ is δ-equidistributed if for all Lipschitz
functions F : G/Γ → C we have that

∣∣∣∣En∈[N ]F (g(n)Γ) −
∫

G/Γ
F

∣∣∣∣ ≤ δ‖F‖Lip.

We will require the notion of a horizontal character and the notion of a function F having a
vertical frequency; our definitions are exactly as in [23, Definitions 1.5, 3.3, 3.4, 3.5].

Definition A.6. Given a filtered nilmanifold G/Γ, the horizontal torus is defined to be

(G/Γ)ab := G/[G,G]Γ.

A horizontal character is a continuous homomorphism η : G→ T that annihilates Γ; such characters
may be equivalently viewed as characters on the horizontal torus. A horizontal character is nontrivial
if it is not identically zero.

Furthermore, if the nilmanifold G/Γ has degree s, the vertical torus is defined to be

Gs/(Gs ∩ Γ).

A vertical character is a continuous homomorphism ξ : Gs → T that annihilates Γ ∩ Gs. Setting
ms = dimGs, one may use the last ms coordinates of the Mal’cev coordinate map to identify Gs and
Gs/(Gs ∩ Γ) with Rms and Rms/Zms , respectively. Thus, we may identify any vertical character ξ
with a unique k ∈ Zms such that ξ(x) = k · x under this identification Gs/(Γ ∩ Gs) ∼= Rms/Zms .
We refer to k as the frequency of the character ξ, we write |ξ| := ‖k‖∞ to denote the magnitude of
the frequency ξ, and say that a function F : G/Γ → C has a vertical frequency ξ if

F (gs · x) = e(ξ(gs))F (x)

for all gs ∈ Gs and x ∈ G/Γ.

Finally, we will require the definition of the smoothness norm of a polynomial sequence Z → T.

Definition A.7. Any polynomial sequence g : Z → T can be expressed uniquely as

g(n) =

d∑

i=0

αi

(
n

i

)

with α0, . . . , αd ∈ T [49, Exercise 1.6.11]. We then define

‖g‖C∞[N ] := max
1≤j≤d

N j‖αj‖T.

We will need the fact that any Lipschitz function of a nilsequence can be well-approximated by
a sum of vertical characters. The statement we require is, essentially, [33, Lemma A.6]; our proof
closely follows [23, Lemma 3.7], given a sufficiently explicit estimate for approximating functions on
the torus as a sum of characters. We provide a proof below, as the statement in [33, Lemma A.6]
has several typos. To give the proof, we require a version of Fourier expansion on the torus, which
we will obtain by quantifying the proof of [49, Proposition 1.1.13] (or [20, Lemma A.9]).
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Lemma A.8. Fix 0 < ε < 1/2, and let F : Td → C with ‖F‖Lip ≤ L, where, for x, y ∈ Td, we
have d(x, y) = max1≤i≤d‖xi − yi‖T. There exists an absolute constant C = CA.8 > 0 such that we
can write

F (x) =
∑

|ξ|≤(CLdε−1)2

cξe(ξ · x) + F̃ (x)

for a choice of F̃ , cξ with ‖F̃‖∞ ≤ ε and
∑

ξ |cξ| ≤ (3CLdε−1)5d.

Proof. Let R ≥ 1 be a integer cutoff parameter to be chosen later and define

FR(x) :=
∑

k∈Zd

RdµR(k)F̂ (k)e(k · x),

recalling the definition (2.1) of µR. It is a basic fact from Fourier analysis that

FR(x) =

∫

Td

F (y)KR(x− y)dy,

where

KR(y) =
d∏

i=1

1

R

(
sin(πRyi)

sin(πyi)

)2

=
d∏

i=1


 ∑

|h|≤R

(
1− |h|

R

)
e(hyi)


 .

Noting that
∫
Td KR(y)dy = 1,

1

R

(
sin(πRyi)

sin(πyi)

)2

≤ C0
R

(1 +R‖yi‖T)2
for some absolute constant C0 > 0, and F is L-Lipschitz, we get

‖F − FR‖∞ ≤ sup
x∈Td

∫

Td

|F (x) − F (y)| ·KR(x− y) dy

≤ L sup
x∈Td

∫

Td

max
1≤i≤d

‖xi − yi‖T ·KR(x− y) dy

≤ L sup
x∈Td

∫

Td

∑

1≤i≤d

‖xi − yi‖T ·KR(x− y) dy

≤ Ld

∫

T

‖y‖T · 1
R

(
sin(πRy)

sin(πy)

)2

dy ≤ C
Ld√
R

for some absolute constant C > 0. The result follows by taking R = ⌈(CLdε−1)2⌉, noting that

‖F̂‖∞ ≤ L, µR(k) ≤ R−d, and that µR(k) is supported on k ∈ Zd such that ‖k‖∞ ≤ R. �

We now extend this result to general filtered nilmanifolds by using Fourier analysis on the final
nontrivial group of the filtration, Gs.

