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ONLINE EDGE COLORING VIA TREE RECURRENCES AND

CORRELATION DECAY

JANARDHAN KULKARNI, YANG P. LIU, ASHWIN SAH, MEHTAAB SAWHNEY, AND JAKUB TARNAWSKI

Abstract. We give an online algorithm that with high probability computes a
(

e
e−1

+ o(1)
)

∆

edge coloring on a graph G with maximum degree ∆ = ω(logn) under online edge arrivals against
oblivious adversaries, making first progress on the conjecture of Bar-Noy, Motwani, and Naor in
this general setting. Our algorithm is based on reducing to a matching problem on locally treelike
graphs, and then applying a tree recurrences based approach for arguing correlation decay.

1. Introduction

Given a graph G := (V,E) with maximum degree ∆, the edge coloring problem is to assign
colors to edges such that any two edges sharing a common vertex get different colors. A well-known
theorem by Vizing [Viz64] says that every graph can be edge-colored using ∆+1 colors; furthermore,
such a coloring can be found in polynomial time. From an algorithmic standpoint, a remarkable
aspect of Vizing’s theorem is that it achieves the optimal bound for the problem, as ∆ colors are
necessary for every graph with maximum degree ∆ and it is NP-hard to distinguish whether a graph
needs ∆ or ∆+ 1 colors [Hol81,Koc10].

Given a proper edge coloring of a graph, each color class induces a matching; thus, any edge
coloring of a graph partitions the edge set into a collection of matchings. This view of edge coloring
plays an important role in its applications to routing in switching networks and reconfigurable
topologies [BNMN92,AMSZ03]. In routing applications, however, the edges of graph arrive online,
which models the arrival of new traffic that needs to be routed between two switches or servers.
This was the motivation that led Bar-Noy, Motwani, and Naor [BNMN92] to initiate the study of
edge coloring in the online setting. Here, the online algorithm has knowledge of the vertex set V of
the graph and the maximum degree ∆. However, the edges are revealed one by one, and the online
algorithm has to irrevocably assign a color to each newly arriving edge. The goal is to minimize the
number of colors used by the online algorithm while maintaining a valid edge coloring of the graph
at all time steps. In the original paper, [BNMN92] showed that for graphs with maximum degree
O(log n), no online algorithm can maintain a proper coloring using fewer than 2∆ − 1 colors — a
trivial bound achieved by the greedy algorithm which simply assigns every arriving edge any color
that is not used at either endpoint. However, this result should be interpreted as a lower bound on
the additive error rather than multiplicative, as it only applies to graphs with logarithmic maximum
degree. Consequently, the focus has shifted to the much more interesting regime of ∆ = ω(log n).

In this regime, [BNMN92] conjectured that the online algorithm that uses ∆+O(
√
∆ log n) colors

and samples a color for each edge uniformly at random from the set of valid colors succeeds with
constant probability. However, we do not know how to analyze this algorithm or give any online
algorithm that beats the competitive ratio of 2 achieved by the trivial greedy algorithm; this has
been raised as a challenging open problem by all subsequent works.

Over the past three decades, significant attempts have been made towards resolving this con-
jecture. A competitive ratio of 1 + o(1) is achievable in important special cases: random-order
(instead of adversarial-order) edge arrival [AMSZ03,BMM12,BGW21] and one-sided vertex arrivals
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(instead of edge arrivals) for bipartite graphs [CPW19]. Very recently, a competitive ratio of 1.9
was obtained by Saberi and Wajc [SW21] for general vertex arrivals on graphs of maximum degree
ω(log n). Despite these impressive results, which we discuss in detail in Section 3, no algorithm
was known to beat the competitive ratio of 2 in the most general setting of online edge arrivals
considered in the conjecture of [BNMN92]. Moreover, the barrier of 2 for the edge coloring problem
seemed to parallel a similar barrier for the “dual” problem of online matching. Namely, a surprising
recent result [GKM+19] showed a lower bound of 2 for online matching in the edge arrival setting
(whereas better algorithms exist for the vertex arrival setting [KVV90,DJK13,GKM+19]), and it
was conceivable that the online edge coloring problem might exhibit the same dichotomy [BGW21]
(although in the fractional case, edge coloring is trivial while matching is not). The main result of
this paper shows a separation between these two problems, and makes the first progress towards
resolving the conjecture of Bar-Noy, Motwani, and Naor.

Theorem 1.1. There is an online randomized algorithm that on a graph G with maximum degree

∆ = ω(log n) outputs an
(

e
e−1 +O

(
(log log∆)2

log∆ + (log n/∆)1/4
))

∆-edge coloring with high probabil-

ity in the oblivious adversary setting.

Our proof of the theorem is based on reducing the problem to a matching problem on locally
treelike graphs, and then applying a tree recurrences based approach for arguing correlation decay.
We believe that both our algorithm and its analysis are quite simple. Correlation decay is a well
known and widely used technique in the statistical physics and sampling literature [Wei06, Sly08,
BG08,LLY13,Vig00,ALG21,Sri14], but has not been applied for online problems. Our work shows
the efficacy of this technique in the analysis of online algorithms, and we believe that it has potential
for broader applicability in settings that need to cope with input uncertainty such as online, recourse,
dynamic, or streaming problems.

