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A TOOLKIT FOR ROBUST THRESHOLDS

HUY TUAN PHAM, ASHWIN SAH, MEHTAAB SAWHNEY, AND MICHAEL SIMKIN

Abstract. Consider a host (hyper)graph G which contains a spanning structure due to minimum
degree considerations. We collect three results proving that when the edges of G are sampled
at the appropriate rate then the spanning structure still appears with high probability in the
sampled hypergraph. We prove such results for perfect matchings in dense hypergraphs above
Dirac thresholds, for Kr-factors above the Hajnal–Szemerédi minimum degree condition, and for
bounded-degree spanning trees. In each case our proof is based on constructing a spread measure
and then applying recent results on the (fractional) Kahn–Kalai conjecture connecting the existence
of such measures with an appropriate probabilistic threshold result. We note that our second result
provides a shorter and more general version of a recent result of Allen, Böttcher, Corsten, Davies,
Jenssen, Morris, Roberts, and Skokan which handles the case r = 3 with different techniques. In
particular, we answer a question of theirs with regards to the number of Kr-factors in a graph above
the Hajnal–Szemerédi minimum degree condition.

1. Introduction

A central pursuit in both random and extremal (hyper)graph theory is to determine thresholds
for various properties. In the random setting the natural question is to determine for which p = p(n)
the random graph G(n, p) satisfies a particular property with high probability.1 In the extremal
setting it is natural to consider the minimum-degree, or Dirac, threshold, i.e., for which d = d(n)
every n-vertex graph G with δ(G) ≥ d satisfies a particular property.

Prominent examples include thresholds for connectivity [11], for containing a fixed size subgraph
[12], for containing a perfect matching [13, 14, 21, 24, 29, 35, 44], for containing a Hamilton cycle
[10, 41], for Ramsey properties [17, 45], for containing a clique (or subgraph) factor [8, 20, 24], and
for containing a given bounded-degree spanning tree [31, 39].

One interpretation of probabilistic thresholds, suggested by Krivelevich, Lee, and Sudakov [34],
is as a measure of robustness. For example, Kn is extremely robust with respect to containing a
perfect matching since the threshold for this property in G(n, p) is log n/n. Below this density
w.h.p. isolated vertices, which are very simple local obstructions, begin to appear.

In this work we collect several results that exemplify the philosophy that if the minimum degree
of a hypergraph G is above the minimum-degree threshold for a particular property then it not
only satisfies the property but satisfies it robustly. That is, up to multiplicative constants, the
probabilistic threshold for the property does not depend on whether one considers subgraphs of G
or subgraphs of the complete hypergraph. We refer the reader to a survey of Sudakov [49] where a
number of previous results in this direction are collected.

In order to prove our results we take advantage of the recently established connection between so-
called spread measures and thresholds [18]. In fact, a second purpose of this paper is to demonstrate
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Program DGE-2141064. Simkin is supported by the Center of Mathematical Sciences and Applications at Harvard
University.

1A sequence of events, indexed by n, holds with high probability (w.h.p.) if the probabilities of their occurrence
tend to 1 as n → ∞.
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methods to construct such measures. The techniques we use are related to regularity, robust perfect
matchings, random greedy algorithms, and iterative absorption.

We prove robustness results in three settings: (i) the Dirac threshold for containing a perfect
matching in a k-uniform hypergraph, (ii) the Hajnal–Szemerédi minimum degree condition for
containing a Kr-factor, and (iii) the minimum degree condition for containing bounded-degree
spanning trees. It is worth mentioning that finding the probabilistic thresholds for these properties
in random subgraphs of the complete (hyper)graph were major open problems in the field. The
thresholds for (i) and (ii) were found by Johansson, Kahn, and Vu [24] and the threshold for (iii)
was found by Montgomery [39]. The fact that we are able to consider the minimum-degree setting
for all three in just one paper speaks to the strength of the spread-measure results in [18].

We remark that very recently Allen, Böttcher, Corsten, Davies, Jenssen, Morris, Roberts, and
Skokan [1] proved (ii) for r = 3, but without spread techniques and using techniques related to
Johansson–Kahn–Vu [24]. Results falling under (i) have been independently proved by Kang, Kelly,
Kühn, Osthus, and Pfenninger [28] using a similar strategy but with differences in implementation.
Additionally, for the Dirac threshold for (k − 1)-degrees, they prove a sharper “stability” version;
we refer to the discussion after Theorem 1.5 for more details.

The idea of using spread measures to bound thresholds comes from the fractional expectation
threshold vs. threshold conjecture of Talagrand [51] which was only recently established in a break-
through due to Frankston, Kahn, Narayanan, and Park [18]. We note that this result is a fractional
version of the Kahn–Kalai expectation threshold vs. threshold conjecture [25] and that the full con-
jecture, which implies the fractional version, was resolved in very recent work of Park and the
first author [40]. For our purposes, the crucial corollary is a connection between so-called spread
measures and thresholds.

Definition 1.1. Consider a finite ground set Z and fix a nonempty collection of subsets H ⊆ 2Z .
Let µ be a probability measure on H. For q > 0 we say that µ is q-spread if for every set S ⊆ Z:

µ ({A ∈ H : S ⊆ A}) ≤ q|S|.

For a finite set Z and p ∈ [0, 1] we denote by Z(p) the binomial distribution on subsets of Z where
each vertex is present with probability p, independently of the other vertices. For a hypergraph H
we abuse notation and write H(p) instead of E(H)(p), i.e., the binomial distribution on the edge
set of H.

Theorem 1.2 (From [18, Theorem 1.6]). There exists a constant C = C1.2 > 0 such that the

following holds. Consider a non-empty ground set Z and fix a nonempty collection of subsets H ⊆ 2Z .
Suppose that there exists a q-spread probability measure on H. Then Z(min(Cq log |Z|, 1)) contains
an element of H as a subset with probability 1− o|Z|→∞(1).

We note that given H ⊆ 2Z , determining the expectation-threshold or fractional expectation-
threshold is a difficult task in general. In particular, the fractional expectation-threshold is the
solution to a linear program with variables corresponding to the collection of subsets in H, which for
many applications is of exponential size. (The expectation-threshold is in general an integer linear
program.) Nevertheless, the results of [18,40] immediately imply several previously difficult results
including the threshold for containing a perfect matching in a random hypergraph (due to Johansson,
Kahn, and Vu [24]) or containing a given bounded-degree spanning tree in a random graph (due to
Montgomery [39]). A crucial factor in these applications is that the uniform distribution has optimal
spread. This follows, for example, from the fact that vertex permutations act transitively on the
objects in question (see [18, Section 7]). In contrast, in the minimum-degree setting using vertex
permutations is a non-starter, and it is not obvious that the uniform distribution has sufficiently
small spread to find the thresholds. The focus of this work is on providing methods for constructing
spread measures in situations where one cannot rely on the “spread from vertex permutations”.
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A similar difficulty is present in work on the threshold for containing a Steiner triple system [27,
47], where the connection between spread and thresholds was exploited alongside other tools for
understanding Steiner systems and Latin squares.

We will now state each of our results (i-iii), outline their proofs, and discuss relations to existing
literature.

1.1. Dirac robustness in random hypergraphs. For a k-uniform hypergraph H and S ⊆ V (H),
let degH(S) be the number of hyperedges containing S. For 1 ≤ ℓ ≤ k let δℓ(H), the minimum
ℓ-degree of H, be the smallest degree of an ℓ-set in V (H).

Definition 1.3. For integers 1 ≤ ℓ ≤ k and n, with n ∈ kN, let t(n, k, ℓ) be the smallest d such that
every n-vertex k-uniform hypergraph with δℓ(H) ≥ d contains a perfect matching. The ℓ-degree
(Dirac) threshold for perfect matchings in k-uniform hypergraphs is

δ+ℓ,k := lim
n→∞
k|n

t(n, k, ℓ)( n
k−ℓ

) .

Remark 1. The existence of the limit in Definition 1.3 is not a priori clear but was proven as
[16, Theorem 1.2]. The actual value of δ+ℓ,k is known in only a few cases. For instance, it is an open

problem to find δ+1,k for k ≥ 5.

Furthermore, an immediate consequence of this definition is that for every 1 ≤ ℓ < k and ε > 0
there exists some nℓ,k,ε such that every k-uniform hypergraph H on n ≥ nℓ,k,ε vertices with k ∈ kN

and δℓ(H) ≥ (δ+ℓ,k + ε)
(

n
k−ℓ

)
contains a perfect matching.

Recall that Johansson, Kahn, and Vu [24] proved that the threshold for the appearance of perfect

matchings in G
(k)(n, p) is order log n/nk−1. We show that this holds more generally for binomial

random subgraphs of any hypergraph satisfying the minimum-degree condition above.

Definition 1.4. For a hypergraph H and p ∈ [0, 1], let H(p) a random hypergraph where each
hyperedge of H is retained with probability p, independently of all other choices.

Theorem 1.5. Let ε > 0 and k, ℓ ∈ N be fixed. There exists C = C1.5(ℓ, k, ε) such that the following

holds. Let H be an n-vertex hypergraph with k|n and δℓ(H) ≥ (δ+ℓ,k+ε)
( n
k−ℓ

)
. Then H(C log n/nk−1)

contains a perfect matching with high probability.

Remark 2. Kang, Kelly, Kühn, Osthus, and Pfenninger [28] independently proved Theorem 1.5.
Furthermore they prove that when ℓ = k − 1, the ε in the minimum degree, and thus also the
ε-dependence in the threshold, can be removed thereby providing a tight result in this case and in
particular providing a robust version of a result of Rödl, Ruciński, and Szemerédi [44].

Kang, Kelly, Kühn, Osthus, and Pfenninger also prove that Theorem 1.5 can be extended to
“optimal matchings” in cases when n/k /∈ Z; we note that our techniques also (immediately) extend
to such “optimal matchings”.

In terms of robustness for the Dirac degree threshold, for graphs a result of Sudakov and Vu
[50] shows that for p = ω(log n/n) any subgraph of G(n, p) with minimum degree (1/2 + o(1))np
has a perfect matching. This local resilience property is strictly stronger than the robustness of
Theorem 1.5 in the case (k, ℓ) = (2, 1) since such a “minimum-degree subgraph” can be specified
by intersecting the minimum degree host with the random graph G(n, p). It remains a problem
of substantial interest to derive any such resilient threshold (or closely related universality result)
from spread related techniques.

For hypergraphs, analogues of results of Sudakov–Vu [50] were proven by Ferber and Kwan

[16] for k-uniform hypergraphs where p & max{n−k/2+o(1), n−k+2 log n}. In particular, for G ∼
G

(k)(n, p) with p above the specified threshold, with high probability any G′ ⊆ G satisfying δℓ(G
′) ≥

3



(δ+ℓ,k + ε)
(n−ℓ
k−ℓ

)
p contains a perfect matching. (The case when ℓ = k− 1 was handled in earlier work

of Ferber and Hirschfeld [15].) Note that this result is nontrivial only when p = Ω(nℓ−k log n)
since otherwise one has δℓ(G) = 0 and there are no subgraphs satisfying the hypothesis of the
statement. This indicates a difference between the notion of robustness considered in our work and
the notion of local resilence considered in these previous works as the probabilistic ranges of interest
in Theorem 1.5 and [16, Conjecture 1.3] only coincide when ℓ = 1.

We now briefly outline the proof of Theorem 1.5; the short proof is given in Section 3. Fix integers
k > ℓ ≥ 1, ε > 0, and a hypergraph H satisfying the conditions of Theorem 1.5. By Theorem 1.2,
it suffices to construct an O(1/nk−1)-spread distribution on perfect matchings in H.

We construct such a spread distribution on matchings via iterative absorption, which was first
introduced by Kühn and Osthus [36] and Knox, Kühn, and Osthus [30] to prove results on Hamilton
decompositions. This powerful method has played a prominent role in several recent breakthroughs.
We mention only a proof that combinatorial designs exist [19] and the proof of the Erdős–Faber–
Lovász conjecture [26]. The method is substantially simplified in the context of perfect matchings.

Fix η ≪ ε (independent of n) and uniformly at random choose a vortex V (H) = V0 ⊇ V1 ⊇ · · · ⊇
VN = X with |X| ≤ n1/(k+1) and |Vi+1| ≈ η|Vi| for every i.

The heart of the construction is a cover-down procedure: Suppose that for 0 ≤ i < ℓ we have
constructed a matching Mi ⊆ H that covers V0 \ Vi and only a small number of vertices in Vi. We
then construct an O(1/|Vi|k−1)-spread distribution on matchings Mi+1 ⊇Mi, contained in H, that
cover all vertices of V0 \ Vi+1, and only a small number of vertices in Vi+1.

Inductively applying the cover-down procedure we obtain a matching Mℓ that covers V0 \ X,
and only a small number of vertices in X. In fact, we will ensure that the number of vertices in

V (Mℓ)∩X is small enough that δℓ(H[X \ V (M)]) ≥ (δ+ℓ,k + ε/2)
( |X|
k−ℓ

)
, so by Remark 1 there exists

a perfect matching M̃ ⊆ H[X \ V (M)]. Therefore Mℓ ∪ M̃ ⊆ H is a perfect matching.
To see why this procedure has a spread of O(1/nk−1), we heuristically analyze the probability

that any specific hyperedge T ∈ H is used in M . (Since the goal is to apply Theorem 1.2 in the
actual analysis one needs to make the analogous calculation for any set of hyperedges.) For any
i, the probability that T is spanned by Vi is (|Vi|/n)k. Since the matching Mi+1 is O(1/|Vi|k−1)-
spread, the probability that T ∈ Mi+1 \ Mi is O((|Vi|/n)k/|Vi|k−1) = O(|Vi|/nk) = O(1/nk−1).

Finally, the probability that T is in M̃ is at most the probability that T is spanned by X, which is
(|X|/n)k ≤ 1/nk−1.

1.2. Kr-factors in edge-percolated graphs. We next consider the robustness of the Hajnal–
Szemerédi theorem [20] on the existence of Kr-factors in dense graphs.

Theorem 1.6. Let r ∈ N. There exists a constant C = C1.6(r) such that every graph G on

n ∈ rN vertices with δ(G) ≥ (1− 1/r)n contains at least (n/C)(r−1)n/r Kr-factors. Additionally, if
p = C(log n)2/(r(r−1))/n2/r then with high probability G(p) contains a Kr-factor.

We note that p = ((r−1)! log n)2/(r(r−1))/n2/r is the (sharp) threshold for the property that every
vertex in G(n, p) is contained in an r-clique. Hence, Theorem 1.6 is optimal up to a constant factor.
That this is indeed the threshold for a Kr-factor in G(n, p) was first proved by Johansson, Kahn, and
Vu [24]. Furthermore, the threshold in the r = 3 case of Theorem 1.6 was proved very recently by
Allen, Böttcher, Corsten, Davies, Jenssen, Morris, Roberts, and Skokan [1]. The counting statement
in Theorem 1.6 proves [1, Conjecture 1] (which is new even for r = 3).

One difficulty in proving Theorem 1.6 is that there does not exist a q-spread probability measure

on Kr-factors in G with q <
(n−1
r−1

)−2/(r(r−1))
= Ω(n−2/r) (indeed, each vertex is contained in at least

one Kr that is chosen with probability at least
(
n−1
r−1

)−1
). Hence, the best bound one can hope for

from applying Theorem 1.2 directly is O(log n/n2/r). This exceeds the threshold in Theorem 1.6 by
4



a fractional power of log n. To circumvent this difficulty we prove Theorem 1.7, which asserts that
an appropriately spread measure exists on perfect matchings in the r-clique complex of G. We then
apply Theorem 1.2 to obtain an optimal bound on the threshold for perfect matchings in the clique
complex. Finally, we apply results of Riordan [43] to couple percolations of the clique complex with
percolations of G. This gives the correct logarithmic power in Theorem 1.6.

Theorem 1.7. Let r ∈ N. There exists a constant C = Cr such that for every graph G on n ∈ rN
vertices with δ(G) ≥ (r − 1)n/r if H is the set of r-cliques in G then there is a C/nr−1-spread
measure (with respect to ground set H) supported on the Kr-factors of G.

The proof of Theorem 1.7 essentially breaks into two steps. The first is proving a version of
Theorem 1.7 in which the minimum degree condition is replaced by the assumption that one has an
r-partite graph G where the graph between each pair of parts is super-regular; this is Theorem 1.9.

Definition 1.8. Given a pair of vertex sets X1, X2 in a graph G define dG(X1,X2) = eG(X1,X2)
|X1||X2|

(when the graph G is clear from context we may omit the subscript). A pair (A1, A2) is ε-regular if
for all Xi ⊆ Ai with |Xi| ≥ ε|Ai| we have that |d(A1, A2)− d(X1,X2)| ≤ ε. We say a pair (A1, A2)
is (d, ε)-regular if d(A1, A2) = d.

Furthermore we say (A1, A2) is (d, ε, δ)-super-regular if it is (d, ε)-regular and for all v ∈ Ai we
have deg(v,A3−i) ≥ δ|A3−i|. We say a pair is (d, ε)-super-regular if it is (d, ε, d − ε)-super-regular.
Finally we say a pair (A1, A2) is (d+, ε)-super-regular if it is (d′, ε)-super-regular for some d′ ≥ d.

Theorem 1.9. Fix r ≥ 2 and suppose 1/n ≪ ε ≪ d. Let G = (V,E) be a r-partite graph on
V =

⋃r
i=1Ai where |Ai| = n for all i ∈ [r]. Suppose G[Ai, Aj ] is (di,j, ε)-super-regular with di,j ≥ d

for all i 6= j. Let H be the r-uniform hypergraph where edges in H correspond to r-partite cliques of
G. There exists a Od,ε(1/n

r−1)-spread distribution on the set of perfect matchings in H.

We note that the r = 3 version of Theorem 1.9 immediately implies (along with work of Riordan
[43] which provides a coupling to the Kr-factor version) the crucial technical statement in [1] and
one of the main contributions of this work is providing a pair of short proofs of Theorem 1.9.

The first proof of Theorem 1.9 proceeds via induction on r. The base case r = 2 is the key step;
for the inductive step one chooses a spread matching between a pair of parts and then constructs an
auxiliary (r − 1)-partite graph where an edge chosen between the initial pair of parts is connected
to a vertex in the remaining parts if and only if both endpoints connect to the vertex. A careful
application of the union bound proves that the associated graph is super-regular and therefore the
key step is the case r = 2. For this, the crucial idea is to consider a subgraph G′ of the underlying
bipartite graph G where one chooses to keep a uniformly random large constant number of neighbors
of each vertex (an edge is kept if either of its vertices wish to keep it). This subgraph is trivially seen
to be appropriately spread by construction and the desired result follows by using Hall’s theorem
to verify that G′ has a perfect matching w.h.p. We note that this idea of constructing a “spread”
matching via considering a random subgraph where each vertex has a constant number of out-
neighbors also plays a role in forthcoming work of the last three authors on the planar assignment
problem [46] and will also be used in the proof of Theorem 1.10. The proof here is given in the
short Section 4.