Lemma A.9. Fix 0 < ε < 1/2, let G/Γ be a filtered nilmanifold of dimension m, degree s, and
complexity at most K, and let F : G/Γ → C satisfy ‖F‖Lip ≤ L. Then one may represent

F (x) =
∑

|ξ|≤polym(LKε−1)

Fξ(x) +G(x),

with

(1) ‖G‖∞ ≤ ε;
(2) Fξ has vertical frequency ξ; and
(3) Fξ has Lipschitz norm bounded by polym(LKε−1).

37



Remark. The bounds in this specific lemma could likely be substantially improved with a more
careful treatment.

Proof. The proof follows exactly as in [23, Lemma 3.7] (with the quantification as suggested by [50])
so we will be brief with details. Let R ≥ 1 be an integer cutoff and let KR denote the same kernel
as in the proof of Lemma A.8. Define

F1(y) :=

∫

Rms/Zms

F (Θy)KR(Θ) dΘ

where we have identified the last group in the filtration with Rms/Zms for the appropriate integer
ms ≤ m (and therefore Θy makes sense for y ∈ G/Γ, explicitly defined as ψ−1

X (Θ∗)y where Θ∗ is 0
in the first m−ms coordinates and Θ in the final ms). Fourier expansion in Rms/Zms gives that

F1(y) :=
∑

k∈Zms

F∧(y; k)(RmsµR(k))

where

F∧(y; k) :=
∫

Rms/Zms

F (Θy)e(−k ·Θ) dΘ.

The estimates from Lemma A.8 now complete the proof, noting that metric on G/Γ when descended
to the torus is polym(K)-equivalent to the standard metric on Rms/Zms . �

Appendix B. Circle method estimates

The material within this appendix consists of standard circle method computations, aside from
proving an L∞-comparison estimate between certain W -tricked quadratic Gauss sums and the
Fourier transform of an interval. This comparison is essentially contained within the work of Brown-
ing and Prendiville [9].

B.1. L6-bound on the Fourier transform. We first require a log-free variant of Weyl’s inequality
(see [20, Lemma A.11]).

Lemma B.1 (Weyl’s inequality). There exists an absolute constant C = CB.1 > 0 such that the
following holds. Let α, β ∈ T, δ ∈ (0, 1), and let I be an interval in Z. If

∣∣∣∣
∑

y∈I
e(αy2 + βy)

∣∣∣∣ ≥ δ|I|,

then either |I| ≤ Cδ−C or there is a positive integer q ≤ Cδ−C such that

‖qα‖ ≤ Cδ−C |I|−2.

We next require the following basic estimate regarding exponential sum estimates, which is based
on [37, Chapter 4].

Lemma B.2. Let W and P be as in (2.2) with W ≤ N and, for r ∈ [W ], define

Pr(y) =
P (Wy + r)− P (r)

W
.

We have that

sup
r∈[W ]

∫ 1

0

∣∣∣∣
∑

x∈[±N ]

e(ΘPr(x))

∣∣∣∣
4

dΘ ≪ N2 · exp
(
O

(
logN

log logN

))
.
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Proof. Fix r ∈ [W ]; the proof will trivially give a bound uniform in r. Let s(d) = {(x, y) ∈
J × J : Pr(x) − Pr(y) = d}. Since |Pr(x) − Pr(y)| ≤ N4 (say) for x, y ∈ [±N ], we have s(d) = 0
for |d| ≥ N4. Furthermore, note that Pr(x)−Pr(y) = (x− y)(W 2(x+ y) + (2Wr+ 1)). Therefore,
s(0) ≤ 2(2N + 1) and, for d 6= 0, the divisor bound implies

|s(d)| ≤ exp

(
O

(
logN

log logN

))
.

By definition, ∑

d∈Z
s(d) = (2N + 1)2.

Therefore,
∫ 1

0

∣∣∣∣
∑

x∈[±N ]

e(ΘPr(x))

∣∣∣∣
4

dΘ =

∫ 1

0

(∑

y∈Z
s(y)e(yΘ)

)2

dΘ =
∑

d∈Z
s(d)s(−d)

≤ s(0)2 +
(

max
d∈Z\{0}

s(d)
)∑

d∈Z
s(d) ≪ N2 · exp

(
O

(
logN

log logN

))
. �

We next record various basic properties of (generalized composite) Gauss sums. Several of these
properties are recorded in [6, Exercise 12,23].