Before we proceed, we make some remarks regarding our algorithm. First, while naïvely imple-
menting the algorithm as given in this paper yields a running time of Õ(∆) per edge, using basic
data structures and standard efficient sampling primitives allows one to implement the algorithm
in time Õ(1) per edge. Additionally, straightforward modifications of our algorithm show that our
theorem extends for multigraphs with maximum edge multiplicity bounded by o(∆). Finally, our
techniques give an alternate proof (given in Appendix A) that one can (1 + o(1))∆-edge color a
graph with maximum degree ∆ if its edges arrive in a uniformly random order, which was the main
result of [BGW21]:

Theorem 1.2. There is an online randomized algorithm that on a graph G with maximum degree
∆ = ω(log n) and a uniformly random ordering of edge arrivals outputs a (∆+ o(∆))-edge coloring
with high probability.

The o(∆) term can be quantified to be O(∆(∆′)−1/24 +
√
∆∆′ log n), where we set

∆′ = min(log∆/ log log∆,
√

∆/ log n).

While this is quantitatively worse than the O((∆/ log n)−c) dependence in [BGW21], we believe
that our new proof further demonstrates the utility of our subsampling and tree recurrences based
approach. More importantly, it reveals a deeper structural reason why a (1 + o(1))∆-edge coloring
is easier to achieve in the random-order model – the edges which determine whether an edge e is
matched in a subsampled graph (under random-order edge arrivals) form a tree. This tree case is
substantially simpler, and should become clear to the reader in our overview Section 2.

Outline. We give an intuitive version of our entire argument arc in Section 2. We present the
history of the problem in Section 3. Sections 4 and 5 comprise the formal proof of our result
(Theorem 1.1). We conclude and discuss future directions in Section 6. Appendix A contains the
proof for the random-order case (Theorem 1.2).

2



2. Our Techniques and Proof Overview

We start by introducing some background and then give an overview of our proof. This section is
not a prerequisite for the full proof (Sections 4 and 5), and readers who prefer to see our techniques
in full detail can skip it; indeed, our proof is quite short.

Recall that in any edge coloring, the set of edges of a single color forms a matching. In the reverse
direction, a natural reduction due to Cohen, Peng, and Wajc [CPW19] shows that an (α+ o(1))∆-
coloring can be achieved by repeatedly invoking a matching algorithm that matches each edge
with probability at least 1/(α∆) (and assigning a new color to the matching edges, then removing
them from the graph). A vertex of degree ∆ will be matched with probability roughly 1/α, so
the maximum degree decreases at a rate of roughly 1 per α iterations. Having ∆ = ω(log n) yields
enough concentration for this process to finish in (α+o(1))∆ iterations. This is the only point where
our algorithm (and the previous works [CPW19,SW21]) uses ∆ = ω(log n). Saberi and Wajc [SW21]
observed that this reduction works for any arrival model. Therefore we are left with the task of
designing an algorithm that matches every edge with probability at least (1 − o(1))/( e

e−1∆), with
edges arriving online in any order against an oblivious adversary.

Online algorithms that match each edge with probability at least 1/(α∆) for α < 2 are known
for bipartite graphs under vertex arrivals; see [CW18] for an example. The positive results [CPW19,
SW21] for the online edge coloring problem build upon and extend these results. Furthermore, these
algorithms require many new ideas over [CW18], including a novel LP relaxation and sophisticated
online rounding schemes. Unfortunately, it appears that these techniques rely critically on the
vertex arrival model and do not generalize to edge arrivals. Indeed, Saberi and Wajc [SW21]
write that the edge arrival setting "remains out of reach” with the known techniques. The main
technical contribution of this paper is a simple argument based on correlation decay to overcome
the limitations of the previous works.

Reduction to locally treelike instances by subsampling. To solve the online matching prob-
lem, we begin by subsampling each edge of the graph with probability roughly ∆′/∆ for some
∆′ = ω(1). This will decrease the maximum degree to roughly ∆′, and we in fact trim any edges
above that degree threshold to ensure this. More crucially for our arguments, the subsampled graph
will be locally treelike: for most edges e, their close neighborhood will contain no cycles, and hence
form a tree.

To see this, let us note that for any ℓ, the number of length-ℓ cycles containing e in the original
graph is at most ∆ℓ−2 (start walking from one endpoint of e and make ℓ − 1 choices of neighbor,
where the last one is forced to end up at the other endpoint of e). However, conditioned on e
being in the sparsified graph, each of them survives in the sparsified graph with probability only
at most (∆′/∆)ℓ−1. Thus, the expected number of cycles of length up to some threshold g is at
most

∑g
ℓ=3(∆

′)ℓ−1/∆ ≤ (∆′)g/∆, which is o(1) if (∆′)g = o(log n) – the reader should imagine that
∆′, g = ω(1) are arbitrarily slowly growing functions of n. We can thus imagine that we delete any
edge that would cause a short cycle to appear.1

Now, we want to match every surviving edge with probability at least 1/C for C ≈ e
e−1∆

′. Then

the probability that an edge survives and gets matched is at least (1 − o(1))(∆′/∆) · 1/( e
e−1∆

′) =

(1− o(1))/( e
e−1∆), as desired by the edge-coloring-to-matching reduction.