The second proof follows closely along the lines of the proof of Theorem 1.5; in particular one
considers the set of r-cliques as hyperedges in an r-uniform hypergraph and the heuristic deriva-
tion of spread in Section 1.1 is unchanged. The changes between the proof of Theorem 1.5 and
Theorem 1.9 are due to the regularity boosting procedure in the cover-down step and finding the
perfect matching in final vortex set. The second issue is handled immediately by the influential
blow-up lemma of Komlós, Sárközy, and Szemerédi [33] while the first issue can be handled by a
straightforward regularity boosting procedure based on the counting lemma. This proof is given in
Section 5.
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The basic strategy to deduce Theorem 1.7 from Theorem 1.9 is as follows: one applies Szemerédi’s
regularity lemma, finds a Kr-factor between the reduced graph of the regularity partition, and then
uses Theorem 1.9 for each Kr in the factor on the reduced graph. However, this sketch is a gross
oversimplification of the necessary stability analysis as one is forced to deal with various exceptional
vertices which occur in the partition. Our stability analysis is combination of those given in [33] and
[1]. In particular we handle the case where the underlying graph G is far from being r-partite using
essentially an identical argument to that given in [1] (for r = 2 there is an additional special case
where the graph is near the union of two complete graphs). The extremal case, however, where there
is a subset of size |V (G)|/r which is nearly empty, is handled via an argument closely related to
that given in [33]; in particular we rely on the devices of special stars (which are somewhat simpler
in the Kr-factor case) used throughout [33] to rebalance parts of a vertex partition so that one
can convert various density constraints into minimum degree constraints. Furthermore the various
necessary modifications can be made in a “spread” manner, which completes our analysis. The
necessary stability analysis is carried out in Section 6.

Finally we note that Theorem 1.6 is not the first result establishing a robust version of the
Hajnal–Szemerédi theorem. The counting statement in Theorem 1.6 generalizes a result of Sárközy,
Selkow, and Szemerédi [48], where they proved that a Dirac-graph with has at least (cn)n/2 perfect
matchings for a small constant c. We note that the optimal constant c (which is achieved by the
random graph of the appropriate density) was proven by Cuckler and Kahn [9]; the extension of
such a result to Kr-factors would be of substantial interest. Second, a resilience version of the
Corrádi–Hajnal theorem [8] (which is the r = 3 case of the Hajnal–Szemerédi theorem) was proven

by Balogh, Lee, and Samotij [4]: with high probability G(n, p) with p = ω((log n/n)1/2) is such
that every subgraph with minimum degree (2/3+ o(1))np contains a triangle factor covering all but
O(p−2) vertices. This theorem is optimal both with the range of p and the size of the exceptional
set of vertices.

1.3. Bounded-degree spanning trees. Using a precursor of the influential blow-up lemma, Kom-
lós, Sárközy, and Szemerédi [31] proved that for every ∆ ∈ N and ε > 0 every sufficiently large
n-vertex graph with minimum degree at least (1/2 + ε)n contains a copy of every spanning tree of
maximum degree at most ∆. Since there exist disconnected n-vertex graphs with minimum degree
⌈n/2⌉ − 1, the “1/2” cannot be improved.

Regarding the corresponding threshold in random graphs, Montgomery [39] proved that w.h.p. for
any given spanning tree with degrees bounded by ∆, the random graph G(n,O∆(log n/n)) contains
a copy. (In fact, Montgomery proved the stronger universality result that w.h.p. G(n,O∆(log n/n))
contains a copy of every spanning tree with maximal degree at most ∆.) Note that a lower bound
of log n/n for this threshold follows from considering the presence of isolated vertices. Therefore
Montgomery’s result is tight up to a multiplicative constant.

Our third result is that graphs satisfying the Kómlos–Sárközy–Szemerédi [31] minimum degree
condition are robust with respect to containing a given bounded-degree spanning tree.

Theorem 1.10. For every ∆ ∈ N, δ > 0, there exists C = C1.10(∆, δ) such that the following
holds. Suppose that G is an n-vertex graph satisfying δ(G) ≥ (1/2 + δ)n and T is an n-vertex tree
with ∆(T ) ≤ ∆. Then w.h.p. G(C log n/n) contains a copy of T .

Our proof of Theorem 1.10 closely follows that of [31] and in fact we quote the main preprocessing
statement from their proof. Roughly, the proof in [31] proceeds by embedding most vertices of the
tree via a greedy process into a regularity decomposition of the graph G. The remaining vertices,
which either form paths of length 4 or stars of various sizes, are embedded via specialized lemmas
which are each essentially special cases of the blow-up lemma. The initial embedding of the large
portion of the tree can easily be made O(1/n)-spread by using a random greedy algorithm, and
observing that there are always Ω(n) choices for where to place each vertex. The paths of length 4
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lemma can be made spread by essentially quoting the r = 3 case of Theorem 1.9 and the embedding
of stars can be made spread via using the robust bipartite matchings discussed in Section 4. The
details of the proof are in Section 7.

We remark that Theorem 1.10 is not the first robust version of the results of Komlós, Sárközy,
and Szemerédi; Balogh, Csaba, and Samotij [3] consider the resilience of G(n, p) with respect to
containing almost spanning trees. Specifically, for every ∆ ∈ N and ε, η > 0, in G(n, p) with
p = Ωη,ε,∆(1/n), w.h.p. any subgraph G with at least (1/2 + η)-fraction of the edges at each vertex
contains any tree on (1− ε)n vertices with degree bounded by ∆. Related work has also considered
such universality with respect to containment of almost spanning structures of limited bandwidth
in G(n, p) and resilient subgraphs; we refer the reader to [6] and references therein.

Organization. In Section 2 we collect a series of basic preliminaries which will be used throughout
the paper. In Section 3 we give the proof of Theorem 1.5. In Section 4 we give the first proof of
Theorem 1.9 and in Section 5 we give the second proof of Theorem 1.9. In Section 6 we prove the
necessary stability analysis to deduce Theorem 1.7 and thus Theorem 1.6. Finally in Section 7 we
prove Theorem 1.10.

Notation. We write [n] = {1, . . . , n}. We write f = O(g) to mean that f ≤ Cg for some absolute
constant C, and g = Ω(f) to mean the same. We put a subscript, say Oε, to clarify if the constant
may depend on some outside parameter. We write f = o(g) if for all c > 0 we have f ≤ cg once the
implicit growing parameter (typically n) grows large enough, and g = ω(f) means the same. For
parameters α, β, we write α≪ β to mean that α is less than some sufficiently chosen function of β.
As discussed earlier, for a hypergraph H and subset S ⊆ V (H) we write degH(S) for the number of
hyperedges of H containing S. If S ⊆ V (H) with |S| at most the uniformity of H and A ⊆ V (H)
we also write degH(S,A) to mean the number of hyperedges of H-neighbors of S fully contained in
A. Finally, we may implicitly round large real numbers to integers if they are counting objects or
performing a similar role, and the exact number is not required to be precise.

Acknowledgements. The first author would like to thank David Conlon and Jacob Fox for helpful
comments and suggestions. The second and third authors thank Matthew Kwan and Vishesh Jain
for helpful discussions. Part of this research was conducted while the third author was visiting
IST Austria, Tel Aviv University, and Cambridge University and they would like to thank these
institutions for their hospitality. Finally we thank the authors of [28] for pointing out the extension
to the non-divisible case suggested in Remark 2.

2. Preliminaries

We will repeatedly use the Chernoff bound for binomial and hypergeometric distributions (see
for example [23, Theorems 2.1, 2.10]) without further comment.

Lemma 2.1 (Chernoff bound). Let X be either:

• a sum of independent random variables, each of which take values in [0, 1], or
• hypergeometrically distributed (with any parameters).

Then for any δ > 0 we have

P[X ≤ (1− δ)EX] ≤ exp(−δ2EX/2), P[X ≥ (1 + δ)EX] ≤ exp(−δ2EX/(2 + δ)).

We also record a lemma for comparing a sequence of random variables to an independent sum of
Bernoulli random variables.

Lemma 2.2 ([42, Lemma 8]). Let X1, . . . ,Xn be {0, 1}-valued random variables such that for all
i ∈ [n], we have that P[Xi = 1|X1, . . . ,Xi−1] ≤ p then P[

∑n
i=1Xi ≥ t] ≤ P[Bin(n, p) ≥ t] for all

t ≥ 0.
7



Finally, we will use McDiarmid’s inequality, which follows from [37, Lemma 1.2].

Lemma 2.3. Let X1, . . . ,Xn be independent random variables, with each Xi taking values in a
finite set Λi. Let f :

∏n
i=1 Λi → R be a function satisfying: for some L > 0 if ~x, ~y ∈ ∏n

i=1Λi differ
by at most one coordinate then |f(~x)− f(~y)| ≤ L. Then, for every t > 0 there holds

P [|f(X1, . . . ,Xn)− E[f(X1, . . . ,Xn)]| ≥ t] ≤ 2 exp
(
−2t2/(2nL2)

)
.

Next we require a version of the Rödl nibble which gives a spread distribution over nearly complete
hypergraph matchings in a dense situation. We sketch a short proof based on applying the Rödl
nibble given in [2, Theorem 4.7.1] to a harshly subsampled random hypergraph.

Lemma 2.4. Fix γ, η > 0 and suppose n is sufficiently large. Given a k-uniform hypergraph H
on n vertices such that each vertex is in γnk−1 ± nk−5/4 hyperedges of H, there exists a distribu-
tion p on nearly-complete matchings, i.e., those covering at least (1 − η)n vertices, such that p is
Ok,γ,η(1/n

k−1)-spread.

Proof. Consider sampling every hyper-edge of H with probability (C/γ)n1−k for a constant C to
be specified later. Let the sampled hypergraph be L. First note that maxv1,v2 codegL(v1, v2) is

stochastically dominated by Bin(nk−2, (C/γ)n−(k−1)) or Bin(nk−2, n−k+5/4) for n sufficiently large
in terms of C. This implies that as there are n2 pairs to union bound over, that with high probability
all codegrees in L are bounded by 3.

We now consider the subset of edges in L where every vertex has L-degree at most C+C3/4; call
this hypergraph L′. Furthermore by Chernoff and Markov with probability at least 7/8 we have

that (1 − e−Ω(C1/3))n vertices have L-degree in [C ± C3/4]. Now we wish to show that taking the
induced (sampled) hypergraph L′ does not dramatically reduce the degree of the vast majority of
these vertices.

Reveal a vertex v and assume that maxv′ 6=v codeg(v, v
′) ≤ 3 and its degree is in [C ± C3/4].

Having revealed the outcome of edges coming out of v, we need to prove that it is highly likely
that the remaining neighbors in all these edges have degree at most C+C3/4, so that the L′-degree
of v is the same as the L-degree and hence is in [C ± C3/4]. This occurs for v with probability

1− e−Ω(C1/3) by Chernoff, having revealed every edge containing v (using that the original degrees
in H are tightly controlled).

Therefore we find from Markov that with probability 3/4, say, L′ has at least (1 − e−Ω(C1/3))n

vertices with degree within C ± C3/4, no vertices with degree above C + C3/4, and all codegrees
bounded by 3. The desired result then follows via applying [2, Theorem 4.7.1] to the non-isolated
vertices of L′, which gives a sparse vertex cover, and then deleting any hyperedge in the cover
containing a vertex which is covered more than once. We obtain a partial hypergraph matching
which is evidently spread due to the sampling of hyperedges defining L. �

Finally we will also require a number of basic definitions regarding regular and super-regular
pairs. Recall that have already defined the notion of (d, ε, δ)-super-regular as well as (d+, ε)-super-
regular in Definition 1.8. We will require the following lemma which allows one to transfer between
these notions at the cost of passing to a suitable subgraph; this appears as [1, Lemma 2.12].

Lemma 2.5. For every ε > 0 and n = n2.5(ε) such that the following holds. Consider a bipartite
graph on V1, V2 with parts of size n and G which is (ε2, d+)-super-regular for d such that 4ε ≤ d ≤ 1
and dn2 ∈ N. Then there is a spanning subgraph G′ of G so that (V1, V2) is (4ε, d)-super-regular in
G′.

We will next require the counting lemma which counts embeddings of a subgraph H into fixed
parts of a collection of regular pairs. This follows immediately from the standard proof of the
counting lemma.
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Lemma 2.6 (Counting lemma). Fix ε > 0 and a graph H on vertices v1, . . . , vk. There exists an
absolute constant CH = CH,2.6 such that the following holds. Fix a graph k-partite G = (V,E)

where V =
⋃k

i=1Ai and suppose that for each (i, j) ∈ E(H) that G[Ai, Aj ] is (di,j , ε)-regular with
di,j ≥ ε. Fix any subsets Xi ⊆ Ai with |Xi| ≥ ε|Ai|. Then the number of homomorphisms from H
to G with vi mapping into Xi is

∏

(i,j)∈E(H)

di,j

k∏

i=1

|Xi| ± CHε

k∏

i=1

|Ai|.

We will also require that any (d, ε) super-regular bipartite graph has a subset of edges such that
both it and its complement are super-regular.

Lemma 2.7. Suppose that 1/n ≪ ε ≪ d ≤ 2/3. Then given a graph G = (A1 ∪ A2, E) such
that |Ai| = n and (A1, A2) is (d, ε)-super-regular we have a spanning subgraph G′ ⊆ G which is

(d±ε1/3, ε1/3)-super-regular and such that the bipartite complement KA1,A2
\G′ is (1−d±ε1/3, ε1/3)-

super-regular.

Proof. Let A′
1 = {v ∈ A1 : degG(v,A2) ≥ (d + 2ε)n} and define A′

2 similarly. By (d, ε)-regularity
applied to the sets A′

1 and A2 (and symmetric) we have that |A′
1|, |A′

2| ≤ εn. By removing all
edges between A′

1 and A′
2, note that the degrees in A1 \A′

1 and A2 \A′
2 are unchanged and we still

have a lower bound of (d − ε)n for all such vertices. Now for each vertex v ∈ A′
i choose a set of

approximately dn edges to keep and remove the rest; this is possible to do on a vertex-by-vertex
basis as all remaining edges have at most 1 endpoint in A′

i. Furthermore note that in this procedure
all vertices outside A′

1∪A′
2 have degrees adjusted by at most εn. Finally note that since at most 2εn2

edges have been modified the desired result follows immediately by the definition of regularity. �

A similar proof can in fact be used to show the following; this combined with Lemmas 2.5 and 2.7
show that any (d, ε, δ)-super-regular graph will have very super-regular spanning subgraphs.

Lemma 2.8. Suppose that 1/n ≪ ε ≪ δ ≪ d ≤ 2/3. Then given a graph G = (A1 ∪ A2, E) such
that |Ai| = n and (A1, A2) is (d, ε, δ)-super-regular we have a spanning subgraph G′ ⊆ G which is
(δ+, ε1/3)-super-regular.

Proof sketch. Using (d, ε)-regularity, we can show that the vast majority of vertices have degree
(d± 2ε)n, say. Call the exceptional vertices A′

1, A
′
2 as before. We take random (δ/d)-samples of the

edges G[A1 \A′
1, A2 \A′

2], delete the edges G[A′
1, A

′
2], and then for each v ∈ A′

1 ∪A′
2 independently

choose δn edges to keep. �

Furthermore we will need the influential blowup lemma of Komlós, Sárközy, and Szemerédi [32,
Theorem 1].

Theorem 2.9 ([32, Theorem 1]). Given a graph R of order r and parameters δ,∆, there exists
ε = ε(δ,∆, r) such that the following holds. Suppose that one replaces the vertices of R with sets
of size n1, . . . , nr and define a graph G1 where each edge of R is blown up to a (δ, ε)-super-regular
pair and a graph G2 where each edge of R is blown up to a complete graph. Then if a graph H with
maximum degree ∆ embeds into G2 it embeds into G1.

Finally we will also require a version of the regularity lemma which respects the minimum degree
of the input graph. The version stated appears as [1, Lemma 2.6].

Definition 2.10. We say a partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vt is an ε-regular partition if |V0| ≤
ε|V (G)|, |V1| = · · · = |Vt|, and all but εt2 pairs (Vi, Vj) are ε-regular. Given an ε-regular partition
and d ∈ [0, 1], we say that R is the (ε, d)-reduced graph with respect to the partition if V (R) = [t]
and (i, j) ∈ E(R) if and only if (Vi, Vj) is a (d+, ε)-regular pair.
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Lemma 2.11 ([1, Lemma 2.6]). For all ε > 0 and m0 ∈ N, there is M0 = M2.11(m0, ε) such that
the following holds. For all 0 < d < γ < 1, n > M0, and graphs G with δ(G) ≥ γn, there exists an
ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vm with m0 ≤ m ≤ M0 such that the (ε, d)-reduced graph R has
δ(R) ≥ (γ − d− 2ε)m.

3. Robust conditions for perfect matchings in random hypergraphs

The first lemma will allow us to construct the vortex; a crucial feature of our analysis is that the
randomness in the choice of the vortex is taken into account when calculating the spread. For this
reason the lemma guarantees a distribution over vortices, rather than the existence of any particular
one.

Lemma 3.1 (Vortex). For every α > 0 and ε ∈ (0, 1/10) there exists some C = C3.1(ε) such that
if H is a k-uniform hypergraph on n ≥ C vertices satisfying δℓ(H) ≥ (α+ ε)

(
n

k−ℓ

)
then there exists

a distribution on set sequences V (H) = V0 ⊇ V1 ⊇ · · · ⊇ VN = X with the following properties:

V1 For every 0 ≤ i < N there holds |Vi+1| = (1± ε2/N2)ε2|Vi|;
V2 |X| ∈ [n1/(k+2), n1/(k+1)];

V3 For every S ∈
(V (H)

ℓ

)
and every 0 ≤ i ≤ N , there holds degH(S, Vi) ≥ (α+ ε/2)

( |Vi|
k−ℓ

)
;

V4 For every vertex set {v1, . . . , vm} ⊆ V (H) and every vector ~x ∈ {0, . . . , N}m there holds

P

[
m∧

i=1

(vi ∈ Vxi)

]
≤

m∏

i=1

2|Vxi |
n

.