Lemma B.3. Define

G(a, b, c) =
c−1∑

n=0

e

(
an2 + bn

c

)
.

We have the following set of properties:

• If gcd(c, d) = 1 then

G(a, b, cd) = G(ac, b, d)G(ad, b, c);

• If gcd(a, c) > 1 then G(a, b, c) = 0 unless gcd(a, c)|b. In this case, it follows that

G(a, b, c) = G

(
a

gcd(a, c)
,

b

gcd(a, c)
,

c

gcd(a, c)

)
;

• If gcd(a, c) = 1 and gcd(c, 2) = 1 then

|G(a, b, c)| =
√
c;

• If c = 2k for k ≥ 1, gcd(a, c) = 1, and b is even then

|G(a, b, c)| ≤ 2
√
c.

Note that these relations can be used to determine a bound on the magnitude of any composite
Gauss sum. We can use the first relation to decompose into prime power moduli c and the second
relation to reduce to gcd(a, c) = 1; the third deals with odd prime powers and the final one with
even prime powers.

Now for the remainder of this appendix, we say Θ is in the major arcs M if there exists 0 ≤ q1 <
q2 ≤ N ε such that ∣∣∣∣Θ− q1

q2

∣∣∣∣ ≤ N−2+ε

for a small constant ε > 0 to be chosen later. Set m = T \M to be the minor arcs.
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Lemma B.4. There exists εB.4 > 0 such that the following holds. Let 0 < ε < εB.4 and 0 < δ ≤
δB.4(ε). Furthermore, suppose that W and Pr(·) are as in Lemma B.2 and with W ≤ N δ. Then,
we have

sup
r∈[W ]

∫

m

∣∣∣∣
∑

x∈[±N ]

e(ΘPr(x))

∣∣∣∣
6

dΘ ≪ε,δ N
4−δ

and

sup
Θ∈m
r∈[W ]

∣∣∣∣
∑

x∈[±T ]

e(ΘPr(x))

∣∣∣∣ ≪ε,δ N
1−δ.

Proof. We take 0 < δ ≪ ε to be chosen later. Let f(Θ) be the expression inside the supremum. By
Lemma B.1, for Θ ∈ m we have |f(Θ)| ≪ε,δ N

1−δ. Indeed, if not then we must have ‖qW 2α‖ ≪
NCδN−2 for some q ≪ NCδ (and appropriate C), noting that the first coefficient of Pr is W 2. If
δ is small enough, this violates the definition of the minor arcs. This proves the second desired
inequality.

For the first, applying Lemma B.2 and using the above bound we find
∫

m

|f(Θ)|6 dΘ ≤
∫

T

|f(Θ)|4 dΘ · sup
Θ∈m

|f(Θ)|2

≪ε,δ N
2 · exp

(
O

(
logN

log logN

))
· (N1−δ)2

≪ N4−δ/2. �

We now handle the major arcs. Note that, without loss of generality, either (q1, q2) = (0, 1) or
gcd(q1, q2) = 1 and 1 ≤ q1 < q2 ≤ N ε. Furthermore, given that ε < 1/4 (say), the arcs

Mq1,q2 :=

{
Θ:

∣∣∣∣Θ− q1
q2

∣∣∣∣ ≤ N−2+ε

}

for such (q1, q2) are disjoint. We now state the major arc asymptotic for exponential sums of Pr(x);
as this material is completely standard, we omit the proof.

Lemma B.5. There exists ε = εB.5 such that the following holds. If 0 < ε < εB.5, Θ ∈ Mq1,q2,
and W , Pr(·) are as in Lemma B.2 with W ≤ N ε, and Θ∗ = Θ− q1

q2
, then

∑

x∈[±N ]

e(ΘPr(x)) = q−1
2 G(W 2q1, (2Wr + 1)q1, q2)

∫ N

−N
e(Θ∗ ·W 2x2) dx+O

(
N1/2

)
.

We also need the following elementary fact proven via integration by parts.

Lemma B.6. We have ∣∣∣∣
∫ γ

−γ
e(x2) dx

∣∣∣∣ ≪ min(|γ|, 1).