Online matching on trees. Let us first see how to get a good algorithm for online matching in an
ideal scenario where the (subsampled) graph is in fact a tree. We will guarantee that every edge is
matched with probability 1/C. We now describe what to do when an edge (u, v) arrives. Of course,
we can only match it if u and v are not yet matched. Let du denote the number of edges already

1We could afford to do so in the algorithm, but for simplicity we instead argue in the analysis that for any edge e,
there is only a small probability that there is a short cycle in the g-neighborhood of e (not necessarily containing e).
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adjacent on u (not counting e). The probability that any of these edges is matched is 1/C; as these

are disjoint events, the probability that u is not yet matched is 1− du
C . Similarly, for v it is 1− dv

C
where dv is v’s degree. Crucially, as the graph is a tree, these events are independent (as u and v
are in different connected components before the arrival of e). Thus, if we match e with probability

C
(C−du)(C−dv)

in the case u and v are unmatched,2 then we get the required overall probability of

(
1− dv

C

)(
1− du

C

)
C

(C − du)(C − dv)
=

1

C
. (2.1)

Hence this algorithm inductively matches each edge with probability exactly 1/C, as desired.
We remark that Cohen and Wajc [CW18], who give a (1+ o(1))-competitive algorithm for online

matching in regular graphs under one-sided bipartite vertex arrivals, similarly sample edges (u, v)
adjacent to an arriving vertex v with probability proportional to C

C−du
, so as to get marginal

probability ≈ 1/C for each edge, though their algorithm is more complex.

Online matching on locally treelike graphs. When the graph is not a tree, the difficulty is
that the above events of u and v being unmatched are not independent. Nevertheless, we argue
that in the absence of short cycles, these events are not very correlated. In fact, our algorithm is
the same as in the tree case.

Assume that edge e = (u, v) has no cycles in its neighborhood of radius g, which we denote by
T , as it is a tree (see Figure 1 for an example). Intuitively, any correlation between the above two
events is due to some u-v-path that must pass over the boundary of T ; we will show correlation
decay as we go up the tall-enough tree.

Edge matching game. We lower-bound the probability that e is matched by considering a worst-
case scenario where we cede control over all the boundary edges of T to an adversary, whose
objective is to minimize the probability that e is matched. In this edge matching game played on
T , the powerful adversary is allowed to match or not match any arriving boundary edge of T ; his
decisions may depend on the partial matching built up to that point and may be randomized. All
non-boundary edges are matched randomly as in our algorithm.

We may assume without loss of generality that every edge in T arrives before its parent edge.
Otherwise we can ignore this edge (together with its entire subtree – see Figure 1), as it only
influences the probability of matching e via the boundary, which the adversary already controls
anyway. In other words, we are in a setting where edges arrive bottom-to-top (though some boundary
edges may arrive after non-boundary edges that are not their ancestors).

Monotonicity. What should the adversary do? Intuitively, to minimize the probability of matching
e, the adversary should maximize the probability of matching edges at distance 1 from e. To that
end, they should minimize distance-2 edges, maximize distance-3 edges, and so on. We set g to be
odd; then intuitively, the adversary should leave the boundary (distance-(g +1)) edges unmatched.
Indeed, we can show a monotonicity property: the lower the probability with which they match a
boundary edge, the lower the probability of matching e, even under adaptive decisions. In particular,
this implies that decisions for all boundary edges can be deterministically fixed at the beginning.
Thus the adversary is effectively eliminated, and the events of u and v being unmatched (before e
arrives) are again independent as in the tree case.

This use of monotonicity to reduce to the “all unmatched” case is closely related to reductions
done by Weitz [Wei06] when establishing strong spatial mixing for sampling independent sets in the
hardcore model in graphs of maximum degree ∆.

2This value is in [0, 1] as long as C ≥ ∆′ + Ω(
√
∆′).
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Figure 1. An edge e = (u, v) together with its neighborhood, which contains no
cycles. The numbers on edges specify the order of arrival (with 1 coming first).
The red (dashed/dotted) edges can be ignored, as they are not part of the witness
tree W (T ) (Definition 5.2): dashed edges arrive after their parent-edge, and dotted
edges belong to subtrees of dashed edges. The blue (thick) edges are boundary edges,
which the adversary controls. We show that the adversary can decide them deter-
ministically upfront, and moreover this decision should be to leave them unmatched.
Thus we reduce our analysis to the case where only the black (non-boundary) edges
arrive, and are matched randomly as in our Algorithm 2. Note that then, the events
of matching u and v (before e arrives) are independent.