Proof. First, consider the distribution on set sequences V (H) = U0 ⊇ · · · ⊇ UN obtained as follows:

Set U0 = V (H). For as long as |Ui| > n1/(k+1), let Ui+1 be a binomial random subset of Ui of density
ε2. Let E be the event that properties V1 to V3 hold. McDiarmid’s inequality (Lemma 2.3) and a
union bound imply that E holds w.h.p.

Next, let {v1, . . . , vm} ⊆ V (H) and ~x ∈ {0, . . . , N}m. Clearly:

P

[ m∧

i=1

(vi ∈ Uxi)

]
=

m∏

i=1

ε2xi .

Let V0 ⊇ · · · ⊇ VN be the distribution obtained by conditioning U0 ⊇ · · · ⊇ UN on the occurrence
of E . By definition, V0 ⊇ · · · ⊇ VN satisfies properties V1 to V3. Furthermore, for every nonempty
{v1, . . . , vm} ⊆ V (H) and ~x ∈ {0, . . . , N}m:

P

[ m∧

i=1

(vi ∈ Vxi)

]
= P

[ m∧

i=1

(vi ∈ Uxi)

∣∣∣∣E
]
≤ P

[∧m
i=1(vi ∈ Uxi)

]

P[E ] ≤ (1 + o(1))

m∏

i=1

ε2xi ≤
m∏

i=1

2|Vxi |
n

,

as desired. The last inequality comes from applying V1 iteratively at most N times. �

Next, we show that if H satisfies the conditions in Theorem 1.5 then it contains a large regular
subgraph. We note that Lemma 3.2 plays the role of a “regularity–boosting” lemma which has
various previous applications in iterative absorption.

Lemma 3.2. For every ε > 0 there exists some n′ε > 0 such that if H is a k-uniform hypergraph
on n ≥ n′ε vertices with k|n and δℓ(H) ≥ (δ+ℓ,k + ε)

( n
k−ℓ

)
then for every 0 ≤ d ≤ 1

2ε
( n
k−ℓ

)
there exists

a d-regular subgraph H′ ⊆ H.

Proof. Using the notation of Remark 1, let n′ε = nℓ,k,ε/3. Supposing H satisfies the assumptions,
then by Remark 1 it contains a perfect matching M . If we remove M from H we obtain a hypergraph
with minimum degree δ(H)−1. Proceeding inductively, we can remove d disjoint perfect matchings
from H. We may then take H′ as their union. �
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We are ready to state the cover-down lemma.

Lemma 3.3 (Cover-down lemma). For every ε ∈ (0, 1/(10k!)) there exists some C = C3.3(ε) > 0
such that the following holds. Let H be a k-uniform hypergraph with |V (H)| ≥ Cε. Let U ⊆ V (H)

satisfy |U | = (1 ± ε)ε2|V (H)|. Suppose that H satisfies δℓ(H) ≥ (δ+ℓ,k + ε/3)
(|V (H)|

k−ℓ

)
and, for every

S ∈
(V (H)

ℓ

)
, it holds degH(S,U) ≥ (δ+ℓ,k + ε/3)

( |U |
k−ℓ

)
. Then there exists a Cε/|V (H)|k−1-spread

distribution on matchings M ⊆ H that satisfy:

C1 M covers every vertex in V (H) \ U ; and
C2 M covers at most ε2|U | vertices in U .

Proof. For notational conciseness we set V = V (H). We first construct the random matching M .
Step 1: Finding a regular subgraph. We will find a regular subgraph of H[V \ U ] by applying

Lemma 3.2. This lemma can only be applied if the vertex set is a multiple of k. To this end, let
W ⊆ V \ U be a set of at most k − 1 vertices such that V ′ := V \ (U ∪W ) is a multiple of k. Let

H′ := H[V ′]. Observe that δℓ(H′) ≥ δℓ(H)− (|W |+ |U |)k−ℓ ≥ (δ+ℓ,k +0.3ε)
(|V ′|
k−ℓ

)
. Assuming that |V |

is sufficiently large, we can apply Lemma 3.2 to find a 1
8ε
(|V ′|
k−ℓ

)
-regular subgraph H̃ ⊆ H′.

Step 2: Finding a spread approximate matching. We apply Lemma 2.4 to H̃ to find anOε(1/|V |k−1)-

spread random matching M̃ ⊆ H̃ covering all but at most ε6|V (H̃)| vertices.

Step 3: Covering remaining vertices in V \ U . Conditioning on M̃ , let v1, . . . , vm be an enumer-

ation of the uncovered vertices V \ (V (M̃ ) ∪ U), noting m ≤ ε6|V (H̃)| + k − 1. (Recall that this

set includes W .) We extend M̃ to a matching M ⊆ H using a random greedy algorithm: Iterating
through i = 1, . . . ,m, for each vi choose, uniformly at random, a hyperedge Ti ∈ H containing vi
and k − 1 vertices in U that is vertex-disjoint from M̃ and all Tj for j < i.

We note that this procedure is sure to be successful. Indeed, before choosing any hyperedge

Ti, every vertex v ∈ V satisfies degH(v, U) ≥
( |U |
ℓ−1

)
(δ+ℓ,k + ε/3)

( |U |
k−ℓ

)(k−1
ℓ−1

)−1 ≥ (δ+ℓ,k + ε/4)
( |U |
k−1

)
.

Furthermore, since M̃ is contained entirely in V \ U , none of these hyperedges intersect M̃ . Thus,

there are at least (δ+ℓ,k + ε/4)
( |U |
k−1

)
choices for Ti. Additionally, every hyperedge Tj intersects at

most (k−1)|U |k−2 possible choices for Ti. Since m(k−1)|U |k−2 ≤ (ε6|V (H̃)|+k−1)(k−1)|U |k−2 ≤
ε2|U |k−1, there are always at least (δ+ℓ,k + ε/8)

( |U |
k−1

)
choices available for Ti.

For the final matching we take M := M̃ ∪ {T1, . . . , Tm}. Clearly, M covers all vertices in V \ U ,
proving C1. Moreover it covers (k − 1)m ≤ ε2|U | vertices in U , proving C2.

It remains to show that M is O(1/|V |k−1)-spread. Let S ⊆ H be a set of hyperedges. We need

to show that PS := P[S ⊆ M ] = (O(1/|V |))(k−1)|S|. First, we may assume that S is a matching.

Furthermore, if S ⊆M then every hyperedge in S is either included in M̃ (in which case it has all k
vertices in V \U) or it is one of the hyperedges T1, . . . , Tm (in which case it has exactly one vertex
in V \ U). So we may assume that every hyperedge in S has either one or k vertices in V \ U . Let
Sk be those hyperedges in S with all vertices in V \ U , and let S1 = S \ Sk be those hyperedges in
S with only one vertex in V \ U . We now have:

PS = P
[
Sk ⊆ M̃

]
P
[
S1 ⊆M \ M̃ |Sk ⊆ M̃

]
.

By construction, M̃ is O(1/|V |k−1)-spread, so P[Sk ⊆ M̃ ] = (O(1/|V |k−1))|Sk |. Next, we observe

that after conditioning on any outcome of M̃ , it holds that S1 ⊆M \ M̃ only if for every hyperedge
T ∈ S1, the hyperedge chosen to match the (unique) vertex in T \ U was T . Since every such

choice is made uniformly from at least (δ+ℓ,k + ε/8)
( |U |
k−1

)
= Ω(|V |k−1) possibilities, it follows that

P[S1 ⊆M \ M̃ |Sk ⊆ M̃ ] = (O(1/|V |k−1))|S1|. Thus PS = (O(1/|V |))(k−1)|S|, as desired. �

We are now in position to complete the proof of Theorem 1.5.
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Proof of Theorem 1.5. We assume, without loss of generality, that ε < 1/(100k!).
Using Lemma 3.1, let V (H) = V0 ⊇ V1 ⊇ · · · ⊇ VN = X be a random sequence of sets satisfying

properties V1 to V4 in Lemma 3.1.
We will inductively construct (random) matchings ∅ = M0 ⊆ M1 ⊆ · · · ⊆ MN , satisfying the

following properties for every 0 ≤ i ≤ N . For notational convenience we set VN+1 = ∅.
(1) Mi is O(1/|Vi|k−1)-spread;
(2) Mi covers all vertices in V (H) \ Vi;
(3) |V (Mi) ∩ Vi| ≤ 2ε2|Vi|; and
(4) V (Mi) ∩ Vi+1 = ∅.

We begin by taking M0 = ∅. Now, suppose that for 0 ≤ i < N we have constructed Mi with the
properties above. Let V ′

i = Vi \ (V (Mi) ∪ Vi+2) and let Hi = H[V ′
i ]. Note Vi+1 ⊆ V ′

i . Observe that

δℓ(Hi) ≥ (δ+ℓ,k+ε/3)
(|V ′

i |
k−ℓ

)
. Indeed, for every S ∈

(
V ′

ℓ

)
, by V3 it holds degH(S, Vi) ≥ (δ+ℓ,k+ε/2)

( |Vi|
k−ℓ

)
.

At most (|V (Mi) ∩ Vi| + |Vi+2|)
( |Vi|
k−ℓ−1

)
≤ 3ε2|Vi|

( |Vi|
k−ℓ−1

)
≤ ε

10

(|V ′
i |

k−ℓ

)
of these hyperedges are not

contained in V ′. Therefore degHi
(S) ≥ (δℓ,k + ε/3)

(|V ′
i |

k−ℓ

)
, as desired. By applying Lemma 3.3 to Hi

with U = V ′
i ∩Vi+1 we obtain an Oε(1/|Vi|k−1)-spread matching M ′

i covering all vertices in V ′
i \Vi+1,

at most 2ε2|Vi+1| vertices in Vi+1, and no vertices in Vi+2. (We can apply this after checking a similar
minimum degree condition with respect to degHi

(S,U).) By taking Mi+1 = Mi ∪M ′
i we complete

the inductive step.
Finally, to obtain a perfect matching, note that ifMN satisfies the properties above then δℓ(H[V (H)\

V (MN )]) ≥ (δ+ℓ,k+ ε/3)
( |X|
k−ℓ

)
. Furthermore, |V (H)\V (MN )| is a multiple of k since it was obtained

from V (H) by removing a matching. Therefore, by Remark 1, there exists a perfect matching

M̃ ⊆ H[V (H) \ V (MN )]. Take M =MN ∪ M̃ .
It remains to prove that M is Oε(1/n

k−1)-spread. Let S ⊆ H be a set of hyperedges, which we

may assume are vertex-disjoint. We need to show that PS := P [S ⊆M ] = (Oε(1/n
k−1))|S|. Let

T1, . . . , Tm be an enumeration of the hyperedges in S. For a vector ~x ∈ [N + 1]m, let P (~x) be the

probability that for every j ∈ [m], the hyperedge Tj is in Mxj \Mxj−1 if xj ≤ N , and Tj ∈ M̃ if
xj = N + 1. We will show that

P (~x) =

(
N∏

i=1

(
Oε

( |Vi−1|
nk

))|{j : xj=i}|
)( |VN |

n

)k|{j : xj=N+1}|

. (3.1)

This will suffice, since then

PS =
∑

~x∈[N+1]m

P (~x) =
∑

~x∈[N+1]m

(
N∏

i=1

(
Oε

( |Vi−1|
nk

))|{j : xj=i}|
)( |VN |

n

)k|{j : xj=N+1}|

=

(
Oε(1)

nk−1

)m ∑

~x∈[N+1]m

(
N∏

i=1

(ε2i)|{j : xj=i}|

)( |VN |k
n

)|{j : xj=N+1}|

=

(
Oε

(
1

nk−1

))m m∏

j=1

(
N∑

i=1

ε2i +
nk/(k+1)

n

)
=

(
Oε

(
1

nk−1

))m

.

We now prove (3.1). For 1 ≤ i ≤ N + 1, let Ci be the event that {Tj : xj = i} ⊆ H[Vi−1] and let

Di be the event that {Tj : xj = i} ⊆ Mi \Mi−1 if i ≤ N , and {Tj : xj = i} ⊆ M̃ if i = N + 1. We
then have

P (~x) ≤ P

[
N+1⋂

i=1

Ci

]
N+1∏

i=1

P

[
Di

∣∣∣∣
N+1⋂

i=1

Ci,D1 ∩ · · · ∩Di−1

]
.
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By the randomness guarantee in the vortex construction (V4 in Lemma 3.1), we have:

P

[
N+1⋂

i=1

Ci

]
=

N+1∏

i=1

(
O

( |Vi−1|
n

))k|{j : xj=i}|

.

Next, we note that conditioned on any outcome of Mi−1 and the vortex, the matching Mi \Mi−1 is
Oε(1/|Vi|k−1)-spread. Thus, for every i ≤ N :

P

[
Di

∣∣∣∣
N+1⋂

i=1

Ci,D1 ∩ · · · ∩Di−1

]
=

(
Oε

(
1

|Vi|k−1

))|{j : xj=i}|

.

Finally, we use the trivial bound P

[
DN+1

∣∣∣∣
⋂N+1

i=1 Ci,D1 ∩ · · · ∩Dℓ

]
≤ 1 to obtain:

P (~x) ≤
(

N+1∏

i=1

(
O

( |Vi−1|
n

))k|{j : xj=i}|
)(

N∏

i=1

(
Oε

(
1

|Vi|k−1

))|{j : xj=i}|
)
,

which implies (3.1) upon using |Vi−1| = Oε(|Vi|). �

4. Kr-factors in r-partite super-regular systems via robust-perfect matchings

We now give the first of two proofs of Theorem 1.9. A key ingredient is the case where r = 2,
and in particular proving that in a bipartite graph G = (A,B,E) with |A| = |B| = n one can find
a spread perfect matching. This tool will again be crucial in the proof of Theorem 1.10. To do so,
we consider the following subgraph of G. For each vertex v of G, choose a uniform and independent
random set of C neighbors of v (with repetitions). Let H be the graph containing all of the edges
chosen by either vertex.

Lemma 4.1. Let G be (d, δ)-super-regular for δ ≪ d. Then, with probability at least 3/4, for C
sufficiently large depending only on d, the subgraph H contains a perfect matching.

Proof. We will prove that H satisfies Hall’s condition with high probability. In particular, we want
to show that there is no subset T of B of size k for which there is a subset S of A of size k+ 1 and
the neighborhood of any vertex in S is contained in T ; and similarly for T a subset of A of size k
and S a subset of B of size k + 1. Note that if all vertices in S have their neighborhood contained
in T , then all vertices in B \T have their neighborhood contained in A \S. Thus, by symmetry, we
only need to consider the case k ≤ n/2, since for k > n/2 we have |A \ S| < n/2. In the following,
let T be a subset of B of size k, and S a subset of A of size k + 1. We bound the probability that
NH(v) ⊆ T for all v ∈ S. Let η = 4δ1/3.

Case 1: k ∈ (ηn, n/2]. In this case, by the assumption that G is (d, δ)-regular, for ε = δ1/3/d,
the number of vertices v with |NG(v) ∩ T | > (k/n + ε)dn is at most δ1/3n. Thus there are at least

k−δ1/3n vertices v in S with |NG(v)∩T | ≤ (k/n+ε)dn. For each such v, the chance that NH(v) ⊆ T

is at most (k/n + ε1/2)C . Hence, the probability that NH(S) ⊆ T is at most (k/n + ε1/2)C(k−δn).
By the union bound, the probability that there exists S and T with NH(S) ⊆ T is at most

(
n

k

)(
n

k + 1

)
(k/n + ε1/2)C(k−δ1/3n) ≤

(
e2n2

k2

)k+1(
k

n
+ ε1/2

)C(k−δ1/3n)

≤
(
e2n2

k2

)2k (
k

n
+ ε1/2

)Ck/2

=

(
e4n4

k4
·
(
k

n
+ ε1/2

)C/2
)k

.
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Note that k
n + ε1/2 ≤ min(2/3, 2(k/n)/d), and hence

(
e4n4

k4
·
(
k

n
+ ε1/2

)C/2
)k

≤
(
e4n4

k4

(
k

n
+ ε1/2

)4

· (2/3)C/2−2

)k

≤
(
(2e)4

d4
· (2/3)C/2−2

)k

< 2−k,

assuming that C is sufficiently large in d.
Case 2: k ≤ ηn. In this case, for each v ∈ S, |NG(v) ∩ T | ≤ k ≤ ηn. Hence, the chance that
NH(v) ⊆ T is at most (2k/(dn))C . Hence, the probability that NH(S) ⊆ T is at most (2k/(dn))Ck .
By the union bound, the probability that there exists S and T with NH(S) ⊆ T is at most

(
n

k

)(
n

k + 1

)
(2k/(dn))Ck ≤

(
e(2k)C−4

dCnC−4

)k

<

(
e(2k/n)C−4

dC

)k

.

Combining the cases, by the union bound, the probability that H does not satisfy Hall’s condition
is at most

2
∑

k≤ηn

(
e(2k/n)C−2

dC

)k

+ 2−ηn+1 = o(1). �

Using Lemma 4.1, we can give a general procedure for finding spread matchings in super-regular
bipartite graphs.

Theorem 4.2. Let d > 0 and δ ≪ d. Let G be a (d, δ)-super-regular bipartite graph with parts of
size n. There exists a distribution µ on perfect matchings in G which is Od(1/n)-spread.

Proof. From G pick a subgraph H as in Lemma 4.1, which has a perfect matching with probability
at least 3/4. Condition on this event and pick and output an arbitrary perfect matching W of H.
This induces a distribution µ on perfect matchings of G. We show that µ is Od(1/n)-spread. Indeed,
given any subset S of edges of G, if S is not a matching, then µ(W ⊇ S) = 0. If S is a matching,
W can only contain S if for each edge e = {x, y} ∈ S, either x or y picks the other vertex as one of
the C neighbors, which happens with probability at most 2C/n. Furthermore, the above events are

independent across different edges of the matching S. Hence, µ(W ⊇ S) ≤ (4/3)(2C/n)|S|. Thus,
µ is (4C/n)-spread. �

One can now prove Theorem 1.9 via an inductive argument on r.

Lemma 4.3. Let G = (V1, V2, V3, E) be a (d, δ)-super-regular tripartite graph with |V1| = |V2| = |V3|.
Assume that for each edge {v2, v3} ∈ E(G), there are at least (d2 − δ1/2)n vertices v1 ∈ V1 which
are adjacent to both v2 and v3. Let µ1 be the distribution on perfect matchings M1 between V2 and
V3 given by Theorem 4.2, which is p-spread for some p ≤ C/n. Construct a graph ΓM1

where the
vertices are the edges in M1 and vertices in V1, and an edge e = {v2, v3} of M1 is connected to a
vertex v1 of V1 if and only if v1 is adjacent to both v2 and v3. There exists d′, c′ depending only on
d and C such that for δ sufficiently small in terms of d,C, with probability at least 1 − exp(−c′n),
we have that ΓM1

contains a (d′, 16C/ log(1/δ)1/4)-super-regular subgraph.