Proof. By negation symmetry and the triangle inequality it suffices to assume that γ ≥ 2. Now
∣∣∣∣
∫ γ

−γ
e(x2) dx

∣∣∣∣ ≤
∣∣∣∣
∫ 1

−1
e(x2) dx

∣∣∣∣+ 2

∣∣∣∣
∫ γ

1
e(x2) dx

∣∣∣∣

≤ 2 + 4 sup
t≥1

∣∣∣∣
∫

x≥t
e(x2) dx

∣∣∣∣ = 2 + 4 sup
t≥1

∣∣∣∣
∫ ∞

t2

e(x)

2
√
x
dx

∣∣∣∣

≤ 2 + 4 sup
t≥1

∣∣∣∣
e(t2)

4πit

∣∣∣∣+ 4

∣∣∣∣
∫ ∞

t2

e(x)

8πix3/2
dx

∣∣∣∣ ≪ 1. �
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We now in position to derive the necessary L6-bound; this is essentially an exercise in bounding
certain integrals and quadratic Gauss sums.

Lemma B.7. There exists εB.7 > 0 such that the following holds. Let 0 < ε < εB.7 and 0 < δ ≤
δB.7(ε). Furthermore, suppose that W and Pr(·) are as in Lemma B.2 and with W ≤ N δ. We have

sup
r∈[W ]

∫

T

∣∣∣∣
∑

x∈[±N ]

e(ΘPr(x))

∣∣∣∣
6

dΘ ≪ N4W−2,

where the implied constant is absolute.

Proof. Choosing εB.7 sufficiently small and using Lemmas B.4 and B.5, it suffices to prove that

(
G(0, 0, 1)6 +

∑

1≤q1<q2≤nε

gcd(q1,q2)=1

(q−1
2 G(W 2q1, (2Wr + 1)q1, q2))

6

)
·
∫ N−2+ε

−N−2+ε

∣∣∣∣
∫ N

−N
e(Θ∗ ·W 2x2) dx

∣∣∣∣
6

dΘ∗

is bounded as in the statement of the lemma. Note that, as gcd(W 2, 2Wr+1) = 1 and gcd(q1, q2) =
1, we have |G(W 2q1, (2Wr + 1)q1, q2)| ≤ 4

√
q2 using Lemma B.3, and thus the first term is seen

to be bounded by a constant. The required bound on the other term, the integral, follows from
Lemma B.6: we obtain after change of variables the bound

∣∣∣∣
∫ N

−N
e(Θ∗W 2x2) dx

∣∣∣∣ ≪ min{N, (Θ∗)−1/2W−1}

whose 6-th power integrates to O(N4W−2), as desired. �

B.2. L∞-comparison estimate.

Lemma B.8. There exists ε = εB.8 > 0 such that the following holds. Let N ≥ 1 and W,w be as
in (2.2) with |W | ≤ N ε. Furthermore, define

ν∗(d) = (NW )1/2 · 1[d ∈ {P (k) : k ∈ Z} ∩ [N ]]

and

ν(d) =

√
N

d
11≤d≤N .

Then, we have

sup
Θ∈T
k∈[W ]

∣∣∣∣
∑

d∈Z
e(dΘ)(ν∗(Wd+ k)− ν(Wd+ k))

∣∣∣∣ ≪
N

W
√
w
.

Proof. Unwinding the definitions and noting that W is sufficiently small, it suffices to prove that

sup
Θ∈T
k∈[W ]

∣∣∣∣
∑

|d|≤N1/2W−3/2

(NW )1/2e(P (Wd+ k∗)Θ)−
∑

1≤d≤NW−1

√
N

Wd
e((Wd+ k)Θ)

∣∣∣∣ ≪
N

W
√
w

with k∗ ∈ [W ] the unique choice (due to Proposition 6.5) such that P (k∗) ≡ k mod W . Replacing
N by NW , it suffices to prove that

sup
Θ∈Z
k∈[W ]

∣∣∣∣
∑

|d|≤N1/2W−1

N1/2We(P (Wd+ k∗)Θ)−
∑

1≤d≤N

√
N

d
e((Wd+ k)Θ)

∣∣∣∣ ≪
N√
w
.
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Consider potential Θ, k which do not satisfy this. We first consider the second summation. By
summing a geometric series, we find that
∣∣∣∣

∑

1≤d≤N

√
N

d
exp((Wd+ k)Θ)

∣∣∣∣ =
∣∣∣∣

∑

1≤d≤N

√
N

d
exp((Wd)Θ)

∣∣∣∣

≪
∑

1≤t≤N−1

(√
N

t
−

√
N

t+ 1

)∣∣∣∣
∑

1≤d≤t

e(dWΘ)

∣∣∣∣+
∣∣∣∣

∑

1≤d≤N

exp(dWΘ)

∣∣∣∣

≪ 1

‖WΘ‖T
+

∑

1≤t≤N

N1/2t−3/2 min

(
t,

1

‖WΘ‖T

)

≪ 1

‖WΘ‖T
+

N1/2

‖WΘ‖1/2
T

.