Tree recurrences and error decay. In our setting, the matching probabilities for vertices at the
bottom of T are out of our control. However, we show that as we go up the tree, they quickly
contract towards our desired value of 1/C-per-edge.

Define qw to be the probability that a vertex w ∈ T is not matched from below. This happens if
every child-edge (w,wi) of w is not matched; that is, each wi was matched from below or the edge
(w,wi) was not sampled. If (w,wi) are ordered by time of arrival, we have3

qw =

∆′∏

i=1

P [(w,wi) not matched | (w,w1), ..., (w,wi−1) not matched]

=

∆′∏

i=1

(
1− qwi ·

C

(C − i+ 1)(C −∆′)

)
.

Ideally we would like qw to be 1 − ∆′

C = C−∆′

C (disjoint events of the ∆′ children being matched,

each with probability 1/C), so let us define the error as ǫw := 1 − C
C−∆′ · qw. Some rewriting (see

3For simplicity, in this introduction we imagine that every non-leaf in T has ∆′ children.
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Section 5.1 for more details) then yields the recurrence on error terms:

ǫw = 1−
∆′∏

i=1

(
1 +

1

C − i
· ǫwi

)
. (2.2)

Imagine that all errors on the level below w are equal: ǫold := ǫw1 = ... = ǫw∆′
. Using exp(x) ≈ 1+x

we get:

ǫw ≈ 1− exp

(
∆′∑

i=1

1

C − i
· ǫold

)
≈ 1− exp

(
log

(
C

C −∆′

)
· ǫold

)
≈ − log

(
C

C −∆′

)
· ǫold .

Essentially, as we move one level up T , the sign of the error flips, and its absolute value is multiplied

by log
(

C
C−∆′

)
. This multiplier is smaller than 1 if C > e

e−1 · ∆′ – and this is what gives rise to

our competitive ratio. Then, the errors shrink towards 0 as we move up the tree T . If the height g
of T is made large enough, then qu and qv are very close to 1 − ∆′

C ; recall that the corresponding
events are now independent (as we have made the boundary deterministic) and so the probability
of matching e is close to 1/C, as in (2.1).

This analysis of “tree recurrences” is ubiquitous in statistical physics, and our threshold of C >
e

e−1∆
′ can be recast in this language as the threshold for having “uniqueness of the Gibbs measure

on the ∆′-ary tree”. More concretely, for C < e
e−1∆

′, the function f(x) = 1 − exp(x log C
C−∆′ )

has nonzero fixed points of order 2, i.e. f(f(x)) = x for some nonzero x, and hence there exist
probabilities p1 6= p2 such that all edges on even levels are matched with probability p1 and edges
on odd levels are matched with probability p2, and yet these probabilities satisfy the necessary
recurrence equations. This “alternate” fixed state is precisely responsible for the failure of our
analysis for C < e

e−1∆
′.

3. A Brief History of the Problem

Prior to our work, there were no known online algorithms for the edge coloring problem in the
adversarial edge arrival model, besides the trivial 2∆ − 1 bound obtained by the greedy algorithm
[BNMN92]. All the positive results for the problem are in the setting ∆ = ω(log n) and fall into
two categories.

Random Arrival of Edges. Aggarwal, Motwani, Shah, and Zhu [AMSZ03] were the first to show
that for very dense multi-graphs with ∆ = ω(n2) one can get a near-optimal (1 + o(1))∆-edge
coloring algorithm. For simple graphs, Bahmani, Mehta, and Motwani [BMM12] gave a 1.26∆-edge
coloring algorithm when ∆ = ω(log n). Very recently, Bhattacharya, Grandoni, and Wajc [BGW21]
showed that one can get the best of both these results by presenting a (1 + o(1))∆-edge coloring
algorithm for simple graphs with ∆ = ω(log n) using an adaptation of the Nibble method.

Adversarial Vertex Arrival Model. In this model, instead of edges being revealed one by one,
vertices of the graph are revealed one at a time, together with adjacent edges to previously revealed
vertices. Cohen, Peng, and Wajc [CPW19] designed an asymptotically optimal (1 + o(1))∆-edge
coloring algorithm for bipartite graphs under one-sided vertex arrivals; that is, the left side of the
bipartite graph is fixed and the right vertices arrive in an online fashion. For general vertex arrivals,
Saberi and Wajc [SW21] very recently designed a (1.9 + o(1))-competitive randomized algorithm.
This result also applies for general graphs, as there is an online reduction from general graphs to
bipartite graphs that works against oblivious adversaries.

Cohen, Peng, and Wajc [CPW19] also studied edge coloring when the maximum degree ∆ of the
graph is not known. For this problem, they showed a lower bound of e/(e− 1) for bipartite graphs,
even in the setting of one-sided vertex arrivals. This is in contrast to the known-∆ case, where the
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only known lower bound, even for deterministic algorithms under edge arrivals, is an additive error
of Ω(

√
∆), which follows from a direct reduction of the lower bound for the matching problem in

[CW18].
Finally, similarly to [CPW19,SW21], our approach to the online edge coloring problem is via a

reduction to the online matching problem, which has been studied extensively for several decades
in various arrival models. We refer the readers to [KVV90,MSVV07,Meh13,GKM+19,FHTZ20] for
an introduction to this literature.