Proof. Let η = (log δ−1)−1/2. We first prove that ΓM1
is 4η1/2-regular with high probability. Indeed,

for each subset S1 of V1 of size ρn and ρ ≥ 4η1/2, we say that e ∈ E(G1) is bad if the number of
common neighbors of the endpoints of e in S1 is not in (d2 ± η)ρn, and say that vi ∈ Vi is bad for
i ∈ {2, 3} if the number of neighbors of vi in S1 is not in (d ± η)ρn. The number of bad vi is at
most δn. For each vi which is not bad, the number of bad edges e adjacent to vi is at most δn. We
say that a perfect matching M1 of G[V2, V3] is bad if it contains at least ηn bad edges which are
adjacent only to good vertices. The number of bad perfect matchings is at most(

n

ηn

)
(δn)ηn · nn−ηn.
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For each such perfect matching, the probability (under µ1) that it is realized is at most (C/n)n.
Hence, the probability that there are at least ηn bad edges adjacent to good vertices selected in M1

is at most
(
n

ηn

)
(δn)ηn · (n)n−ηn · (C/n)n ≤ exp(−(log δ−1)ηn)Cn exp(ηn log(δ−1)/2)

≤ exp(−(log δ−1)1/2n/4).

Note that if there are at most ηn bad edges adjacent to good vertices in M1, then the number of
vertices in E(M1) whose number of edges to S1 is not (d2 ± η)ρn is at most (2δ + η)n. In that
case, for any subset T of E(M1) of size at least ρn, the number of edges between T and S1 is

(d2 ± 2(η + 2δ)ρ−1)ρn|T |. Hence, by the union bound over S1, we obtain that ΓM1
is 4η1/2-regular

with probability at least

2n exp(−(log δ−1)1/2n/4) < 2−n.

By assumption, the minimum degree of each e ∈ M1 in ΓM1
is at least (d2 − δ1/2)n. For each

vertex v1 ∈ V1, let E(v1) be the set of edges in E(G1) whose endpoints are both adjacent to

v1. Then each vertex in V2 ∪ V3 is adjacent to at least (d2 − δ1/2)n edges in E(v1). By the remark
following Theorem 4.2, the probability that the degree of v1 in ΓM1

is at most (d2/(2e2))Cn is at most
exp(−(d2/(4e2))Cn). Hence, by the union bound, with probability at least 1−n exp(−(d2/(4e2))Cn),
the minimum degree of ΓM1

is at least (d2/(2e2))Cn. The conclusion of the lemma then follows
from Lemmas 2.5 and 2.8. �

Proof of Theorem 1.9. We prove the result by induction on r. The case r = 2 is shown in Theorem 4.2.
Let Gr−1,r be the graph induced on vertex sets Vr−1 and Vr. By Theorem 4.2, there is a distribu-

tion µ1 on perfect matchings M1 of Gr−1,r which is (Cd/n)-spread for Cd depending only on d. By
Lemma 4.3, if for i < r− 1, we construct the graph Γi,M1

which has as vertices edges e = {vr−1, vr}
in M1 and vertices vi in Vi for which vi is adjacent to both vr−1 and vr, then with probability at least
1 − exp(−c′n), Γi,M1

has a subgraph which is (d′, 16C/(log δ−1)1/4)-super-regular. By the union
bound, with high probability, this property holds for all i < r − 1. Now we have an (r − 1)-partite
graph G′ where G′[Vi, Vj ] = G[Vi, Vj ] for i, j < r−1 and G′[Vi, Vr−1] = Γi,M1

for i < r−1, for which

each pair of parts is (d′+, 16C/(log δ−1)1/4)-super-regular. By the inductive hypothesis, we have a

distribution µ on perfect matchings M̃ of G′ which is Od(1/n
r−2)-spread. The perfect matching M̃

the corresponds to a perfect matching M of G. We now verify that M is Od(1/n
r−1)-spread.

Fix a subset S of hyperedges. As before, we can assume that S is a matching. Let S1 be the
matching of Gr−1,r induced by S. If M ⊇ S, then M1 ⊇ S1, which holds with probability at most

(C/n)|S| for some C depending only on d. Furthermore, conditioned on a consistent realization of

M1, we need the matching M̃ to contain a corresponding set of edges of E(G′) of size |S|, which

holds with probability at most (Od(1/n
r−2))|S|. Hence, the probability that M contains S is at

most (C ′/nr−1)|S|. Thus, the distribution µ is Od(1/n
r−1)-spread. �

5. Kr-factors in r-partite super-regular systems via iterative absorption

In order to prove Theorem 1.9, we will require a regularity boosting lemma for the clique complex
above a set of super-regular pairs. Regularity boosting plays a crucial role in the applications of
iterative absorption; see e.g. [5, Lemma 4.2]. While our regularity boost generally follows a similar
strategy of using local gadgets to adjust the initial uniform weighting on the hypergraph to give a
good fractional weighting, generally partite instances requires a great deal more care (see e.g. work
of Montgomery [38]); however in our case a substantially simpler proof suffices.
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Lemma 5.1 (Fractional matching). Fix r ≥ 2 and suppose 1/n ≪ ε≪ d, 1/r ≤ 2/3. Let G = (V,E)
be an r-partite graph on V =

⋃r
i=1Ai where |Ai| = n for all i ∈ [r]. Suppose G[Ai, Aj ] is (di,j , ε)-

super-regular with di,j ≥ d for all i 6= j. Let H be the r-uniform hypergraph where edges in H
correspond to r-partite cliques of G. Then there exists a weighting ω : H → [0, 1] such that for all
v ∈ ⋃r

i=1Ai we have that
∑

H∋v
H∈H

ω(H) =
1

2
nr−1

∏

1≤i<j≤r

di,j.

By sampling cliques according to ω and applying the Chernoff bound we have the following
immediate corollary.

Corollary 5.2. Fix r ≥ 2 and suppose 1/n ≪ ε ≪ d, 1/r ≤ 2/3. Let G = (V,E) be a r-partite
graph on V =

⋃r
i=1Ai where |Ai| = n for all i ∈ [r]. Suppose G[Ai, Aj ] is (di,j , ε)-super-regular with

di,j ≥ d for all i 6= j. Let H be the r-uniform hypergraph where edges in H correspond to r-partite
cliques of G. Then there exists a weighting ω : H → {0, 1} such that for all v ∈ ⋃r

i=1Ai we have
that

∑

H∋v
H∈H

ω(H) =
1

2
nr−1

∏

1≤i<j≤r

di,j ± nr−4/3.

We now prove Lemma 5.1.

Proof of Lemma 5.1. By applying Lemma 2.7, we may assume that each pair (Ai, Aj) is ((di,j −
4ε)+, ε1/3)-super-regular and that the complement is ((1 − di,j + 4ε)+, ε1/3)-super-regular. The
weight function ω will be a perturbation of the function which is uniformly 1/2 on H.

Fix a vertex v ∈ Ai. By the degree lower bounds for v to Aj with j 6= i and by Lemma 2.6
applied to |N(v) ∩Aj | for j 6= i to count copies of Kr−1, we have that

degH(v) =
∑

H∈H
H∋v

1 = nr−1
∏

1≤i<j≤r

di,j ± ε1/4nr−1.

Note that this implies that |E(H)| = nr
∏

1≤i<j≤r di,j ± ε1/4nr. We define the defect of a vertex v
as

Dv = degH(v)−
|E(H)|
n

.

Note that |Dv | ≤ 2ε1/4nr−1.
We will now define weight-shifting gadgets. For a pair of vertices v1, v2 ∈ Ar, let Rv1,v2 be the set

of (2r−1)-tuples of distinct vertices (v′1, . . . , v
′
2r−1) where v′2r−1 ∈ Ar, v

′
i, v

′
i+r−1 ∈ Ai for i ∈ [r−1],

and (v1, v
′
1, . . . , v

′
r−1), (v′2r−1, v

′
1, . . . , v

′
r−1), (v2, v

′
r, . . . , v

′
2r−2), and (v′2r−1, v

′
r, . . . , v

′
2r−2) are all in

H. By applying the counting lemma (Lemma 2.6) we have that

|Rv1,v2 | = n2r−1
∏

1≤i<j≤r−1

d2i,j
∏

1≤i≤r−1

d4i,r ± ε1/4n2r−1.

For each R ∈ Rv1,v2 , define f rv1,v2,R : H → R by assigning 0 to everything outside the four distin-

guished r-cliques ofR, assigning (Dv1−Dv2)/(2n|Rv1 ,v2 |) to (v′2r−1, v
′
1, . . . , v

′
r−1) and (v2, v

′
r, . . . , v

′
2r−2),

and assigning −(Dv1 − Dv2)/(2n|Rv1 ,v2 |) to (v1, v
′
1, . . . , v

′
r−1) and (v′2r−1, v

′
r, . . . , v

′
2r−2). Define

f rv1,v2 : H → R as the sum of all f rv1,v2,R over R ∈ Rv1,v2 . One can define the analogous con-

struction for each pair of vertices in the same part for different j ∈ [r], not just Ar. The modified
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function ω will simply be

ω(H) =
2−1nr−1

∏
1≤i<j≤r di,j

|E(H)|n−1

(
1 +

∑

1≤i≤r
v1,v2∈Ai

f iv1,v2(H)

)
.

Notice that the functions f iv1,v2 are mean zero upon averaging over all H ∈ H by construction
and therefore to prove the desired result it suffices to prove that for each pair of vertices v1, v2 ∈ Ai

there holds ∑

H∈H
H∋v1

ω(H) =
∑

H∈H
H∋v2

ω(H)

and that ω(H) ∈ [0, 1] for every H ∈ H. For the first claim notice that if v ∈ Aℓ then by construction
(
2−1nr−1

∏
1≤i<j≤r di,j

|E(H)|n−1

)−1 ∑

H∈H
H∋v

ω(H) =
∑

H∋v

(
1 +

∑

1≤i≤r
v1,v2∈Ai

f iv1,v2(H)

)

=
∑

H∋v

(
1 + 2

∑

v′∈Aℓ

f ℓv,v′(H)

)
=
∑

H∋v

1 +
∑

v′∈Aℓ

(Dv′ −Dv)

n

= degH(v)−Dv +
1

n

∑

v′∈Aℓ

D′
v =

|E(H)|
n

.

Thus it remains to prove that ω(H) ∈ [0, 1] for every H ∈ H. We saw above that for every v1, v2 ∈ Ai

there holds |Ri
v1,v2 | ≥ dO(1)n2r−1. Furthermore each hyperedge is given non-zero weight by at most

4rnr+1 gadgets f iv1,v2 . Finally, there holds

|f iv1,v2(H)| ≤ (|Dv1 |+ |Dv2 |)/(2n|Ri
v1 ,v2 |) ≤ 4ε1/4nr−1/(2n2rdO(1))

for every H ∈ H, and every v1, v2 ∈ Ai. This implies that∣∣∣∣
∑

1≤i≤r
v1,v2∈Ai

f iv1,v2(H)

∣∣∣∣ ≤ 4rnr+1 × 4ε1/4nr−1/(2n2rdO(1)) = ε1/4d−O(1).

As ε ≪ d and
2−1

∏
1≤i<j≤r di,jn

r−1

|E(H)|n−1 ∈ [1/3, 2/3] by the counting lemma (Lemma 2.6), the desired

result follows immediately. �

We are now in position to prove Theorem 1.9. Given Corollary 5.2 and Theorem 2.9, the proof
(via iterative absorption) is analogous to that of Theorem 1.5. First we prove a vortex lemma
similar to Lemma 3.1, but starting with the setup in Theorem 1.9.

Lemma 5.3 (Vortex). Fix r ≥ 2 and suppose 1/n ≪ η ≪ ε ≪ d. Let G = (V,E) be an r-
partite graph on partition V =

⋃r
j=1Aj where |Aj | = n for all j ∈ [r]. Suppose G[Aj , Ak] is

(dj,k, ε)-super-regular with dj,k ≥ d for all j 6= k. Then there exists a distribution on set sequences
V (G) = V0 ⊇ V1 ⊇ · · · ⊇ VN = X with the following properties:

V1 For every 0 ≤ i ≤ N there holds |Vi ∩Aj | = |Vi|/r for all j ∈ [r];
V2 For every 0 ≤ i < N there holds |Vi+1| = (1± η/N2)η|Vi|;
V3 |X| ∈ [n1/(r+2), n1/(r+1)];

V4 For every 0 ≤ i ≤ N and j 6= k there holds G[Vi ∩ Aj , Vi ∩ Ak] is (d
(i)
j,k, ε

1/20)-super-regular

for some d
(i)
j,k = dj,k ± 2ε;

V5 For every 0 ≤ i < N , j 6= k, and v ∈ Vi ∩ Aj there holds degG(v, Vi+1 ∩ Ak) ≥ (di,j −
2ε)|Vi+1|/r;
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V6 For every vertex set {v1, . . . , vm} ⊆ V (H) and every vector ~x ∈ {0, . . . , N}m there holds

P

[ m∧

i=1

(vi ∈ Vxi)

]
≤

m∏

i=1

2|Vxi |
n

.

Proof. First, consider the distribution of set sequences V (G) = U0 ⊇ · · · ⊇ UN obtained as follows:
Set U0 = V (G). For as long as |Ui| > n1/(r+1), for each j ∈ [r] let Ui+1 ∩ Vj be a uniformly random
subset of Ui ∩ Vr of size exactly ⌈η|Ui+1|/r⌉. Observe that V1, V3, and V3 hold by definition.
Chernoff’s inequality for hypergeometric distributions (Lemma 2.1) and a union bound imply that
V5 holds w.h.p.

Showing that V4 holds w.h.p. requires a little more work. Let i ∈ [N ] and j, k ∈ [r] be distinct.
We use regularity and Chernoff’s inequality to show that with all but exponentially small probability
there holds d(Ui∩Aj, Ui∩Ak) = dj,k±2ε. In order to show that G[Ui ∩Aj, Ui∩Ak] is ε1/20-regular
we use the well-known equivalence between the sums of codegrees and regularity [7]. That is, we first
use McDiarmid’s inequality (Lemma 2.3) to prove that with all but exponentially small probability
there holds
∑

u,v∈Ui∩Aj

|{w ∈ Ui ∩Ak : uw, vw ∈ E(G)}| = (1± o(1))

( |Ui|
|V |

)3 ∑

u,v∈Aj

|{w ∈ Ak : uw, vw ∈ E(G)}|.

Since (Aj , Ak) is (dj,k, ε)-regular the sum on the right is equal to n3d2j,k ± ε1/4n3. Hence the sum

on the left is equal to |Ui ∩Aj|3d2j,k ± ε1/5|Ui|3. But this, in turn, implies that G[Ui ∩Aj, Ui ∩Ak] is

ε1/20-regular. In order to show super-regularity it remains to verify the minimum degree condition;
this follows immediately from V5.

Next, let {v1, . . . , vm} ⊆ V (G) and ~x ∈ {0, . . . , N}m. Clearly

P

[ m∧

i=1

(vi ∈ Uxi)

]
≤

m∏

i=1

3|Uxi |
2n

,

since each next set Ui+1 of the binomial set process can be coupled inside a η(1 + 1/N2)-binomial
random subset, say, of the current set Ui (and multiplying over at most N steps).

Let E be the event that properties V1 to V5 hold for U0, . . . , UN . Let V0 ⊇ · · · ⊇ VN be
the distribution obtained by conditioning U0 ⊇ · · · ⊇ UN on the occurrence of E . By definition,
V0 ⊇ · · · ⊇ VN satisfies properties V1 to V5. Furthermore, for every nonempty {v1, . . . , vm} ⊆ V (G)
and ~x ∈ {0, . . . , N}m:

P

[ m∧

i=1

(vi ∈ Vxi)

]
= P

[ m∧

i=1

(vi ∈ Uxi)

∣∣∣∣E
]
≤ P

[∧m
i=1(vi ∈ Uxi)

]

P[E ] ≤
m∏

i=1

2|Vxi |
n

,

as desired. The last inequality comes from applying V2 iteratively at most N times. �

Next we prove a cover-down lemma similar to Lemma 3.3.

Lemma 5.4 (Cover-down lemma). Fix r ≥ 2 and suppose 1/m ≪ η ≪ ε ≪ d. Let G = (V,E) be
a r-partite graph on partition V =

⋃r
j=1Aj where |Aj | = m for all j ∈ [r]. Suppose G[Aj , Ak] is

(dj,k, ε)-super-regular with 1/2 ≥ dj,k ≥ d for all j 6= k. Let U ⊆ V (G) satisfy |U ∩Aj | = |U |/r for
all j ∈ [r] and |U | = (1±η)η(rm). Suppose that for all j 6= k and v ∈ Aj we have degG(v, U ∩Ak) ≥
(di,j − ε)|U |/r, and for j 6= k we have that G[U ∩ Aj , U ∩ Ak] is (d′j,k, ε)-super-regular for some

1/2 ≥ d′j,k ≥ d. Then there exists a Cη/m
r−1-spread distribution on partial Kr-factors M of G that

satisfies:

C1 M covers every vertex in V (G) \ U ;
C2 M covers at most η|U | vertices in U .
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Proof. We first construct the random partial Kr-factor M .
Step 1: Finding a regular clique system. We will find a regular collection of cliques of G[V \ U ]

by applying Corollary 5.2. Let V ′ := V \ U and G′ := G[V ′]. Observe that G′[V ′ ∩ Aj , V
′ ∩ Ak]

is (d′j,k, 2ε)-super-regular for some d′j,k ∈ [dj,k ± 2ε] since we removed a small (with respect to ε)

fraction. Since |V ′ ∩ Aj| ≥ m/2 is sufficiently large with respect to ε and the part sizes are equal

by the given conditions, we can apply Corollary 5.2 to find a set H̃ of r-cliques of G′ so that every
v ∈ V ′ is contained in

1

2
nr−1

∏

1≤i<j≤r

d′i,j ± nr−4/3

many cliques.

Step 2: Finding a spread approximate matching. We apply Lemma 2.4 to H̃ to find anOη,r(1/m
k−1)-

spread matching M̃ ⊆ H̃ covering all but at most η6|V ′| vertices of V ′.