This is smaller than N√
w

unless ‖WΘ‖T ≤ w/N . Now we consider the first summation. Using a

version of Weyl’s inequality that accounts for the linear coefficient (see, e.g., [23, Proposition 4.3]),
we have that if ∑

|d|≤N1/2W−1

N1/2We(P (Wd+ k∗)Θ) ≫ N√
w
,

then there exists q ≤ wO(1) such that

‖q ·W 3Θ‖T ≤ wO(1)W 2

N
, ‖q · (2W 2k∗ +W )Θ‖T ≤ wO(1)W

N1/2
.

As W is sufficiently small and gcd(2Wk∗ + 1,W ) = 1, we can see that it suffices to handle Θ such

that there exists q′ ≤ wO(1) for which

‖q′ ·WΘ‖T ≤ wO(1)

N
.

Indeed, one can use argumentation similar to that appearing in the proof of Proposition 5.6. (Note
that both the first and second sums being large implies this condition.)

For such Θ, we may write WΘ = q1
q2
+Θ∗ with |Θ∗| ≤ wO(1)

N where q2 ≤ wO(1) and gcd(q1, q2) = 1.

We now have∑

|d|≤N1/2W−1

N1/2We(P (Wd+ k∗)Θ)

= exp(kΘ) ·
∑

|d|≤N1/2W−1

N1/2We

(
(WΘ)

(
P (Wd+ k∗)− P (k∗)

W

)
+
P (k∗)− k

W
·WΘ

)

= exp

(
kΘ+

q1 · (P (k∗)− P (k))

q2W

) ∑

|d|≤N1/2W−1

N1/2We((WΘ)(W 2d2 + (2Wk∗ + 1)d)) +O
(
N1/2

)
.

Now using the major arc bounds in Lemma B.5, and noting that q−1
2 G(W 2q1, (2Wk∗+1)q1, q2) =

0 if gcd(q2,W ) > 1, the above sum is bounded by N1−Ω(1) in this case. Furthermore, if q2 6= 1
and gcd(q2,W ) = 1, then q2 has a prime factor larger than w, and therefore q−1

2 G(W 2q1, (2Wk∗ +
1)q1, q2) ≪ w−1/2 and the sum becomes bounded by O((N1/2W )(N1/2W−1)w−1/2) = O(Nw−1/2).

Thus, it suffices to focus on the case where q2 = 1 and thus q1 = 0. Note that

sup

|Θ∗|≤wO(1)

N

∣∣∣∣
∑

|d|≤N1/2W−1

N1/2W

(
e(Θ∗(W 2d2 + (2Wk∗ + 1)d)) − e(Θ∗(W 2d2))

)∣∣∣∣ ≤ N3/4.
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Now that we have significantly reduced our initial situation of general Θ, k. To prove the lemma,
it now simply suffices to prove that

sup

|Θ∗|≤wO(1)

N

∣∣∣∣
∑

|d|≤N1/2W−1

N1/2We(Θ∗(W 2d2))−
∑

1≤d≤N

√
N

d
e(dΘ∗)

∣∣∣∣ ≪
N√
w
.

For |Θ∗| ≤ wO(1)/N , we have
∣∣∣∣

∑

|d|≤N1/2W−1

N1/2We(Θ∗(W 2d2))−
∑

1≤d≤N

√
N

d
e(dΘ∗)

∣∣∣∣

≤
∣∣∣∣

∑

1≤d≤N1/2W−1

2N1/2We(Θ∗(W 2d2))−
∑

1≤d≤N

√
N

d
e(dΘ∗)

∣∣∣∣+N3/4

≤
∑

1≤d≤N1/2W−1

∣∣∣∣2N1/2We(Θ∗(W 2d2))−
∑

W 2d2≤t≤W 2d2+2W 2d

√
N

t
e(tΘ∗)

∣∣∣∣+O
(
N4/5

)

≤
∑

1≤d≤N1/2W−1

∣∣∣∣2N1/2We(Θ∗(W 2d2))−
∑

W 2d2≤t≤W 2d2+2W 2d

√
N

W 2d2
e(W 2d2Θ∗)

∣∣∣∣+O
(
N4/5

)

≤
∑

1≤d≤N1/2W−1

∣∣∣∣2N1/2W − (2W 2d+ 1)

√
N

W 2d2

∣∣∣∣+O
(
N4/5

)
≪ N4/5,

as desired. �

Appendix C. Miscellaneous estimates

In this appendix, we prove a variety of miscellaneous estimates largely concerning changing the
parameters of the Uk-norms. We first require the following elementary inequality.