4. Reduction to Matching on Locally treelike Graphs

Our arguments begin with a standard reduction of online edge coloring to rounding fractional
matchings. This is essentially the statement of [SW21, Lemma 2.2] and exactly the same proof
applies.

Lemma 4.1. Let A be an online matching algorithm and α ≥ 1 a parameter such that, given any

graph of maximum degree ∆̂ = Ω(log n) as a sequence of edge arrivals, A matches each edge with

probability at least 1/(α∆̂). Then there exists an online edge coloring algorithm A′ that on any

graph G with maximum degree ∆ = ω(log n) arriving online outputs an
(
α+O((log n/∆)1/4)

)
∆

edge coloring with high probability.

We remark that A and A′ need advance knowledge of ∆̂ and ∆, respectively.
In this work, we apply a further reduction to the online matching problem so that it suffices to

consider graphs which are locally treelike. More precisely, let the g-neighborhood of an edge e in
a graph G′ denote the set of vertices within distance g of either endpoint. We give a reduction
from the graph G to graphs G′ which have maximum degree at most ∆′ and we ensure that the
g-neighborhoods of almost all edges e ∈ G′ have no cycles. The reader should think of ∆′ = ω(1),
an arbitrarily slowly growing function.

Algorithm 1: Computes a subgraph of G online with each edge included with approximately
the same probability and with few short cycles.

1 procedure Subsample(G,∆′,∆)
2 G′ ← ∅. ⊲ Initially empty subgraph G′.

3 dv ← 0 for v ∈ V (G). ⊲ Number of adjacent sampled edges to vertex v

4 η = 3
√

(log∆′)/∆′

5 for i = 1, . . . ,m do

// Edge ei = (u, v) arrives

6 R← unif([0, 1])

7 if R ≤ (1− η)∆′/∆ then

8 if du < ∆′ and dv < ∆′ then

9 E(G′)← E(G′) ∪ {e}
10 du ← du + 1, dv ← dv + 1.

Lemma 4.2 (Uniformly-sampled graphs are locally treelike). Let G be a graph with maximum degree
∆. Let G′ be a subgraph of G where each edge is included with probability p = D/∆, and D ≥ 2.
The probability that the g-neighborhood of an edge e ∈ G′ contains a cycle is at most 3D5g/∆.

Proof. We first consider the case where the g-neighborhood of e has a cycle containing e. In this
case, there exists a cycle in the g-neighborhood with length at most 2g.
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Note that the maximum degree of G is ∆ and hence edge e ∈ G is in at most ∆ℓ−2 cycles of
length ℓ. Thus the probability that every edge (excluding e) in such a cycle is in G′ is (D/∆)ℓ−1.
Thus the probability that e is in such a cycle is at most

2g∑

ℓ=3

∆ℓ−2 · (D/∆)ℓ−1 ≤
2g∑

ℓ=3

Dℓ−1/∆ ≤ D2g/∆.

We now turn to the case where the cycle C does not contain e = (u, v). Then there must be a path
P of length ℓP ≤ g from either u or v to some vertex w on C, and such that P and C have disjoint
edges. Also, C has some length ℓC ≤ 2g. Because the maximum degree of G is ∆, the number of
pairs of paths and cycles (P,C) satisfying these conditions in G is bounded by 2∆ℓP+ℓC−1. Hence
the probability that some pair (P,C) has all edges in G′ is at most

g∑

ℓP=0

2g∑

ℓC=3

2∆ℓP+ℓC−1 · (D/∆)ℓP+ℓC

= 2∆−1
g∑

ℓP=0

2g∑

ℓC=3

DℓP+ℓC = 2∆−1




g∑

ℓP=0

DℓP






2g∑

ℓC=3

DℓC


 ≤ 2D3g+2/∆ ≤ 2D5g/∆.

The claim follows by combining this with previous case where e is in the cycle. �

Lemma 4.3. Given a maximum degree ∆ graph G Algorithm 1 returns a subgraph G′ satisfying:

• The maximum degree of G′ satisfies ∆(G′) ≤ ∆′.
• Any edge e ∈ G is in G′ with probability between

(
1− 5

√
log ∆′

∆′

)
∆′

∆
and

∆′

∆
.

• An edge e ∈ G is in G′ and its g-neighborhood contains a cycle with probability at most
(
3
(∆′)5g

∆

)
∆′

∆
.

Proof. The maximum degree condition in the first bullet point follows immediately by line 8 of
Algorithm 1. The third bullet point follows immediately from Lemma 4.2.