Step 3: Covering remaining vertices in V \U . Conditioning on M̃ , let v1, . . . , vt be an enumeration

of the uncovered vertices V \ (V (M̃) ∪ U), noting t ≤ η6|V ′|. Note that there are an equal amount

in each part Aj for j ∈ [r]. We extend M̃ to a partial Kr-factor M covering all of V \U (and some
of U) using a random greedy algorithm: Iterating through i = 1, . . . , t, for each vi choose, uniformly

at random, an r-clique Ti of G containing vi and k− 1 vertices in U that is vertex-disjoint from M̃
and all Tj for j < i.

We note that this procedure is sure to be successful. Indeed, before choosing any hyperedge Ti,

every vertex v ∈ Aj satisfies degG(v, U ∩Ak) ≥ (dj,k − ε)|U |/r. Furthermore, since M̃ is contained

entirely in V \ U , none of these hyperedges intersect M̃ . Thus, for some Ti with vi ∈ Aj, there are
at least

∏

k 6=j

(|U |/r)
(∏

k 6=j

(dj,k − ε)
∏

1≤k1<k2≤r
k1,k2 6=j

dk1,k2 −Cε

)

choices for Ti by Lemma 2.6 and the super-regularity of the pairs (U ∩Ak1 , U ∩Ak2). Additionally,
every other hyperedge Tj intersects at most (r − 1)|U |r−2 possible choices for Ti. Since t(r −
1)|U |r−2 ≤ (η6m)(r − 1)|U |r−2 ≤ η|U |r−1, there are always at least say

(|U |/(2r))r−1
∏

1≤j<k≤r

dj,k

choices available for Ti regardless of the prior choices.

For the final matching we take M := M̃ ∪ {T1, . . . , Tt}. Clearly, M covers all vertices in V \ U ,
proving C1. Moreover it covers (r − 1)t ≤ η|U | vertices in U , proving C2.

It remains to show that M is Oη(1/m
r−1)-spread. Let S be a set of r-cliques of G. We need to

show that PS := P[S ⊆M ] = (O(1/m))(r−1)|S|. First, we may assume that S is a partial Kr-factor.

Furthermore, if S ⊆ M then every r-clique in S is either included in M̃ (in which case it has all k
vertices in V \ U) or it is one of the hyperedges T1, . . . , Tt (in which case it has exactly one vertex
in V \ U). So we may assume that every hyperedge in S has either one or k vertices in V \ U . Let
Sk be those hyperedges in S with all vertices in V \ U , and let S1 = S \ Sk be those hyperedges in
S with only one vertex in V \ U . We now have:

PS = P
[
Sk ⊆ M̃

]
P
[
S1 ⊆M \ M̃ |Sk ⊆ M̃

]
.

By construction, M̃ is Oη(1/m
k−1)-spread, so P[Sk ⊆ M̃ ] = (O(1/mk−1))|Sk|. Next, we observe

that after conditioning on any outcome of M̃ , it holds that S1 ⊆M \ M̃ only if for every hyperedge
T ∈ S1, the hyperedge chosen to match the (unique) vertex in T \U was T . Since every such choice
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is made uniformly from at least (|U |/(2r))r−1
∏

1≤j<k≤r dj,k = Ωη(m
k−1) possibilities, it follows

that P[S1 ⊆M \ M̃ |Sk ⊆ M̃ ] = (O(1/mk−1))|S1|. Thus PS = (O(1/m))(k−1)|S|, as desired. �

Now we prove Theorem 1.9.

Proof of Theorem 1.9. First, note that we may assume dj,k ≤ 1/3 for all j 6= k by considering a ran-
dom 1/3-sample of the edges of the graph G and adjusting parameters appropriately. Additionally,
we then choose parameters so that

1/n≪ η ≪ ε≪ d ≤ 1/3,

treating our choice of η ultimately as a function of d, ε. By renaming parameters we may assume
that all the pairs in G are ε20-super-regular.

Using Lemma 5.3, let V (G) = V0 ⊇ V1 ⊇ · · · ⊇ VN = X be a random sequence of sets satisfying
properties V1 to V6 in Lemma 5.3.

We will inductively construct (random) partial Kr-factors M0 ⊆ M1 ⊆ · · · ⊆ MN , satisfying the
following properties for every 0 ≤ i ≤ N . For notational convenience we set VN+1 = ∅.

(1) Mi is O(1/|Vi|k−1)-spread;
(2) Mi covers all vertices in V (G) \ Vi;
(3) |V (Mi) ∩ Vi| ≤ 2η|Vi|; and
(4) V (Mi) ∩ Vi+1 = ∅.

We begin by taking M0 = ∅. Now, suppose that for i < N we have constructed Mi with the
properties above. Let V ′

i = Vi \ (V (Mi) ∪ Vi+2) and let Gi = G[V ′
i ]. Note Vi+1 ⊆ V ′

i . Observe that
Gi and U = Vi+1 \ Vi+2 ⊆ V (Gi) satisfy the hypotheses of Lemma 5.4 for m = |V ′

i | and slightly
modified parameters dj,k, d

′
j,k, ε, using V1 and V2 for the set sizes, V5 for the degree condition, and

V4 for i, i+ 1 for the super-regularity conditions (plus Vi+1 ⊆ V ′
i as well as the fact that removing

Vi+2 is removing a negligible η-fraction of Vi+1 and thus does not affect these conditions severely).
By applying Lemma 5.4 to Gi, U = Vi+1 \ Vi+2 in this situation we obtain an Oη(1/|Vi|k−1)-spread
partial Kr-factor M

′
i covering all vertices in V ′

i \ Vi+1, at most 2η|Vi+1| vertices in Vi+1, and no
vertices in Vi+2. By taking Mi+1 =Mi ∪M ′

i we complete the inductive step.
Finally, to obtain a perfect matching, note that if MN satisfies the properties above then V4 for

i = N and the fact that we only delete a small fraction of VN means that we have a super-regular
remainder, to which Theorem 2.9 applies (with H being a disjoint collection of r-cliques and R = Kr

underlying the r-partite structure of G1 = G[V (G) \ V (MN )] induced by A1, . . . , Ar). That is, we

have a Kr-factor M̃ of G[V (G) \ V (MN )]. Take M =MN ∪ M̃ .
It remains to prove that M is O(1/nr−1)-spread. Let S be a set of r-cliques. We need to show

that PS := P[S ⊆ M ] = (Oη(1/n
r−1))|S|. Let T1, . . . , Tm be an enumeration of the r-cliques in S.

For a vector ~x ∈ [N + 1]m, let P (~x) be the probability that for every j ∈ [m], the clique Tj is in

Mxj \Mxj−1 if xj ≤ N , and Tj ∈ M̃ if xj = N + 1. We can, essentially identically to the proof of
(3.1) within the proof of Theorem 1.5, show that

P (~x) =

( N∏

i=1

(
Oη

( |Vi−1|
nr

))|{j : xj=i}|)( |VN |
n

)r|{j : xj=N+1}|

. (5.1)

We truncate the details: we use the randomness guarantee V6 in Lemma 5.3 and the Oη(1/|Vi|k−1)-
spreadness of the M ′

i =Mi+1 \Mi. Then, similarly, we deduce

PS =
∑

~x∈[N+1]m

P (~x) =
∑

~x∈[N+1]m

(
N∏

i=1

(
Oη

( |Vi−1|
nk

))|{j : xj=i}|
)( |VN |

n

)r|{j : xj=N+1}|
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=

(
Oη(1)

nr−1

)m ∑

~x∈[N+1]m

(
N∏

i=1

(ηi)|{j : xj=i}|

)( |VN |r
n

)|{j : xj=N+1}|

=

(
Oη

(
1

nr−1

))m m∏

j=1

(
N∑

i=1

ηi +
nr/(r+1)

n

)
=

(
Oη

(
1

nr−1

))m

. �

6. Robust Hajnal–Szemerédi Theorem and counting Kr-factors

We are now in position to use our analysis in order to prove that a version of the robust Hajnal–
Szemerédi theorem, Theorem 1.6, holds. We first show that Theorem 1.6 follows from Theorem 1.7,
which will be the main focus for the rest of the section.

Proof of Theorem 1.6 from Theorem 1.7. We rely on theorems of Riordan ([43, Theorem 1] for r ≥ 4
and [43, Theorem 16] for r = 3) that couple the random binomial hypergraph with the clique complex
of the random binomial graph. The result we need is that there exists a constant a > 0 such that for

every (fixed) r ∈ N and p ≤ log2(n)/nr−1, denoting q = ap1/(
r
2
), there exists a coupling of G(r)(n, p)

and G(n, q) such that w.h.p. H ′ ∼ G
(r)(n, p) is contained in the r-clique complex of G′ ∼ G(n, q).

(We note that Riordan proves a substantially more precise result when r ≥ 4 obtaining the optimal
constant a for the complete hypergraph; an analogous result for r = 3 was proven by [22].)

Denote the r-clique complex of G by H. Theorem 1.7 and Theorem 1.2 imply that for some
C1 > 0, denoting p = C1 log n/n

r−1, w.h.p. H(p) (i.e., the random binomial subgraph of H with
rate p) contains a perfect matching. Riordan’s theorems imply that there exists a coupling of

G(ap1/(
r
2
)) and H(p) such that for G′ ∼ G(ap1/(

r
2
)) and H ′ ∼ H(p) w.h.p. H ′ is contained in

the clique complex of G′. In particular, w.h.p. both H ′ both contains a perfect matching and is
contained in the clique complex of G′, which together imply that G′ contains a Kr-factor.

For the counting result, note that we have an O(1/nr−1)-spread measure on the set of Kr-factors,
each of which is composed of n/r many r-cliques. Therefore, for some C > 0, each factor occurs with

probability at most (C/nr−1)n/r by the spread condition, so there are at least (nr−1/Cr−1)n/r =

(n/C)(r−1)n/r total factors. �

We define the key property of being somewhat near an extremal structure (complete balanced
r-partite graph) in a specific sense.

Definition 6.1. We say that graph G is (r, α)-sparse if there is A ⊆ G with |A| = ⌊|V (G)|/r⌋
such that dG(A) ≤ α. We say it is α-disconnected if there is a partition V (G) = A ∪ B with
|A| = ⌊|V (G)|/2⌋ and dG(A,B) ≤ α.

6.1. Non-sparse setting. We next show the result when G is not (r, α)-sparse for appropriate α.

Lemma 6.2. Let r|n and α < α6.2(r) and θ = θ6.2(r, α, α
′). Let G be an n-vertex graph. If

δ(G) ≥ (r − 1)n/r − θn and G is not (r, α)-sparse, and furthermore if r = 2 then G is not α-
disconnected, then there is a C6.2(r, α)/n

r−1-spread distribution on the set of Kr-factors of G.

The proof is a slight simplification of the proof for triangles presented in [1, Lemma 9.1]; as
the details are not as delicate in the non-extremal case we will be brief. The main task of the
algorithm is noting that given a regularity partition, one can find a Kr-factor of the reduced graph
covering almost all vertices, and the small remainder (and vertices within the regularity partition
of exceptional degree) can be handled in a spread manner.

We will first require a version of the Hajnal–Szemerédi Theorem itself [20].

Theorem 6.3. Let n, k ≥ 2 be integers and let 0 ≤ x < 1. Suppose that G is an n-vertex graph
with δ(G) ≥

(
k−1
k − x

)
n. Then G contains a Kk-matching of size at least (1− k(k − 1)x)⌊nk ⌋.
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The crucial input from [1] is a robust fractional version of the Hajnal–Szemerédi Theorem.

Theorem 6.4 ([1, Theorem 7.4]). Fix k ≥ 2 and η > 0. There exists γ = γ(k, η) > 0 such
that the following holds for all m. Let G be a connected graph on m vertices with δ(G) ≥ ((k −
1)/k − γ)m and α(G) < (1/k − η)m. Let λ : V (G) → N be a weight function such that λ(u) =
(1 ± γ

2 )(
1
m

∑
v∈V (G) λ(v)) and λ(u) ≥ m2k for all u ∈ V (G), and k divides

∑
v∈V (G) λ(v). Then

there exists a weight function ω : Kk(G) → N ∪ {0} such that
∑

K∈Kk(G)
K∋u

ω(K) = λ(u) for all

u ∈ V (G).

We now prove Lemma 6.2.

Proof of Lemma 6.2. Fix a sequence of constants 0 < 1
m0

≪ θ ≪ ε≪ d≪ α≪ 1 satisfying various

constraints throughout the proof. Given a graph G, apply Lemma 2.11 and consider the (ε, d)-
reduced graph R which is returned and note that R has m ∈ [m0,M0] vertices. Let the underlying ε-
regular partition of V (G) be V0∪V1∪· · ·∪Vm and note by Lemma 2.11 that δ(R) ≥ ((r−1)/r−4d)m.

We first claim that the independence number of G is suitably large. This is the analogue of
[1, Claim 9.4].

Claim 6.5. We have that α(R) < (1r − α2)m.

Proof. Suppose that R has an independent set S of size (1/r − α2)m. Let S′ =
⋃

j∈S Vj ⊆ V (G).

By the definition of the (ε, d)-reduced graph, we have that eG(S
′) ≤ (2ε + d)n2 and |S′| ≥ (1 −

ε)(1/r−α2)n ≥ (1/r− 2α2)n. Adding an arbitrary set of n/r− |S′| many additional vertices to S′,
gives a set of size exactly n/r with at most 4α2n2 edges in G. This contradicts the fact that G is
not (r, α)-sparse. �

We next require that R is a connected graph. This is necessary to verify the connectedness
assumption which appears within Theorem 6.4; this is the unique place where the assumption that
G is not α-disconnected is required.

Claim 6.6. The graph R is connected.

Proof. For r ≥ 3, the claim is immediate as δ(R) ≥ 3m/5. For r = 2, note that we have that δ(R) ≥
(1/2−4d)m. Therefore, if R is not connected, then there are at most 2 connected components each of
size at least (1/2−4d)m. Let the connected components of R be S1 and S2 and define S′

i =
⋃

j∈Si
Vj

for i ∈ [2]. By the definition of an (ε, d)-reduced graph, we have that eG(S
′
1, S

′
2) ≤ (2ε + d)n2 and

that |S′
1|, |S′

2| ≥ (1− ε)(1/2− 4d)n ≥ (1/2− 5d)n. This immediately implies, using |V0| ≤ εn, that
eG(V0 ∪ S′

1, S
′
2) ≤ 5dn2 and that ||(V0 ∪ S′

1)| − |S′
2|| ≤ 11dn. Rebalancing (V0 ∪ S′

1) and S′
2 to give

an equipartition of V (G), we obtain a contradiction to the fact that G is not α-disconnected. �

We now consider the reduced graph R and the induced partition on the vertex set V0∪V1∪· · ·∪Vm.
By applying Claim 6.5 and Theorem 6.3, there exists a partial Kr-factor Tr of the reduced graph R
which cover all but Or(dm) vertices in R. Let T ∗ = V (Tr) and for each clique {i1, . . . , ir} in Tr, we
can pass to a subset V ∗

i1
, . . . , V ∗

ir with |V ∗
ir | = (1− rε)|V1| and (V ∗

ij
, V ∗

iℓ
) being (2ε, (d − ε)+, d− kε)-

super-regular (see [1, Lemma 2.9]).
We define X = V0 ∪

⋃
j /∈T ∗ Vj ∪

⋃
i∈[m](Vi \ V ∗

i ). Note that |X| .r dn. We now proceed with the

following algorithm.

• Order the vertices in X as {v1, . . . , v|X|} arbitrarily. Define G0 = V (G); Gi will correspond
to the vertex set after the vertex vi has been matched.

• For each vertex vℓ in X, choose a uniformly random clique extending vℓ within Gℓ−1 which
does not contain an additional vertex of X. Update Gℓ to be the vertices in Gℓ−1 minus the
set of vertices in the chosen clique.
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We now prove a number of basic properties of the algorithm

Claim 6.7. The algorithm satisfies the following properties:

• The algorithm always runs to completion;
• The random set of cliques created by the algorithm is Or(1/n

r−1)-spread;
• For any subset of vertices S ⊆ V (G) \X we have

P[|S ∩ (G0 \G|X|)| ≥
√
d|S|] ≤ exp(−Ωr(

√
d|S|)).

Proof. For the first part, we consider the degree of vℓ in the remaining graph. Notice that the degree
of vℓ is always at least ((r − 1)/r)n − r|X| ≥ ((r − 1)/r − Crd)n for an appropriate constant Cr.
Note that any subset of size T of size (r − 1)n/r in G has at least

e(G[T ]) =
1

2

∑

v∈T

degG(v)−
1

2
|G[T, T c]| ≥ |T |/2 · ((r − 1)n/r − θn)− 1

2
|T |(n/r)

≥ |T |/2 · ((r − 2)n/r − d2n) ≥ |T |2/2 · ((r − 2)/(r − 1)− d)

edges. This implies that the density of the edge set of the neighbors of X is at least (r − 2)/(r −
1)−C ′

rd and therefore by supersaturation for Turan’s theorem there are at least Ωr(n
r−1) possible

cliques at each stage. (Notice that the Turan threshold for finding a Kr−1 is (r−3)/(r−2) which is
strictly below the density specified.) This essentially immediately implies the first two statements
in the claim.

For the third claim, notice that there are at most |S|nr−2 cliques of size r containing an element

of S and thus the result follows notice that |X| ≤
√
dn/r and the binomial domination lemma

(Lemma 2.2) noting that at each stage we can remove at most r vertices in S. �

By applying Claim 6.7 we have with probability at least 1/2 that

• |V ∗
i ∩G|X|| ≥ (1−

√
d)|V ∗

i |
• For each edge in the clique factor Tr we have that the corresponding pair of parts formed by
V ∗
i ∩G|X| and V ∗

j ∩G|X| are still (4ε, (d/2)+, d/4)-super-regular by considering the number
of vertices deleted in each part, and the number of neighbors of a given vertex which are
deleted, controlled via the third bullet of Claim 6.7.

• For a pair (V ∗
i , V

∗
j ) where each (i, j) appears in R, we have that (V ∗

i ∩ G|X|, V
∗
j ∩ G|X|) is

(4ε, (d/2)+)-regular. This is immediate by considering the number of vertices deleted from
Vi to obtain V ∗

i ∩G|X|.

For the sake of clarity define V ′
i = V ∗

i ∩G|X| for i ∈ V (Tr). The key issue at this point however is
the various parts corresponding to each clique of the Kr-factor in Tr, while relatively close in size,
are not balanced appropriately. The next crucial trick is to use Theorem 6.4 in order to remove a
certain number of triangles and “rebalance” the part sizes in V ′

i . For the sake of simplicity we let
R′ denote the restriction of the graph R onto the vertices of V (Tr) in the obvious manner.