Fact C.1. For all positive integers k ≥ 1, we have that

| sin(kx)| ≤ k| sinx|.

Proof. We proceed by induction; the result is trivial for k = 1. For the inductive step, note that

| sin((j + 1)x)| ≤ | sin(jx) cos x+ sinx cos jx| ≤ | sin(jx)| + | sin(x)| ≤ (j + 1)| sin x|. �

We now prove a lemma saying that the Uk-norms behave well with respect to rescaling the width.

Lemma C.2. Given a function f : Z → C with finite support, subsets of integers Q1, . . . , Qk−1,
and positive integers L1, L2 such that L2 | L1, we have

‖f‖2k
�k

Q1,...,Qk−1,[L1]
≤ ‖f‖2k

�k
Q1,...,Qk−1,[L2]

.

Proof. We first reduce to the case k = 1. Consider expanding the box-norm; note that

‖f‖2k
�k

�Q1,...,Qk−1,[L]

= Ehi,h′
i∈Qi

‖∆′
(hi,h′

i)i∈[k−1]
f‖2U1

[L]

for L ∈ {L1, L2}. Therefore it suffices to prove that
∑

x∈Z
Eh,h′∈[L1]∆

′
h,h′f(x) ≤

∑

x∈Z
Eh,h′∈[L2]∆

′
h,h′f(x).
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Set WLi(x) = 10<x≤Li/Li, and note that
∑

x∈Z
Eh,h′∈[Li]∆h,h′f(x) =

∑

x,h,h′∈Z
f(x+ h)f(x+ h′)WLi(h)WLi(h

′)

=

∫ 1

0
|f̂(Θ)|2|ŴLi(Θ)|2 dΘ =

∫ 1/2

−1/2
|f̂(Θ)|2

(
sin(LiπΘ)

Li sin(πΘ)

)2

dΘ.

Applying Fact C.1 with k = L1/L2 yields
∫ 1/2

−1/2
|f̂(Θ)|2

(
sin(L1πΘ)

L1 sin(πΘ)

)2

dΘ ≤
∫ 1/2

−1/2
|f̂(Θ)|2

(
sin(L2πΘ)

L2 sin(πΘ)

)2

dΘ,

as desired. �

We next prove the analogous inequality with respect to rescaling the difference parameters within
the Uk-norm.

Lemma C.3. Given an integer k ≥ 1, there exists Ck = CC.3(k) > 0 such that the following holds.
Given a 1-bounded function f : Z → C such that supp(f) ⊆ [±N ], subsets of integers Q1, . . . , Qk−1

each contained in [±N ], and positive integers L1, L2 such that N ≥ L1 ≥ 2L2, we have

‖f(x)‖2k
�k

Q1,...,Qk−1,[L1]
≤ ‖f(x)‖2k

�k
Q1,...,Qk−1,L2·[L1/L2]

+O

(
CkN · L2

L1

)

Proof. One can reduce to the case k = 1 as in Lemma C.2. It, therefore, suffices to prove that

∑

x∈Z
Eh,h′∈[L1]∆h,h′f(x) ≤

∑

x∈Z
Eh,h′∈L2·[L1/L2]∆h,h′f(x) +O

(
N · L2

L1

)
.

Via a direct Fourier-analytic computation, we have

∑

x∈Z
Eh,h′∈[L1]∆

′
h,h′f(x) =

∫ 1/2

−1/2
|f̂(Θ)|2

(
sin(L1πΘ)

L1 sin(πΘ)

)2

dΘ

and
∑

x∈Z
Eh,h′∈L2·[L1/L2]∆

′
h,h′f(x) =

∫ 1/2

−1/2
|f̂(Θ)|2

(
sin(⌊L1/L2⌋π(L2Θ))

⌊L1/L2⌋ sin(L2πΘ)

)2

dΘ.

Using Fact C.1 in the denominator, we have
(
sin(L1πΘ)

L1 sin(πΘ)

)2

≤
(
L2 sin(L1πΘ)

L1 sin(L2πΘ)

)2

.