It suffices to show the second bullet point. First note that the probability a given edge is included
is always bounded by (1 − η)∆′/∆ ≤ ∆′/∆ due to the initial sub-sampling. We next lower bound
the probability that any vertex v ever reaches the ∆′ threshold. Let d(v) be the degree of v in G,
and let X1, . . . ,Xd(v) denote the events that the edges out of v are initially subsampled in line 7 of
Algorithm 1. Note that E[Xi] = (1− η)∆′/∆. Hence by a Chernoff bound, we have that

P



d(v)∑

i=1

Xi ≥ ∆′


 ≤ exp(−η2∆′/3).

Thus the probability that an edge e is subsampled by line 7 of Algorithm 1 and neither of its
endpoints u, v violates the degree bound of ∆′ is at least

(1− η)
∆′

∆
· (1− 2 exp(−η2∆′/3)) ≥ (1− η − 2 exp(−η2∆′/3))

∆′

∆
.

Using that η = 3
√

(log∆′)/∆′ this completes the proof. �
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Algorithm 2: Computes a matching on a graph G that arrives online with edges
e1, e2, . . . , em, with sampling parameter C > ∆(G) + 2

√
∆(G).

1 procedure Matching(G,C)
2 M← {} ⊲ Current set of matched edges

3 dv ← 0 for v ∈ V (G). ⊲ Current degree of vertex v

4 mv ← False for v ∈ V (G). ⊲ Records whether vertex v is currently matched

5 for i = 1, . . . ,m do

// Edge ei = (u, v) arrives

6 if mu = False and mv = False then

7 R← unif([0, 1])

8 if R ≤ C/((C − du)(C − dv)) then

9 M←M∪ e

10 mu ← True,mv ← True.

11 du ← du + 1, dv ← dv + 1.

5. Algorithmic Description and Tree Recurrences

We will apply Algorithm 2 on the subsampled graph. We now study its effect on treelike graphs.

Theorem 5.1 (Matchings on Locally treelike Graphs). Fix δ ∈ (0, 1/20) and assume ∆ ≥ 25.
Consider a graph G with maximum degree ∆ and an edge e whose g-neighborhood contains no

cycles in G. If C >
(

e
e−1 + δ

)
∆, then Matching(G,C) (Algorithm 2) includes edge e in the final

matching with probability at least 1
C

(
1− (1− δ/4)(g−1)/2 − 104

δC

)2
.

We will apply Theorem 5.1 for the graph G′ constructed by Lemma 4.3 (whose maximum degree
is denoted there by ∆′). To interpret Theorem 5.1, note that the g-neighborhood of e is a tree.
Intuitively, our result says that if the number of colors C exceeds a “critical threshold” e

e−1∆ then
the correlations between colors on the boundary of the g-neighborhood tree of e decay towards the
top, and hence e is almost uniform.

To formalize this intuition, we now reduce the study of locally treelike graphs to trees with a
given fixed boundary. The analysis is modeled after that developed by Weitz [Wei06] for proving
correlation decay in the hardcore model. In particular, we show a key monotonicity claim on subtrees
which reduces the analysis of our algorithm to a tree recurrences computation. This observation is
closely related to that made by Weitz [Wei06] in studying the hardcore model.

In this case, for an edge e we consider the length g neighborhood of e, and denote the graph as
T as it is a tree. Define ∂T to be the boundary edges of this set, so ∂T := E(V (T ), V (G)\V (T )).
We will imagine that the endpoint of each boundary edge that lies outside of V (T ) are distinct –
we will not need to consider collisions between these endpoints. This way, we imagine that T ∪ ∂T
is a tree. See Figure 1 for an example.

At a high level we will argue that if the edges in ∂T are chosen to be matched or unmatched
adversarially (even adaptively), in the worst case the probability that edge e is matched is still
(1− o(1))/∆′.

Our starting direction is to reduce the potentially complicated arrival ordering of edges in the
neighborhood of an edge e to the more natural ordering from bottom-to-top in the tree. To see this
we first define the witness tree of an edge e, which captures all edges in the neighborhood which
can possibly influence the probability that e is matched.
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Definition 5.2 (Witness tree). We say that an edge f ∈ T ∪∂T is alive if it is processed before any
edge f ′ that lies strictly above f . We let the witness tree W (T ) be the set of alive edges connected
to e in T ∪ ∂T .

Note that by definition the edges in the witness tree are processed from leaves (or boundary
edges) upwards. Note that there may be edges in the witness tree that are connected to e but not
downwards to the boundary. See Figure 1 for an example.

Definition 5.3 (Matched edge or vertex). We say that an edge f is matched (at some stage) if it
is part of the matchingM at that stage during an invocation of Matching (Algorithm 2). We say
that a vertex v is matched if it has an adjacent matched edge.

Next we define a game on the witness tree. The goal of the game will be to minimize the
probability that the top edge e is matched.