In order to apply Theorem 6.4, we define λ(i) = |V ′
i |−⌈n/m(1−d1/3)⌉. Notice that

∑
i∈V (Tr)

λ(i)

is divisible by r and
∑

i∈V (Tr)
|V ′

i | is the number of remaining vertices and there are r|Tr| remaining

parts. Furthermore λ(i) ∈ (d1/3±d1/4)(n/(10m)), δ(R′) ≥ ((r−1)/r−Crd)m, α(R′) < (1/r−α2)m,
and |r|Tr|| = m(1 ± Or(d)). As d ≪ α, there exists a weight function on ω : Kr(R

′) → N by
Theorem 6.4 such that for all i ∈ V (Tr) we have that

∑

K∈Kr(R′)
K∋i

ω(K) = λ(i).

(Note that strictly speaking one needs to check that the graph on R′ is connected, but the proof
given in Claim 6.6 is obviously robust to perturbations of the vertex set of R of size O(dm).)
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Notice that if we can remove ω(K) cliques in a disjoint manner from the corresponding r-partite

set of regular pairs, then we are left |V ′
i | − λ(i) = ⌈n/m(1 − d1/3)⌉ vertices in each part. This

immediately gives the desired result, provided the parts left are sufficiently well behaved. The
crucial difficulty is guaranteeing the necessary super-regularity at the end of the algorithm; to do
so we split V ′

i = V ′′
i ∪ V ′′′

i where each vertex of V ′
i is placed with probability 1/2 independently at

random in V ′′
i or V ′′′

i . Consider the clique K which contains i in Tr; then for all remaining j ∈ K,
we have for each vertex v ∈ V ′

j that deg(v, V ′′
i ) ≥ (d/8)|V ′′

i | by super-regularity. Furthermore we

have that |V ′′
i | = (1/2 ± 1/3)|V ′

i | by the union bound with high probability.
We now proceed with the following algorithm.

• Order the cliques in Kr(R
′) in an arbitrary manner.

• Given a clique K ∈ Kr(R
′) consider the parts V ′′′

i where i ∈ K. For ω(K) steps, iteratively
remove a random clique with each vertex in V ′′′

i which does not intersect previously chosen
cliques.

We now note that the above algorithm trivially runs to completion and is appropriately spread.
To see that the algorithm runs to completion note that we remove at most λ(i) vertices from a
part V ′′′

i and hence we have that least (say) |V ′′′
i |/2 choices for the vertex in each part and the

counting-lemma guarantees there are Ω(nr) choices in each stage. Furthermore the algorithm is
trivially sufficiently spread as there are only O(n) rounds and the choice of each clique is uniformly
random among a set of size Ω(nr) at each step (conditional on the previous choices). Finally pairs
for each K are still suitably super-regular as the minimum degree condition is preserved by looking
at edges in V ′′

i and regularity is preserved as we are left with a constant fraction of each vertex set
V ′
i . We then take any pair of parts appearing in a clique in Tr, apply Lemma 2.5, and then apply

Theorem 1.9 in order to give an Od,ε(1/n
r−1)-spread factor covering the remaining vertices. This

completes the proof. �

6.2. Reduction to non-sparse setting. We now prove Theorem 1.7 by reducing to applications
of Lemma 6.2 and Theorem 1.9.

Proof of Theorem 1.7. We are given G on r|n vertices V = V (G) with δ(G) ≥ (r − 1)n/r and wish
to create. The argument is similar to [33, Section 6]. Given r, consider parameters

1/n ≪ α1 ≪ α2 ≪ · · · ≪ αr ≪ 1/r

with appropriate space between each pair.
We iterate over i ∈ {1, . . . , r} and at each step, if possible, find Ai ⊆ V \ (A1 ∪ · · · ∪Ai−1) such

that |Ai| = n/r and dG(Ai) ≤ αi. Let m ∈ {0, . . . , r} be the number of steps that successfully go
through. Let A≥1 = A1 ∪ · · · ∪Am and B = V (G) \ A. We write A0 = B for convenience, and let
the resulting partition be denoted A. Note that m = 0 corresponds directly to Lemma 6.2, except
in the case r = 2 where there is a slight difference; in general we will apply Lemma 6.2 with r
replaced by r −m to create a Kr−m-factor on a set roughly similar to B, then find a Km+1-factor
of a corresponding reduced near-partite graph using Theorem 1.9.

Let α = αm and β = αm+1, note α≪ β, and note that G[A1], . . . , G[Am] have densities bounded
by α while G[B] is such that every set of size n/r has density at least β. Consider η satisfying
β ≪ η ≪ 1/r with appropriate space between the pairs. We define a notion of vertices that do not
look like they respect the partition, in the sense that their degrees are not what they should be if
G[A1], . . . , G[Am] were empty.

Definition 6.8 (Bad and exceptional vertices). Given a partition P = P1 ∪ · · · ∪ Pm ∪ P0 of V
with P≥1 = P1 ∪ · · · ∪ Pm and |Pi| = n/r for i ∈ [m], we define bad and exceptional vertices as
follows. For i ∈ [m], let v ∈ V be called (i, η∗)-bad wrt P if degG(v, Pi) ≥ η∗|Pi|. We say that v
is (0, η∗)-bad wrt P if degG(v, P≥1) ≤ (1 − η∗)|P≥1|. For j ∈ [m] we say that a vertex v ∈ V is
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j-exceptional wrt P if degG(v, Pj) ≤ η∗|Pj |/2. For i ∈ [m] we say that v ∈ V is (0, η∗)-exceptional
wrt P if degG(v, P0) ≤ (r −m − 1 + η∗/2)n/r. We will often drop η∗ and specification of P from
the notation where it is clear.

For the purpose of the argument we have defined these notions over all of V (G), but we will
be most interested in i-bad vertices contained in Pi as well as j-exceptional vertices that are not
contained in Pj .

Notice that if v is (j, 1/8)-exceptional with respect to P then almost all of its “degree deficit”
(which is at most n/r−1) is used up by the edges between v and Pj , and hence v is nearly complete
to Pi for all i 6= j hence is (i, 1/8)-bad for all i /∈ {0, j}. Furthermore, if i = 0 and j 6= i then by
inspection we see v is still (i, 1/8)-bad. Thus, if v is (j, 1/8)-exceptional then it is (i, 1/8)-bad for
all i 6= j.

Finally, given a partition P of some vertex set P1 ∪ · · · ∪ Pm ∪ P0, we say it is balanced if
|P1| = · · · = |Pm| and |P0| = (r −m)|P1|. We say a clique Kr is balanced with respect to P if it
has 1 vertex in each Pi for i ∈ [m], and r −m in P0.

6.2.1. Connected case. We first assume that either m 6= r− 2 or if m = r− 2 then that G[B] is not
αm+1-disconnected. Using dG(Ai) ≤ α and say α ≤ η8, we see that there are at most α2/3n many
(i, η2)-bad vertices wrt A for each i ∈ [m] by Markov. A similar Markov argument shows there are

also at most α2/3n many (0, η2)-bad vertices wrt A. Indeed, by the minimum degree condition and
dG(Ai) ≤ α we see that the number of edges eG(Ai, B) is at least (r −m)n2/r2 − 2αn2 hence

eG(A,B) ≥ m(r −m)n2/r2 − 2mαn2.

But |B| = (r − m)n/r and degG(v,A) ≤ mn/r, so Markov applied to the quantities mn/r −
degG(v,A) over v ∈ B yields the desired result.

Step 1: Cleaning the partition. We modify A into a partition A′ slightly in the following
manner:

• Initialize with A′ = A.
• If there are distinct i, j ∈ {0, . . . ,m} and v ∈ A′

i which is (i, η2)-bad wrt A and w ∈ A′
j

which is (i, η1/2)-exceptional wrt A, we swap the positions of v,w in A′
i, A

′
j .

• Continue this operation until there are no possible choices, then terminate.

We claim this actually terminates, and in fact terminates in at most α1/2n steps total. Indeed, note
that every step the following quantity strictly decreases, and it starts at size at most α3/5n by the
above analysis: the number of (i, v) ∈ {0, . . . ,m} × V (G) such that v ∈ A′

i and v is (i, η2)-bad wrt
A. This is because at the start of a valid step both v,w contribute to this condition but at the end
of it, only v can contribute (and everything else is left unchanged since we are measuring wrt the
original partition A). We are using that (i, 1/8)-exceptional vertices are (j, 1/8)-bad with respect
to all other indices j 6= i.

Now since A′ differs from A by few vertices, we actually find that for each i ∈ {0, . . . ,m}, either
there are no v ∈ A′

i which is (i, η)-bad wrt A′ or there are no (i, η)-exceptional vertices wrt A′ not in

A′
i (or both). Furthermore, dG(A

′
i) ≤ α1/2 for all i ∈ [m], say, and the part sizes of A′ are balanced

in the same way as before. The goal at this point is to cover vertices with “balanced” cliques, i.e.,
ones where there are r − m vertices in A′

0 and 1 in each A′
i for i 6= 0. However, the exceptional

vertices will require a different treatment.
Step 2: Covering exceptional vertices. Our first goal is to cover all exceptional vertices by r-

cliques in a spread manner, leaving a balanced partition behind. The idea is that an (i, η)-exceptional
vertex, even though it is in some A′

j , is better utilized if we “swap” it to A′
i. To counterbalance

this, something must be “swapped” back. Equivalently, we will cover i-exceptional vertices in A′
j by

r-cliques which contain one “extra” vertex in A′
j and one fewer vertex in Ai (compared to a balanced
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clique), and this will be accompanied by a clique with one extra vertex in A′
i and one fewer vertex

in Aj (compared to balanced).
Suppose there are xi 6= 0 many (i, η)-exceptional vertices wrt A′ that are not in A′

i. Since there
exist such vertices, the earlier cleaning step shows that there are no v ∈ A′

i that are (i, η)-bad wrt
A′. Now we double-count eG(A

′
i, V \A′

i). If i 6= 0 every exceptional vertex contributes at most ηn/2
edges, and the rest contribute at most n/r edges, so that

eG(A
′
i, V \A′

i) ≤ (r − 1)n2/r2 − xi(n/r − ηn/2).

On the other hand, each of n/r vertices inA′
i has degree at least (r−1)n/r, so the above demonstrates

that eG(A
′
i) ≥ xin/(3r), say. A similar argument works for i = 0, except that the bound is replaced

by eG(A
′
0, V \A′

0) ≤ m(r −m)n2/r2 − xi(n/r − ηn/2) and thus in fact

eG(A
′
0, A

′
0) ≥ (r −m)(r −m− 1)n2/r2 + xin/(3r) ≥ xin/(3r).

So either way G[A′
i] has at least xin/(3r) edges, and since there are no (i, η)-bad vertices in A′

i,
it has maximum degree at most ηn. It also has n/r vertices for i 6= 0 and (r −m)n/r vertices for
i = 0. Now perform the following random process: sample each edge with probability 6r/n and
delete edges whose endpoints are included in more than 1 sampled edge, then condition on having at
least xi remaining edges with the property that both endpoints are not (i, η)-bad. Then uniformly
at random choose xi such edges.

The maximum degree condition along with the fact that there are very few i-bad vertices in A′
i

demonstrates that the desired event we condition on occurs with probability at least 1/100, and
then we see that the choice of edges is O(1/n)-spread. Having done this, for all i ∈ {0, . . . ,m} we
now cover all (i, η)-exceptional vertices not in A′

i and all of these chosen edges by r-cliques in a

sufficiently spread manner. Notice that the total amount of these is small, say at most α2/5n in
total. Furthermore, every (i, η)-exceptional vertex not in A′

i has used up most of its “degree deficit”
on A′

i, which means that it is nearly complete to V \A′
i, and every constructed edge in A′

i has both
endpoints not (i, η)-bad hence they similarly are nearly complete to V \ A′

i. We therefore easily
find that the (i, η)-exceptional vertices in A′

j (with j 6= i) are contained in Ω(nr−1) many r-cliques

with one “extra” vertex in A′
j and one fewer in A′

i; similarly, the constructed edges within A′
i whose

endpoints are not (i, η)-bad are contained in Ω(nr−2) many r-cliques with one “extra” vertex within
A′

i and one fewer in some prescribed A′
j . (Here we are using the robust counting version of Turán’s

theorem or similar argumentation.)
Choosing such r-cliques iteratively uniformly at random such that they do not overlap the pre-

viously chosen cliques, we can easily argue that the resulting collection of r-cliques is O(1/nr−1)-
spread. Furthermore, since we chose xi edges within each A′

i, the removal of all these r-cliques
leaves a resulting (random) partition A′′, V ′ = A′′

1 ∪ · · · ∪ A′′
m ∪ A′′

0 which is still balanced. Note

that we only removed at most say α1/3n vertices total so far.
Step 3: Covering 0-bad vertices. Our second goal is to cover all (0, η)-bad vertices (wrt A′)

that remain in A′′
0 (in a spread manner and leaving a balanced partition behind to which we can

begin to apply Theorem 1.9). Again, there are very few of them. At this point, since we removed
all (i, η)-exceptional vertices (wrt A′) outside A′

i for each i, every such v ∈ A′′
0 has degree at least

ηn/(2r) to each A′
1, . . . , A

′
m hence degree at least ηn/(3r) to each A′′

1 , . . . , A
′′
m.

We uniformly at random choose vertices in each such neighborhood (that have not yet been
chosen), conditional on forming an (m+1)-clique with v and conditional on each such vertex in say

A′′
j being (j, η)-good wrt A′ (there are at most say α1/3n such bad vertices, but at least ηn/(3r)

choices, and α ≪ η, so this conditioning does not distort the randomness too much). Then the
common neighborhood of these m extra vertices within A′′

0 is nearly all of A′′
0 , and we thus easily

argue that there are Ωη(n
r−1) total choices of balanced clique Kr containing v. (Again, we are using

the robust counting version of Turán’s theorem.) We can iteratively at random disjointly remove
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such cliques over all the (0, η)-bad vertices in A′′
0, of which there are at most say α1/3n. Similar to

before, this can be shown to be Oη(1/n
r−1)-spread (conditional on the prior randomness).

Again, we have removed a total of at most O(α1/3n) vertices total, say, and we have a remaining
partition A′′′, V ′′ = A′′′

1 ∪ · · · ∪ A′′′
m ∪ A′′′

0 which is still balanced. Now we furthermore have no
(0, η)-bad vertices wrt A′ in A′′′

0 alongside having no (i, η)-exceptional vertices wrt A′ in V ′′ \A′′′
i .

Step 4: Covering the remainder with Theorem 1.9. Note that G[A′′′
0 ] and G[A0] are close

up to deleting order Oα(n) vertices. Thus, since α ≪ β this graph satisfies the hypotheses of
Lemma 6.2 with r replaced by r −m and α replaced by say β/2, using also that A′′′ is balanced
hence |A′′′

0 |/(r −m) ∈ N.
Now we perform the following process. By Lemma 6.2 applied to G[A′′′

0 ] in the manner above,
there is a Oβ(1/n

r−m−1)-spread distribution on the set of Kr−m-factors of G[A′′′
0 ]. Sample from this

distribution. Now, since every vertex here is not (0, η)-bad wrt A′, every vertex in these (r −m)-
cliques have degree at least (1− η)|A′

≥1| to A′
≥1. Hence each of these (r−m)-cliques have common

degree at least (1− η1/2)|A′′′
≥1| to A′′′

≥1. Create an auxiliary graph G′ which is G[A′′′
≥1] along with a

collection of vertices C corresponding to these (r−m)-cliques, each clique connected to its common
neighbors in A′′′

≥1 within G. We see that each pair of parts among the A′′′
i have the same size and

have density at least 1 − α1/4 say. Furthermore, A′′′
i and C have the same size and the density of

edges between them is also at least 1−α1/4 (the average vertex v in A′′′
i is missing say α1/3-fraction

of the crossing edges to A′′′
0 in G, and therefore the fraction of (r − m)-cliques that do not fully

connect to v is on average at most say rα1/3). Therefore, these are automatically regular pairs with
error parameter depending on α. On the other hand, the covering that we have done so far has
ensured that between every pair, the minimum degree is at least say ηn/(4r), and α≪ η.

Thus we can apply Lemmas 2.5 and 2.8 to obtain super-regular pairs and then use Theorem 1.9
to obtain a Oα(1/n

m)-spread distribution on Km+1-factors in G′. This corresponds to a Kr-factor
of G[

⋃A′′′], so we have constructed a full Kr-factor. Furthermore, we can easily argue due to the
spread of the Kr−m factor and then spread of the Km+1-factor in G′ that the factor produced at
this stage, conditional on the randomness in the previous steps, is Oα(1/n

r−1)-spread. We are done
with this case, putting together the various spread steps.

6.2.2. Disconnected case. We now consider the only remaining case, that m = r − 2 and G[B] is
β-disconnected (recall β = αm+1). The argumentation is very similar to the connected case in
Section 6.2.1, with two differences. First, since G[B] is β-disconnected, we can essentially break
G[B] into two nearly-complete parts which are mostly disconnected. Therefore almost all the
balanced cliques we use will have the additional property that they have 2 vertices in one of these
parts. However, in the case that these nearly-complete parts both have odd size, we will need
to use 1 clique with the property that it has 1 vertex in each of the parts. Beyond this, the
pruning of exceptional and 0-bad vertices is essentially the same. We will therefore not repeat said
argumentation in detail, merely stating the essential points.

Step 1: Cleaning the partition. We modify A into A′ similar to the connected case
(Section 6.2.1). A′ is still balanced, differs from A by few vertices (say α1/3n), and for each
i ∈ {0, . . . ,m} either there are no v ∈ A′

i which is (i, η)-bad wrt A′ or there are no (i, η)-exceptional
vertices wrt A′ not in A′

i (or both). Since A is close to A′ and α≪ β, we know that B′ = A′
≥1 has

the property that G[B′] is 2β-disconnected, say.
Step 2: Partitioning B′ = A′

0. Consider a partition B′ = B′
1 ∪ B′

2 constructed as follows:

start with the equipartition B′ = B
(0)′
1 ∪ B

(0)′
2 guaranteed by the 2β-disconnectedness of G[B′]

(Definition 6.1). Then, for each time t ≥ 1, we define B
(t)′
1 ∪B(t)′

2 by swapping a vertex v ∈ B
(t−1)′
i

for some i ∈ {1, 2} such that degG(v,B
(t−1)′
i ) ≤ n/(4r). If this is no longer possible we terminate

and set (B′
1, B

′
2) = (B

(t−1)′
1 , B

(t−1)′
2 ). Each non-terminating step clearly decreases the cut size by at
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least n/(2r) each time, and the initial cut size is e(G[B
(0)′
1 , B

(0)′
2 ]) ≤ β(2n/r)2/2. Therefore there

are at most βn total steps, meaning that the process terminates and furthermore the part sizes are
βn-close to the original. In particular, we find e(G[B′

1, B
′
2]) ≤ βn2, say. Additionally, we see that

δ(G[B′
i]) ≥ n/(4r) for i ∈ {1, 2}. We deduce that e(G[B′

i]) ≥ (1 − O(β))(n/r)2/2. So the induced
graph in each part B′

i is almost-complete, and we have a reasonable minimum degree condition
within each part.