Next, note that
∣∣∣∣
(
L2 sin(L1πΘ)

L1 sin(L2πΘ)

)2

−
(
sin(⌊L1/L2⌋π(L2Θ))

⌊L1/L2⌋ sin(L2πΘ)

)2∣∣∣∣

≤ 2L2|πΘ|
| sin(L2πΘ)|2 ·

∣∣∣∣
L2 sin(L1πΘ)

L1
− sin(⌊L1/L2⌋π(L2Θ))

⌊L1/L2⌋

∣∣∣∣

≪ L2|πΘ|
| sin(L2πΘ)|2 ·

(
L2
2|Θ|
L1

)
≪ L3

2|Θ|2
L1| sin(L2πΘ)|2 .

Therefore, it follows that

∑

x∈Z
Eh,h′∈[L1]∆

′
h,h′f(x) =

∫ 1/2

−1/2
|f̂(Θ)|2

(
sin(L1πΘ)

L1 sin(πΘ)

)2

dΘ
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=

∫ 1/(4L2)

−1/(4L2)
|f̂(Θ)|2

(
sin(L1πΘ)

L1 sin(πΘ)

)2

dΘ+O

(
N · L2

2

L2
1

)

≤
∫ 1/(4L2)

−1/(4L2)
|f̂(Θ)|2

((
sin(⌊L1/L2⌋π(L2Θ))

⌊L1/L2⌋ sin(L2πΘ)

)2

+O

(
L3
2|Θ|2

L1| sin(L2πΘ)|2
))

dΘ +O

(
N · L2

2

L2
1

)

≤
∑

x∈Z
Eh,h′∈L2·[L1/L2]∆

′
h,h′f(x) +O

(
N · L2

L1

)
,

as desired. �

We will also require the following version of U2-inverse theorem, which appears as [40, Lemma 2.4].

Lemma C.4 ([40, Lemma 2.4]). Let N ≥ 1 and f : Z → C be 1-bounded such that supp(f) ⊆ [N ].
If

‖f‖4U2
[δ′N]

≥ δN

then

sup
β∈T

∣∣∣∣
∑

x∈Z
e(βx)f(x)

∣∣∣∣ ≫ (δδ′)O(1)N.

We also have the following well-known converse to the U2-inverse theorem. We include the proof,
as our definition of the U2-norm is slightly nonstandard.

Lemma C.5. Let f : Z → C be a 1-bounded function with supp(f) ⊆ [δ−1N ]. If N ≫ δ−O(1) and

sup
β∈T

∣∣∣∣
∑

x∈Z
e(βx)f(x)

∣∣∣∣ ≥ δN

then

‖f‖4U2
[N]

≫ δO(1)N.

Proof. By adjusting implicit constants, we may assume that δ is smaller than an absolute constant
throughout. Let β be such that ∣∣∣∣

∑

x∈Z
e(βx)f(x)

∣∣∣∣ ≥ δN

and define f (1)(x) = f(x)e(βx). Note that

‖f‖4U2
[N]

=
∑

x∈Z
Eh1,h′

1∈[N ]
h2,h′

2∈[N ]

f(x+ h1 + h2)f(x+ h1 + h′2)f(x+ h′1 + h2)f(x+ h′1 + h′2)

=
∑

x∈Z
Eh1,h′

1∈[N ]
h2,h′

2∈[N ]

f (1)(x+ h1 + h2)f (1)(x+ h1 + h′2)f
(1)(x+ h′1 + h2)f

(1)(x+ h′1 + h′2)

=
∑

x∈Z
1|x|≤5δ−1NEh1,h′

1∈[N ]

∣∣∣∣Eh2∈[N ]f
(1)(x+ h1 + h2)f (1)(x+ h′1 + h2)

∣∣∣∣
2

≥
(∑

x∈Z
1|x|≤5δ−1NEh1,h′

1∈[N ]

∣∣∣∣Eh2∈[N ]f
(1)(x+ h1 + h2)f (1)(x+ h′1 + h2)

∣∣∣∣
)2

·
(∑

x∈Z
1|x|≤5δ−1NEh1,h′

1∈[N ]1

)−1
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≫ δN−1

∣∣∣∣
∑

x∈Z
1|x|≤5δ−1NEh1,h′

1∈[N ]Eh2∈[N ]f
(1)(x+ h1 + h2)f (1)(x+ h′1 + h2)

∣∣∣∣
2

= δN−1

∣∣∣∣
∑

x∈Z
Eh1,h′

1∈[N ]f
(1)(x+ h1)f (1)(x+ h′1)

∣∣∣∣
2

= δN−1

(∫

T

|f̂ (1)(Θ)|2 ·
(
sin(NΘ/2)

N sin(Θ/2)

)2

dΘ

)2

≫ δO(1)N,

where, by construction, |f̂ (1)(0)| ≥ δN , and therefore |f̂ (1)(Θ)| ≥ δN/2 for |Θ| ≤ δ4N−1. �

By writing the 2k-th power of the Uk-norm for k ≥ 2 as the sum of the 4-th powers of U2-norms
of differenced functions and applying Lemmas C.2, C.4, and C.5, and then iterating, we thus deduce
the following rescaling inequality for the Uk-norm.