Definition 5.4 (Edge Matching Game). For an edge e and an ordering of the edges f1, . . . , f|E(W (T ))|

of the witness tree W (T ) (Definition 5.2), consider the following game. At stage i, edge fi is revealed.
If fi is a boundary edge, i.e. fi ∈ ∂T, then the player may either choose to match fi or not match
fi arbitrarily (possibly in a randomized manner).4 Otherwise, fi = (u, v) is added to the matching
with probability C

(C−du)(C−dv)
(as given in Algorithm 2) if neither u or v is matched.

We can assume that in the edge matching game the edge e is the one processed last. We argue
that the probability that an edge e is matched during an invocation of Algorithm 2 is lower bounded
by the minimum probability that edge e is matched during the edge matching game (Definition 5.4).

Lemma 5.5 (Reduction to Matching Game). Let me denote the probability that an edge e is matched
during Algorithm 2. Let mmin

e denote the minimum probability that edge e is matched under optimal
play in the edge matching game (Definition 5.4). Then mmin

e ≤ me.

Proof. It suffices to show that Algorithm 2 can be simulated by the edge matching game for an edge
e. This is obvious by taking the probability of matching the boundary edge to be the probability
that it is matched conditional on all decisions made up to that point. We also note that edges
that do not belong to the witness tree may only influence the probability of e being matched by
Algorithm 2 indirectly through the boundary edges, but in the edge matching game the adversary
has full control over the boundary edges anyway. �

Next we argue that (somewhat surprisingly) to minimize the probability that edge e is matched
in the edge matching game, the player can make choices for boundary edges that are oblivious to
any previous choices, i.e. they can all be decided before the start of the game. To do this it is useful
to write out the crucial tree recurrences for calculating the probabilities that a vertex v is matched
to a vertex (or unmatched) below it.

Definition 5.6 (Tree Recurrence Probabilities). Consider a subgame of the edge matching game
where all boundary edges are decided as to whether they are matched and the remaining edges to
process form a tree T ′ that is processed from the leaves upwards. For a vertex v ∈ T define qv as the
probability that vertex v is not matched via some edge below it in the tree on the edge matching
game restricted to T ′.

Let the current number of children of a vertex v (in T\T ′) be c′v and the total number of children
by cv . For i = c′v + 1, . . . , cv let vi denote the i-th vertex under v to be processed during the edge
matching game on T ′. Clearly, if v is a boundary vertex/edge which is matched by the adversary,
then qv = 0. Otherwise v is unmatched if and only if all edges under it are unmatched. Because

4We assume that the player can match a boundary edge fi ∈ ∂T even if an adjacent vertex is matched – this does
not affect the proofs later.
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the events that these edges (v, vi) want to be matched are independent, i.e. vi is unmatched and
R ≤ C

(C−dv)(C−dvi )
in line 8 of Algorithm 2, we get

qv =

cv∏

i=c′v+1

(
1− C

(C − i+ 1)(C − cvi)
qvi

)
. (5.1)

We are now in position to prove the main monotonicity claim.

Lemma 5.7 (Oblivious Choices for Boundary Edges). If g is odd, then the minimum probability
that edge e is matched in the edge matching game is given by the strategy where all boundary edges
are always unmatched.

Proof. Consider the edge matching game and let f denote the last boundary edge to be processed.
Say that given the game up to this point the player decides to match f with probability r. We will
use (5.1) to argue that the probability that e is matched is a linear function of r and that the sign
depends only on the distance of the boundary edge to e. Therefore optimally the player must choose
r = 0 or 1 and crucially the choice is independent of all randomness in the game up to this point.
Hence the game is equivalent to the situation where edge f is revealed deterministically at the start
of time. By inducting on the remaining subgame we get that all edges are revealed deterministically
at the start as desired.

It suffices now to verify using (5.1) that the probability that e is matched is a linear function of
r and that the sign depends only on the distance of the boundary edge to e. To see this note that
the sign of qvi (for fixed variables qvj ∈ [0, 1] for j 6= i) in (5.1) is C

(C−i+1)(C−cvi )
∈ [0, 1]. Hence the

sign of r in the formula for qv for a vertex v flips every level up the tree. This implies the claim. �

5.1. Computing the Monotone Tree Matching Game. By Lemma 5.7 we know that the
boundary edges can be decided deterministically at the start. In this way we can simplify the tree
recurrence formula (Definition 5.6) in (5.1) to the full witness tree W (T ) instead of a subtree T ′.
Here recall that qv is the probability that vertex v is not matched to a vertex below it, and cv denotes
the number of children of v in the tree. Also note that for any vertices u, v such that neither is
a descendent in the tree of another that the events of whether u is matched and v is matched to
something below are independent.

qv =

cv∏

i=1

(
1− C

(C − i+ 1)(C − cvi)
qvi

)
. (5.2)

Let ∆ := ∆(G). Our goal is to show that for C >
(

e
e−1 + o(1)

)
∆ that the probabilities qv as

we go up the tree contract towards 1 − cv
C = C−cv

C . Thus it is natural to define the errors ǫv as

ǫv = 1− qv · C
C−cv

. Plugging this into (5.2) gives that

qv =

cv∏

i=1

(
1− C

(C − i+ 1)(C − cvi)
qvi

)