Step 3: Fixing parities. Notice |B′
1| + |B′

2| = 2(n/r) is even. If B′
1, B

′
2 have even size then

there is no need to do anything additional and we can move on to the next step. However, if they
are both odd size then we wish to make them even in some way. To do this, we find attempt to
find (in a spread way) a single Kr which is balanced and has 1 vertex in each B′

i. Let us assume
|B′

1| ≥ |B′
2|.

Since |B′
1| ≥ |B′

2| we have |B′
2| ≤ n/r so degG(v,B

′
1) ≥ 1 for each v ∈ B′

2 by the minimum
degree condition on G. Choose a uniformly random edge in G[B′

1, B
′
2] such that its vertex in B′

2
is not (i, η)-exceptional for any i ∈ [r − 2] and is not (0, η/(4r))-bad. Notice that by Markov,
most of the vertices of B′

2 satisfy this property and combining with degG(v,B
′
1) ≥ 1 for all v ∈ B′

2
shows that the are at least say n/(4r) choices for this edge, which is thus O(1/n)-spread. Call the
edge e0 = (u0, v0) where u0 ∈ B′

1 and v0 ∈ B′
2. In the case r > 2, if u0 is not (i, η)-exceptional

for any i 6= 0, then the common neighbors of u0, v0 among Ai number at least ηn/4. We easily
find many balanced cliques containing this edge in this case, using that almost all vertices (up to
error depending only on α) are non-exceptional and good in the relevant senses. We then choose
a uniformly random such clique which is O(1/nr−1)-spread. Now after removing this one Kr, the
remaining partition A∗ is balanced and the new B∗

1 , B
∗
2 are even in size. If r = 2 then just choosing

the spread edge is enough as we do not need to extend it further, and no condition on 0-badness is
needed or even meaningful (and we now move to the next step).

When r > 2 and the endpoint u0 is (i, η)-exceptional for some i 6= 0, then degG(v,A
′
≥1) ≤

(r− 3+ η/2)n/r so degG(v,B
′) ≥ (2− η)n/r. We can then move v to B′

3−i to create B′ = B∗
1 ∪B∗

2 .
Now both sizes are even in size again, and the minimum degree in both parts is still at least n/(4r).
Now we move on to the next step.

Step 4: Exceptional and 0-bad vertices. At this stage, we cover the exceptional and 0-bad
vertices with basically the same arguments as in Section 6.2.1. When covering (i, η)-exceptional
vertices not in A′

i when i 6= 0, we can run the same procedure and easily ensure that the two
(slightly unbalanced) r-cliques used are such that all vertices within B′ appear in the same part B′

1
or B′

2.
We can do the same for (0, η)-exceptional vertices, but we must be a bit careful: when we choose

the r-cliques with one fewer vertex in B′, we cannot necessarily choose where the 1 vertex in B′

is; and thus we first choose all of those cliques and then choose the edges within A′
0 (which are

then extended to cliques with 1 extra vertex in B′). We therefore need to be able to choose up
to x0 (spread) edges not just within B′ = A′

0 but specifically within B′
1 and B′

2 as necessary to
balance the parity. (They must also have non-bad endpoints.) Here we use that G[B′

1], G[B
′
2] are

almost-complete graphs instead of the argumentation used in Step 2 of Section 6.2.1, and then
choose extension to cliques with 1 extra vertex in A′

0 where the third vertex in A′
0 is in the same

part B′
i. It is not hard to see that this is possible in a spread manner.

When covering 0-bad vertices (now that exceptional vertices are removed), we create an (r − 1)-
clique formed with one vertex from each A′

i for i ∈ [r − 2] and our 0-bad vertex v with various
goodness properties on the new vertices, and then extend to a balanced r-clique; we can easily
guarantee that the final added vertex (which is in B′) is in the same part of B′ as v using the n/(4r)
minimum degree condition within the parts.

Step 5: Covering the remainder with Theorem 1.9. After doing all this covering, which
only deletes around Oα(n) vertices, we can again use Theorem 1.9 (here Lemma 6.2 is not really
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needed). This time, however, we apply it two times, once to a partition where we take appropriately
regular subsets of A′′

1 , . . . , A
′′
r−2 of size |B′′

1 |/2 as well as an appropriately regular bipartition of B′′
1 ,

and a second time where we apply to the complements of these subsets and an appropriately regular
bipartition of B′′

2 . All these partitions and subsets can be found randomly, as the necessary host sets
already satisfy appropriately super-regularity. The minimum degree conditions follow since β ≪ η
and B′′

1 , B
′′
2 differ from n/r by an amount depending only on β. �

7. A spread distribution on bounded-degree trees

Fix ∆ ∈ N and ε > 0. Let G be an n-vertex graph satisfying δ(G) ≥ (1/2 + ε)n and let T
be an n-vertex tree with maximal degree at most ∆. To prove Theorem 1.10 it suffices to exhibit
an O(1/n)-spread distribution on the copies of T in G. To do so we closely follow the original
proof of Komlós, Sárközy, and Szemerédi [31] that G contains at least one copy of T . We show
that if this algorithm is appropriately randomized then the resulting distribution on copies of T is
O∆,ε(1/n)-spread.

Most of the embedding algorithm consists of embedding vertices of T into G “random greedily”
(i.e., the image of each successive vertex is chosen uniformly at random from a set of suitable
choices). For this type of algorithm it is natural to analyze “vertex spread”, which we now define.

Definition 7.1. Let X and Y be finite sets and let µ be a distribution over injections ϕ : X →
Y . For q ∈ [0, 1], we say that µ is q-vertex-spread if for every two sequences of distinct vertices
x1, . . . , xk ∈ X and y1, . . . , yk ∈ Y :

P

[
k∧

i=1

ϕ(xi) = yi

]
≤ qk.

We will prove that a randomized version of the Komlós, Sárközy, and Szemerédi tree embedding
algorithm is O(1/n)-vertex-spread. The next lemma implies that this is sufficient.

Lemma 7.2. Let G be an n-vertex graph and let T be an n-vertex tree with maximal degree at most
∆ ∈ N. Suppose that there exists an O∆,ε(1/n)-vertex-spread distribution on graph embeddings ϕ of
T into G. Then ϕ is an O∆,ε(1/n)-spread distribution on copies of T in G.

Proof. Let C ≥ 1 be a constant such that ϕ is (C/n)-vertex-spread. Let ϕ(E(T )) denote the
(random) set of edges in the embedding of T into G. We will show that for every edge set S ⊆ E(G):

P [S ⊆ ϕ(E(T ))] ≤
(
∆C2

n

)|S|

.

This will imply the lemma.
Let S ⊆ E(G). We may assume that S is a non-empty forest. Denote the number of connected

components in S by ℓ. Let V (S) be the set of vertices incident to S. We observe that |V (S)| = |S|+ℓ.
We claim that there are at most nℓ∆|S| embeddings of of S into T . Indeed, let v1, v2, . . . , v|S|+ℓ be an
ordering of V (S), where v1, . . . , vℓ are in distinct connected components and each of the remaining
vertices is incident to a vertex that appeared previously (for instance, one may take a breadth-first
ordering of V (S)). We will count the number of ways to embed V (S) into T one vertex at a time.
There are fewer than nℓ ways to embed v1, . . . , vℓ into T . Then, each vi is incident to a previously
embedded vertex. Since ∆(T ) ≤ ∆ there are at most ∆ choices to embed each vi. Hence, the

number of embeddings is at most nℓ∆|S|, as claimed.
Now, for a given embedding ψ : V (S) → V (T ), by the vertex-spread assumption for ϕ, we have

P



|S|+ℓ∧

i=1

ϕ(ψ(vi)) = vi


 ≤

(
C

n

)|S|+ℓ

.
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Applying a union bound over the at most nℓ∆|S| choices of ψ we conclude that

P [S ⊆ ϕ(E(T ))] ≤ nℓ∆|S|

(
C

n

)|S|+ℓ

≤
(
∆C2

n

)|S|

,

where the second inequality follows from the fact that ℓ ≤ |S| and the assumption that C ≥ 1. This
completes the proof. �

The remainder of this section is devoted to proving the next lemma. Together with the previous
claim and Theorem 1.2 it implies Theorem 1.10.

Lemma 7.3. For every ∆ ∈ N and δ > 0 there exists some n7.3 = n7.3(∆, δ) > 0 and C7.3 =
C7.3(∆, δ) > 0 such that for every graph G on n ≥ n7.3 vertices with δ(G) ≥ (1/2 + δ)n and every
tree T on n vertices with ∆(T ) ≤ ∆ there exists a (C7.3/n)-vertex-spread distribution on graph
embeddings of T into G.

7.1. Preliminaries. In this section we will construct distributions over extensions of graph em-
beddings in super-regular pairs. We will generally be in the setting where we are attempting to
extend a partial embedding of T into G to a larger partial embedding. It is thus helpful to introduce
notation for rooted embeddings. Suppose that H and G are graphs, that R ⊆ V (H) is a vertex
set, and that ϕ : R →֒ V (G) is an injective partial embedding of H. We denote the set of graph
embeddings ϕ̃ : H →֒ G that extend ϕ by X(H,G,R,ϕ). We say that a distribution over elements
ϕ̃ ∈ X(H,G,R,ϕ) is q-vertex-spread if the induced distribution over ϕ̃|V (H)\R is q-vertex-spread.

A key fact proved in [31] is that one can embed bounded-degree stars in super-regular pairs. The
next lemma shows that this can be done in a spread manner. We need the following definition.

Definition 7.4. Given a bipartite graph G = (A,B,E) and a vector ~d = (da : a ∈ A) ∈ N
A let S~d

be the graph consisting of the disjoint union of the stars (Sa : a ∈ A), where Sa = K1,da for each
a ∈ A. Let RA be the set of the roots of these stars and let ϕ : RA →֒ A map the root of Sa to a.

A ~d-matching in G from A to B is an element of X(S~d
, G,RA, ϕ).

The next lemma is a randomized version of [31, Lemma 2.1]; the proof is similar to that of
Lemma 4.1.

Lemma 7.5. Let δ > 0 and ∆ ∈ N be fixed. Suppose that G = (A,B,E) is a bipartite graph

that is (δ, ε, δ/2)-super-regular, with ε ≤ δ/(10∆). Suppose that ~d ∈ N
A is a vector satisfying∑

a∈A da ≤ |B| and maxa∈A da ≤ ∆. There exists some C = C(δ,∆) and a (C/|B|)-vertex-spread
distribution over X(S~d

, G,RA, ϕ).

Proof. It suffices to show that there exists an O(1/|B|)-spread distribution on subgraphs H ⊆ G

that w.h.p. contain ~d-matchings from A to B (i.e., X(S~d
,H,RA, ϕ) 6= ∅). Indeed, suppose that

µ is such a distribution. Let ν be the distribution on X(S~d, G,RA, ϕ) obtained by first sampling

H ∼ µ, conditioned on H containing a ~d-matching from A to B, and then choosing an element of
X(S~d,H,RA, ϕ) arbitrarily. Let v1, . . . , vk ∈ V (S~d) \ RA be distinct and u1, . . . , uk ∈ B. We wish
to show that

Pϕ̃∼ν

[
k∧

i=1

ϕ̃(vi) = ui

]
≤ (O(1/|B|))k.

Observe that every vi has a unique neighbor ai in S~d
, and that ϕ̃(vi) = ui only if ϕ(ai)ui ∈ E(H).

Hence

Pϕ̃∼ν

[
k∧

i=1

ϕ̃(vi) = ui

]
≤ PH∼µ

[
{ϕ(a1)u1, ϕ(a2)u2, . . . , ϕ(ak)uk} ⊆ E(H)|X(S~d

,H,RA, ϕ) 6= ∅
]
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≤ (1 + o(1))PH∼µ [{ϕ(a1)u1, ϕ(a2)u2, . . . , ϕ(ak), uk} ⊆ E(H)] .

Since µ is O(1/|B|)-spread the last quantity is bounded from above by (O(1/|B|))k , as desired.
We now construct the desired distribution on subgraphs H ⊆ G. Let D be a large constant

(depending only on δ and ∆). Let H ′ = G(D/|B|) (i.e., the binomial subgraph of G with density
D/|B|). Let H ′′ ⊆ G be a random graph constructed as follows: For each v ∈ A ∪ B choose,
uniformly at random and independently of all other choices, a set of D edges in G incident to v and
add them to H ′′. Set H = H ′ ∪H ′′. Clearly, the distribution on H is O(D/|B|)-spread. We will

show that w.h.p. H contains a ~d-matching from A to B.
For X ⊆ A, let dX :=

∑
a∈X da. It suffices to show that w.h.p. H satisfies the König–Hall

criterion
∀X ⊆ A, |NH(X)| ≥ dX .

For notational conciseness set ε := δ/(10∆). We first consider 0 < |X| ≤ ε|B|. We will bound
the probability that for some Y ⊆ B with |Y | = dX we have NH′′(X) ⊆ Y . Indeed, given such X
and Y , we have

P [NH′′(X) ⊆ Y ] ≤
( (|Y |

D

)
(δ|B|/2

D

)
)|X|

≤
(
2e|Y |
δ|B|

)D|X|

≤
(
2e∆|X|
δ|B|

)D|X|

.

We now apply a union bound over choices of such X and Y to obtain:

ε|B|∑

k=1

(|A|
k

)(|B|
∆k

)(
2e∆k

δ|B|

)Dk

≤
ε|B|∑

k=1

(
2De1+∆+D∆D−∆

δD
× kD−∆−1

|B|D−∆−1

)k

= o(1).

Next, we consider |X| such that ε|B| ≤ |X| and dX ≤ (1− ε)|B|. Let Y ∈
( B
dX

)
(so, in particular,

|Y | ≥ |X| ≥ ε|B|). Since G is (δ, ε)-regular we have eG(X,B \ Y ) > δ|X|(|B| − |Y |)/2 ≥ δε2|B|2/2.
Therefore

P [eH′(X,Y ) = 0] ≤
(
1− D

|B|

)δε2|B|2/2

≤ exp

(
−Dδε

2

2
|B|
)
.

Since there are fewer than 2|B| choices for X and Y , applying a union bound, the probability that
there exist such X and Y with eH′(X,B \ Y ) = 0 is at most 22|B| exp

(
−Dδε2|B|/2

)
, which tends

to zero provided D is sufficiently large.
Observe that the two cases above complete the proof when |B| > 2dA. Henceforth, we assume

that |B| ≤ 2dA ≤ 2∆|A|.
It remains to consider X such that dX > (1−ε)|B|. This implies |A\X| ≤ ε|B| (since |B| ≥ dA =

dX + dA\X ≥ (1− ε)|B|+ |A \X|). Let Y ⊆ B satisfy |Y | = dX − 1. Thus |B \ Y | ≥ |A \X| (since
|B \ Y | ≥ dA − |Y | > dA − dX = dA\X ≥ |A \X|). Now, if NH(X) ⊆ Y then NH(B \ Y ) ⊆ A \X.
Hence, there exists a subset of B of size |B| − dX +1 ≤ 2ε|B|, all of whose neighbors are contained
in a smaller set. We use a union bound to show that w.h.p. there is no such set:

2ε|B|∑

k=1

(|B|
k

)(|A|
k

)( (k
D

)
(δ|A|/2

D

)
)k

≤
2ε|B|∑

k=1

(
e22D+1∆

δD
× kD−2

|A|D−2

)k

= o(1).

Thus, w.h.p. H satisfies the König–Hall condition and contains a ~d-matching from A to B. �

A second key claim that is proved in [31] allows the embedding of forests of length-3 paths into
super-regular pairs. We use the following definitions.

Definition 7.6. A four-layer (d, ε)-super-regular graph is a graph G = (V,E) with a vertex partition
V = V1∪V2∪V3∪V4, where all parts are the same size, and for every i = 1, 2, 3 the induced bipartite
graph G[Vi, Vi+1] is (d+, ε)-super-regular.
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For m ∈ N let Pm be the graph consisting of m vertex disjoint copies of length-3 paths. Denote
by Vout(Pm) the set of 2m leaves in Pm and denote by Vin(Pm) the set of 2m inner vertices in Pm.

If π : V1 → V4 is a bijection then ϕ : Vout(P|V1|) → V1 ∪ V4 is π-respecting if for every v ∈ V1 both

ϕ−1(v) and ϕ−1(π(v)) belong to the same path in P|V1|.

The next lemma is a randomized version of [31, Theorem 2.1].

Lemma 7.7. For every d > 0 there exist C = C7.7(d), ε = ε7.7(d), n7.7(d) > 0 such that the
following holds for all n ≥ n7.7. If G is a four-layer (d, ε)-super-regular graph on 4n vertices then
for any bijection π : V1 → V4 and any π-respecting bijection ϕ : Vout(Pn) → V1 ∪ V4 there exists a
(C/n)-vertex-spread distribution on X(Pn, G, Vout(Pn), ϕ).

Proof. We prove the lemma by applying Theorem 1.9 to the auxiliary graph G′ which is obtained
by identifying V1 and V4 according to π. In other words, the vertex set of G′ is V1 ∪ V2 ∪ V3 and
the edge set consists of G[V1, V2] ∪ G[V2, V3] and {xy ∈ V1 × V3 : π(x)y ∈ G[V4, V3]}. As long as
ε is sufficiently small and n is sufficiently large then G′ satisfies the assumptions of Theorem 1.9.
Hence, for some C > 1 there exists a (Cn−2)-spread distribution µ on perfect matchings in the
3-clique complex H of G′.

Observe that there is a natural correspondance between elements X(Pn, G, Vout(Pn), ϕ) and per-
fect matchings in H. Explicitly, the embedding ϕ̃ ∈ X(Pn, G, Vout(Pn), ϕ) corresponds to the perfect
matching M ⊆ H consisting of all triples v1v2v3 ∈ H such that v1v2v3π(v1) is the image under ϕ̃ of
a path in Pn. Hence, µ induces a distribution ν on X(Pn, G, Vout(Pn), ϕ). We will show that ν is
(C/n)-vertex-spread.