Corollary C.6. Fix an integer k ≥ 2. Let f : Z → C is 1-bounded such that supp(f) ⊆ [N ],

N ≥ δ−Ok(1), and

‖f‖2k
Uk
[δN]

≥ δN.

Then if δ′ ∈ [δ, δ−1], we have

‖f‖2k
Uk
[δ′N]

≫ δOk(1)N.

We next require the elementary fact that if a 1-bounded function correlates with an exponential
phase on a arithmetic progression of a positive density, this may be extended to the full interval
with only polynomial loss. This is essentially [24, Lemma 3.5(ii)] or [2, Proposition A.4]; we provide
a proof for completeness.

Lemma C.7. Suppose that f : Z → C is a 1-bounded function such that supp(f) ⊆ [±N ], N ≥
δ−O(1), and there exists an arithmetic progression P contained in [N ] such that

sup
β∈T

∣∣∣∣
∑

x∈P
e(βx)f(x)

∣∣∣∣ ≥ δN.

Then,

sup
β∈T

∣∣∣∣
∑

x∈Z
e(βx)f(x)

∣∣∣∣ ≫ δO(1)N.

Proof. Since f is 1-bounded, P must have length at least δN . Therefore, 1P (x) = 1q|(x−a)1I(x) for

an interval I of length at least δN and 0 ≤ a < q ≤ δ−1. Let

P2 = 1P ∗
(
1q|x1[δ3N ](x)

q−1 · δ3N

)
.

By construction, there exists β ∈ T such that∣∣∣∣
∑

x∈Z
P2(x)e(βx)f(x)

∣∣∣∣ ≥ 2−1δN.

Therefore, letting fβ(x) = e(βx)f(x) and taking the Fourier transform, we have

2−1δN ≤ sup
β∈T

∣∣∣∣
∑

x∈Z
P2(x)e(βx)f(x)

∣∣∣∣ = sup
β∈T

∣∣∣∣
∫

T

P̂2(Θ) · f̂β(Θ) dΘ

∣∣∣∣

≤ sup
β∈T
Θ∈T

|f̂β(Θ)| ·
∫

T

|P̂2(Θ)| dΘ ≪ δ−O(1) sup
β∈T
Θ∈T

|f̂β(Θ)|

46



≪ δ−O(1) sup
β∈T

∣∣∣
∑

x∈Z
e(βx)f(x)

∣∣∣,

where we bound the L1-norm of P̂2(Θ) by using the Cauchy–Schwarz inequality. �

Analogously to Corollary C.6, by writing the 2k-th power of the Uk-norm for k ≥ 2 as the sum of
4-th powers of the U2-norms of differenced functions, and applying Lemmas C.2, C.4, C.5, and C.7
and then iterating, we thus deduce another rescaling inequality for the Uk-norm.

Corollary C.8. Fix an integer k ≥ 2. Let L ≤ δ−1, f : Z → C be 1-bounded such that supp(f) ⊆
[±N ], and N ≥ δ−Ok(1). If

‖f‖2k
Uk
L·[δN/L]

≥ δN,

then
‖f‖2k

Uk
[δN]

≫ δOk(1)N.

Department of Mathematics, University of Michigan, East Hall, 530 Church Street, Ann Arbor,

MI 48109, USA

Email address: speluse@umich.edu

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue,

Cambridge, MA 02139, USA

Email address: {asah,msawhney}@mit.edu

47


	1. Introduction
	Acknowledgments

	2. Notation and key definitions
	3. Proof sketch
	3.1. Organization of the paper

	4. Control for LambdaModel
	5. Nilmanifold considerations
	5.1. Leibman group considerations
	5.2. Factorization result

	6. Degree-lowering
	6.1. U2-control for Sárközy-type configurations
	6.2. Dual-difference interchange
	6.3. Hensel's lemma
	6.4. Completing the proof of Proposition 6.1

	7. Proof of Theorem 1.1
	7.1. Initial Us-norm control and degree-lowering output
	7.2. Completing the proof

	References
	Appendix A. Conventions regarding nilsequences and effective equidistribution
	Appendix B. Circle method estimates
	B.1. L6-bound on the Fourier transform
	B.2. Linfinity-comparison estimate

	Appendix C. Miscellaneous estimates