Let v1, . . . , vk ∈ Vin(Pn) be a sequence of distinct vertices and let u1, . . . , uk ∈ V2∪V3. Let M ∼ µ
and let ϕ̃ ∈ X(Pn, G, Vout(Pn), ϕ) be the corresponding embedding. We wish to show that

P

[
k∧

i=1

ϕ̃(vi) = ui

]
≤ (C/n)k.

Observe that every vertex v ∈ Vin(Pn) has a unique neighbor v′ ∈ Vin(Pn) and these vertices are
connected to a unique pair in Vout(Pn). Hence, specifying the image of v and v′ is equivalent to
prescribing that a specific triangle appear in M . Let a be the number of vertices in v ∈ {v1, . . . , vk}
such that v′ ∈ {v1, . . . , vk}. For each of the remaining k − a vertices v there are at most n ways to
embed v′. Using the spread of µ, for each such choice, the probability that all the corresponding
triangles will be in M is at most (Cn−2)a/2+k−a. Applying a union bound we conclude that

P

[
k∧

i=1

ϕ̃(vi) = ui

]
≤ nk−a

(
C

n2

)a/2+k−a

≤
(
C

n

)k

. �

Before stating the next lemma we introduce some notation. Suppose that ϕ is a partial embedding
of a graph H into a graph G, defined on D ⊆ V (H). We call the vertices in V (G)\ϕ(D) unoccupied
by ϕ. For v ∈ V (H) \D we write A(ϕ, v,H,G) for the set of vertices u ∈ V (G) that are unoccupied
by ϕ and that are adjacent to the images of all embedded neighbors of v (formally, for every w ∈ D
such that wv ∈ E(H) it holds uϕ(w) ∈ E(G)). This is the set of available locations for v. If H
and G are bipartite (as will always be the case for us) we additionally restrict vertices so that they
respect the bipartition.

The next lemma, which is closely related to the blow-up lemma, allows one to extend an embed-
ding of a graph within a regular pair in a spread manner. It also allows the designation of “buffers”
which are either target locations for certain vertices or sets that should be left mostly unoccupied.

Lemma 7.8. Let ∆ ∈ N and α, d ∈ (0, 1). There exists some ε = ε(∆, α, d) > 0 such that for
every k ∈ N the following holds for every n ≥ n0 = n0(k,∆, α, d). Suppose that G = (A,B,E) is a
(d+, ε)-regular pair with 2n ≥ |A|, |B| ≥ n and that H = (C,D,EH ) is a bipartite graph satisfying
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• every connected component of H has size at most ε2n,
• |C| ≤ (1− α)|A| and |D| ≤ (1− α)|B|, and
• ∆(H) ≤ ∆.

Suppose further that F ⊆ C ∪D and B1, B2 ⊆ A ∪B satisfy

• |F ∩ C| = |B1 ∩A| and |F ∩D| = |B1 ∩B|.
• |B2 ∩A| = |A| − |C| and |B2 ∩B| = |B| − |D|.
• B1 ∩B2 = ∅.

Finally, suppose that for a set S ⊆ V (H) of size at most k there is a graph embedding ϕ0 : H[S] →֒ G
such that for every v ∈ V (H)\S it holds |A(ϕ0, v,H,G)| ≥ (d/2)∆n. There exists an O(1/n)-vertex-
spread distribution on graph embeddings ϕ ∈ X(H,G, S, ϕ0) such that

• At most ε1/3n vertices of B2 are occupied by ϕ, and
• At most ε1/3n vertices of F are not mapped by ϕ to B1.

Proof. We describe a randomized embedding procedure that embeds the vertices of V (H) \ S one
by one, where the image of each vertex is chosen uniformly at random from a set of size Ω(n). This
guarantees the vertex-spread. Additionally, we design the algorithm in such a way that vertices
from B2 are chosen at most ε1/3n times, and vertices from F will fail to be mapped to B1 at most
ε1/3n times. The lemma follows by considering the corresponding distribution over embeddings.

Naively, one might try a simple random greedy algorithm, where each successive vertex is mapped
to a uniformly random available vertex, all while avoiding B2. However, special care is needed to
handle the buffers. A particular concern is that since (for example) |A \ B2| = |C|, if we have
embedded nearly all vertices in C then the remaining set of unoccupied vertices in A \B2 might be
so small that regularity fails, in which case the embedding algorithm might get stuck.

To circumvent this we set aside additional buffer zones within B2 which we allow ourselves to use
in the embedding procedure. These are large enough to guarantee that regularity never fails but
still small enough that almost all vertices in B2 remain unoccupied. We define two buffer zones, as
follows. Let Z1 and Z2 be disjoint subsets of B2, each consisting of

√
εn vertices in each of B2 ∩A

and B2 ∩B (so that |Z1 ∩A| = |Z1 ∩B| = |Z2 ∩A| = |Z2 ∩B| = √
εn).

For each vertex we will now define a target set where it will be embedded. Let N(S) denote
the set of neighbors of S. For v ∈ N(S) let X(v) ⊆ A(ϕ0, v,H,G) \ (Z1 ∪ Z2) be a set of size√
ε(d/2)∆n/(2∆k) such that:

• For distinct u, v ∈ N(S) the sets X(u) and X(v) are mutually disjoint;
• For u, v ∈ N(S) that lie in different sides of the partition of H the pair (X(u),X(v)) is a
((4d/5)+,

√
ε)-regular pair in G; and

• for every v ∈ N(S), if (W1,W2) is the ordering of A,B such that X(v) ⊆ W1, then

(X(v),W2) is a ((d/2)+, ε3/4)-regular pair.

We note that such a choice of set {X(v)}v∈N(S) is possible since the regularity properties are
satisfied w.h.p. by choosing uniformly random disjoint sets of the appropriate size. We write Z3 :=⋃

v∈N(S)X(v). Observe that |Z3| = |N(S)|√ε(d/2)∆n/(2∆k) ≤ √
εn/2.

Now, for v ∈ V (H) let W (v) = A if v ∈ C and let W (v) = B if v ∈ D. For v ∈ F \ (S ∪N(S))
set its target set as X(v) := W (v) ∩ ((B1 \ Z3) ∪ Z1). Finally, for v ∈ V (H) \ (S ∪ N(S) ∪ F ) set
X(v) :=W (v) ∩ (V (G) \ (B1 ∪B2 ∪ Z3) ∪ Z2).

The upshot of choosing the sets X(v) in this way that is that if (as will indeed be the case) we
succeed in embedding every v into X(v) then vertices in F will fail to be embedded into B1 at most

ε1/3n times. This is because such a vertex is either in N(S) or else, if it is not embedded into B1,

it must have been embedded into Z1. Since |Z1| + |N(S)| ≤ 2
√
εn + k∆ ≤ ε1/3n this is an upper

bound on the number of “wrongly embedded” vertices in B1. Similarly, vertices in B2 will be used
at most |Z1| + |Z2| + |Z3| ≤ 5

√
εn ≤ ε1/3n times. Additionally, for as long as we embed vertices
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only into their target sets, for v ∈ V (H) \ (S ∪N(S)) there will always be at least
√
εn unoccupied

vertices in its target set. This is ensured by the excess vertices added by the buffers: each vertex in
X(v) appears in at most |X(v)| − √

εn other target sets.
We observe that for every v ∈ V (G) \ S it holds |X(v)| ≥ √

ε(d/2)∆n/2 = Ωd,k,∆(n) and,
furthermore, if v /∈ N(S) then |X(v)| ≥ min{α, 1−α}n. Additionally, if u, v ∈ V (H) lie in different

sides of the partition of H then the pair (X(u),X(v)) is ((3d/5)+, ε3/5)-regular.
The embedding algorithm is as follows.

• Set ϕ = ϕ0.
• Let v1, v2, . . . , v|V (H)|−|S| be an ordering of V (H) \ S where the vertices lying in each con-

nected component of H appear as a contiguous interval of vertices.
• For each i = 1, . . . , |V (H)| − |S|:

– Let Ni ⊆ V (H) be the set of neighbors of vi that have not already been embedded.
– Let Xi be the set of vertices v ∈ A(ϕ, vi,H,G) ∩X(vi) that, for each u ∈ Ni, satisfy

degG(v,A(ϕ, u,H,G) ∩X(u)) ≥ d
2 |A(ϕ, u,H,G) ∩X(u)|.

– Choose some v ∈ Xi uniformly at random and update ϕ(vi) = v.

We claim that the algorithm is guaranteed to succeed and that the set Xi always has size at least
ε2n = Ω∆,d,α(n). Indeed, we note that at step i of the algorithm, if each of the sets A(ϕ, vi,H,G)∩
X(vi) and {A(ϕ, u,H,G)∩X(u)}u∈Ni contains at least a (∆+1)ε3/5-fraction of the vertices in their
respective target sets then by regularity, for every u ∈ Ni, the inequality degG(v,A(ϕ, u,H,G) ∩
X(u)) ≥ d

2 |A(ϕ, u,H,G) ∩ X(u)| holds for all but at most ε3/5|X(vi)| vertices in A(ϕ, vi,H,G) ∩
X(vi). Hence, if this is the case, then |Xi| ≥ (∆+1)ε3/5|X(vi)|−∆ε3/5|X(vi)| = ε3/5|X(vi)| ≥ ε2n.

We now show that as long as vertex v has not been embedded the set A(ϕ, v,H,G)∩X(v) indeed
contains at least a (∆ + 1)ε3/5-fraction of X(v). We consider two cases. First, if v ∈ N(S) then
X(v) is disjoint from all other target sets. Thus, it decreases only when a neighbor of v is embedded,
in which case (by the algorithm’s design) it decreases by a factor f with f ≥ d/2. Hence, since
v has at most ∆ neighbors the number of available locations is always at least (d/2)∆|X(v)| ≥
(∆ + 1)ε3/5|X(v)|, where the inequality holds provided ε is sufficiently small.

In the second case v ∈ V (H) \ (S ∪N(S)). In this case the number of locations can decrease in
two ways: in the first, a neighbor of v is embedded, in which case the number of available locations
can decrease multiplicatively by a factor of f with f ≥ d/2. As before, this can happen at most
∆ times. In the second, the set of available locations can decrease if some vertex in X(v) becomes
occupied, in which case it decreases by 1. However, as long as no neighbor of v is embedded the
number of available locations is precisely the number of unoccupied vertices in X(v) which is of
size at least

√
εn (this is the excess space guaranteed by the buffers). Recall that the embedding is

done connected component by connected component and that each connected component has size
at most ε2n. Hence, after the first neighbor of v is embedded at most ε2n additional vertices in
X(v) become occupied before v itself is embedded. Thus the number of available locations for v

is at least (
√
ε − ε2)n(d/2)∆ ≥ (∆ + 1)ε3/5|X(v)|, where the last inequality holds provided ε is

sufficiently small in terms of d and α. �

7.2. A randomized tree embedding algorithm. We now describe our adaptation of the tree
embedding algorithm in [31, Section 5.5]. That algorithm has eight steps. Steps 1–6 are “prepro-
cessing” of the tree T and the graph G, and we make no changes to these steps. The output of
these steps is a regularization of G together with an assignment of V (T ) to regularized clusters
that determine into which cluster each tree vertex will be embedded. We do not give details of
this construction; instead, we simply list its salient properties in Claim 7.9, below. For additional
details we refer the reader to [31].
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The actual embedding is carried out in steps 7 and 8. One approach to prove Lemma 7.3 would
be to randomize the embedding strategy and note that it is O(1/n)-vertex-spread. Indeed, Step
7 consists of a random greedy algorithm, where vertices of T are embedded greedily into G one
at a time, where for each vertex there are Ω∆,ε(n) suitable choices. By choosing the embedding
random-greedily it becomes appropriately spread. In Step 8 vertices are embedded by employing
derandomized versions of either Lemma 7.5 or Lemma 7.7; if these are replaced by the appropriate
randomized counterpart the embedding strategy as a whole regains the necessary spread.

We do not follow the embedding strategy in [31] exactly. This is mostly for organizational
purposes, as well as to avoid duplicating large parts of [31] verbatim. Instead, we first embed a
small number of vertices that serve as “bridges” between super-regular pairs in the regularized graph.
We then embed the remainder of the tree into the super-regular pairs.

We begin by describing the outcome of the preprocessing steps in [31]. Following [31], we will
make T rooted by fixing an arbitrary root. Any subgraph of T can then be viewed as a rooted
forest. We define a secondary leaf in a forest as a non-leaf vertex all of whose children are leaves.

Claim 7.9. In the setting of Lemma 7.3, for every ε > 0 there exists some M = M(ε) > 0,
α = α(∆) > 0, such that if we fix any vertex r ∈ V (T ) as a root then there exists a decomposition
of G into clusters C with the following properties.

(1) |C| ≤M .
(2) For every C ∈ C it holds 2n/M ≥ |C| ≥ n/(2M).
(3) There exists a perfect matching M of the clusters in C such that every pair in M is

((δ/2)+, ε)-super-regular. For C ∈ C we denote its match by C ′.

There also exists an assignment a : V (T ) → C, a set S ⊆ V (T ), and a constant K = K(∆, δ, ε) with
the following properties:

(1) |S| ≤ K.
(2) For every C ∈ C it holds |a−1(C)| = |C|.
(3) For every edge uv ∈ E(T ), the pair (a(u), a(v)) is ε-regular with density at least δ/2.
(4) For every edge uv ∈ E(T ), if (a(u), a(v)) /∈ M then u, v ∈ S.

Finally, for every cluster pair (C,C ′) ∈ M, let FC,C′ = T [a−1(C), a−1(C ′)] be the subforest of T
that is spanned by the vertices assigned to C and C ′. Then each connected component of FC,C′ has
size at most ε2n. Additionally, there exist sets F 1

C,C′ , F 2
C,C′ ⊆ V (FC,C′) \ S such that one of the

following holds:

(1) F 2
C,C′ consists of α|C| leaves of FC,C′ , equally divided between a−1(C) and a−1(C ′), and

F 1
C,C′ consists of the parents (within FC,C′) of F 2

C,C′ .

(2) F 2
C,C′ consists of α|C| secondary leaves in C and their children, and F 1

C,C′ consists of the

parents of the secondary leaves (all within FC,C′).
(3) F 2

C,C′ consists of α|C| secondary leaves in C ′ and their children, and F 1
C,C′ consists of the

parents of the secondary leaves (all within FC,C′).
(4) For a set of α|C| vertex-disjoint length-3 paths in FC,C′ in which the internal vertices all

have degree 2, F 2
C,C′ consists of the 2α|C| internal vertices and F 1

C,C′ consists of the 2α|C|
endpoints.

We observe that in the setup above, for every v ∈ V (T ) \ S, if a(v) = C then all neighbors of v
are assigned to C ′.

We are ready to describe the randomized embedding procedure.

Proof of Lemma 7.3. Take the output of Claim 7.9 with respect to ε sufficiently small so that
Lemma 7.8 can be applied to the super-regular pairs (provided n is sufficiently large).
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We initialize a partial embedding ϕ whose domain is the empty set. We call a vertex of G occupied
if a vertex of T has been assigned to it (otherwise it is unoccupied).

We begin by embedding the vertices of S. For this we will use a random greedy algorithm. The
remaining vertices of T will be embedded using Lemmas 7.5, 7.7, and 7.8.

Let s1, . . . , sk be an ordering of the vertices of S where each si is incident (in T ) to at most one
vertex that precedes it in the ordering. (Such an ordering is possible since T is a tree.) Iterating
through i = 1, . . . , k, let Ai ⊆ a(si) be the set of vertices that are adjacent to all ϕ(u) for all
neighbors of si that precede it in the order (of which there is at most one). Then, let Bi ⊆ Ai be
the set of vertices v ∈ Ai such that degG(v, a(u)) ≥ δ|a(u)|/3 for every u ∈ V (T ) that is adjacent
to si. Choose some v ∈ Bi uniformly at random, and set ϕ(si) = v.

Using the fact that in this stage we embed only O(1) vertices and the regularity properties of
the decomposition, there are always at least δn/(8M) choices for each embedding. Hence ϕ|S is
8M/(δn) = O(1/n)-vertex-spread.

We now embed the remaining vertices of T . We do this separately for each cluster pair (C,C ′) ∈
M. Let (C,C ′) ∈ M. We will use Lemma 7.8 to embed the vertices in FC,C′ besides those in F 2

C,C′ ,

and then use either Lemma 7.5 or Lemma 7.7 to embed F 2
C,C′ . Before applying Lemma 7.8 we set

aside buffer zones in (C,C ′). For i = 1, 2, let Bi ⊆ C \ S have size |F i
C,C′ ∩ a−1(C)|. Similarly, let

B′
i ⊆ C ′ \ S have size |F i

C,C′ ∩ a−1(C ′)|. We choose these sets in such a way that for all i, j = 1, 2,

the pairs (Bi, B
′
j) are ((δ/3)+, 2ε)-super-regular. We also choose the buffer zones so that they are

mutually disjoint. (To see that this is possible note that if appropriately-sized disjoint sets are
chosen uniformly at random then w.h.p. they satisfy the super-regularity.)

We now apply Lemma 7.8 to extend ϕ to a partial embedding that embeds FC,C′ \ F 2
C,C′ such

that:

(1) All but 10ε|C| vertices of F 1
C,C′ are embedded to B1 ∪B′

1.

(2) The set of unoccupied vertices differs from B2 ∪B′
2 by at most 10ε|C|.

Let D1 = ϕ(F 1
C,C′)∩C and D′

1 = ϕ(F 1
C,C′)∩C ′. Let D2 and D′

2 be the set of unoccupied vertices

in C and C ′ respectively. Observe that for every i, j ∈ {1, 2} the pair (Di,D
′
j) is ((δ/10)+ , 20ε)-

super-regular. It remains to extend ϕ so that it embeds F 2
C,C′ into D2 ∪ D′

2. We consider three

cases, depending on how F 2
C,C′ was constructed.

In the first case F 2
C,C′ is a set of leaves, evenly divided between “even” leaves in a−1(C) and “odd”

leaves in a−1(C ′). We apply Lemma 7.5 twice, first to match the even leaves to their parents (which
are already embedded) and then to match the odd leaves to their parents.

In the second and third cases F 2
C,C′ consists of α|C| secondary leaves (all in either a−1(C) or

a−1(C ′)) and their children, and F 1
C,C′ consists of the secondary leaves’ parents. We again apply

Lemma 7.5 twice: first to embed the secondary leaves and then to embed their children.
Finally, in the fourth case, F 2

C,C′ consists of the internal vertices of α|C| vertex-disjoint paths

(in which all vertices in F 2
C,C′ have degree 2). We apply Lemma 7.7 to embed the desired length-3

paths.
In all cases, Lemmas 7.5 and 7.7 ensure that the embedding is completed in an O(1/n)-vertex

spread manner, as desired. �
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