=

cv∏

i=1

(
1− C

(C − i+ 1)(C − cvi)
· C − cvi

C
(1− ǫvi)

)

=

cv∏

i=1

(
C − i

C − i+ 1
+

1

C − i+ 1
ǫvi

)

=
C − cv

C

cv∏

i=1

(
1 +

1

C − i
ǫvi

)
.
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Rearranging this equation along with qv · C
C−cv

= 1− ǫv gives us the recurrence on the error terms

ǫv = 1−
cv∏

i=1

(
1 +

1

C − i
ǫvi

)
. (5.3)

We now start showing that the ǫv contract as we move up the tree. To this end we define ǫmin
ℓ

and ǫmax
ℓ to the minimum/maximum values of ǫv for vertices v that lie distance g − ℓ from edge e.

Definition 5.8. For an edge e with witness tree T define ǫmin
ℓ to the minimum values of min(ǫv, 0)

for vertices v that lie distance ℓ from the boundary of T . Define ǫmax
ℓ to the maximum values of

max(ǫv, 0) for vertices v that lie distance ℓ from the boundary of T .

Note that for C ≥ e
e−1∆ we have 0 ≥ ǫmin

ℓ ≥ −cv
C−cv

≥ −2 and 0 ≤ ǫmax
ℓ ≤ 1.

Recall from the proof of Lemma 5.7 that the signs flip per level up the tree. This allows us to
bound ǫmin

ℓ+1 in terms of ǫmax
ℓ and similarly ǫmax

ℓ+1 in terms of ǫmin
ℓ .

Lemma 5.9 (Single level error bounds). Let C ≥ e
e−1∆ and ∆ ≥ 25. For any level ℓ ∈ [0, g) we

have that

ǫmin
ℓ+1 ≥ 1−

(
1 +

102

C

)
exp

(
log

(
C

C −∆

)
ǫmax
ℓ

)

and

ǫmax
ℓ+1 ≤ 1−

(
1− 102

C

)
exp

(
log

(
C

C −∆

)
ǫmin
ℓ

)
.

Proof. To start we note by integration that
∣∣∣∣∣

∆∑

i=1

1

C − i
− log

(
C

C −∆

)∣∣∣∣∣ ≤ 5/C. (5.4)

Now to show the first bound note that by (5.3) and ǫmax
ℓ ≥ 0 we have

ǫmin
ℓ+1 ≥ 1−

∆∏

i=1

(
1 +

1

C − i
ǫmax
ℓ

)
≥ 1−

∆∏

i=1

exp

(
1

C − i
ǫmax
ℓ

)
= 1− exp

(
ǫmax
ℓ

∆∑

i=1

1

C − i

)

≥ 1− exp

(
ǫmax
ℓ

(
log

(
C

C −∆

)
+

5

C

))
≥ 1−

(
1 +

10

C

)
exp

(
ǫmax
ℓ log

(
C

C −∆

))
,

where at the end we have used that ǫmax
ℓ ≤ 1 and exp(5/C) ≤ 1 + 10/C. For the second claim we

start with the inequality 1 + x ≥ exp(x− x2) for x ≥ −1/2. Now using (5.3) and ǫmin
ℓ ≤ 0 gives us

ǫmax
ℓ+1 ≤ 1−

∆∏

i=1

(
1 +

1

C − i
ǫmin
ℓ

)
≤ 1−

∆∏

i=1

exp

(
1

C − i
ǫmin
ℓ − (ǫmin

ℓ )2

(C − i)2

)

≤ 1− exp

(
ǫmin
ℓ

∆∑

i=1

1

C − i
−

∆∑

i=1

4

(C − i)2

)

≤ 1− exp

(
ǫmin
ℓ log

(
C

C −∆

)
− 50

C

)
≤ 1−

(
1− 100

C

)
exp

(
log

(
C

C −∆

)
ǫmin
ℓ

)
.

Here at the end we have used that ǫmin
ℓ ≥ −2 and the approximation in (5.4). �

Now define the function fδ(x) := 1−exp((1−δ)x) for any δ ∈ [0, 1). Note that if log(C/(C−∆)) =
1 − δ, then the iteration bound in Lemma 5.9 is basically given by fδ(ǫ) up to a O(1/C) additive
term. The following is essentially an immediate consequence of iterating Lemma 5.9 twice.
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Lemma 5.10 (Two-step error bound). If C satisfies log(C/(C −∆)) ≤ 1− δ with δ ∈ (0, 1/2) then

ǫmax
ℓ+2 ≤ fδ(fδ(ǫ

max
ℓ )) +

103

C
.

Proof. By Lemma 5.9 we can start by bounding

ǫmax
ℓ+2 ≤ fδ(ǫ

min
ℓ+1) +

102

C
exp((1 − δ)ǫmin

ℓ+1) ≤ fδ(ǫ
min
ℓ+1) +

100

C
(5.5)

as ǫmin
ℓ ≤ 0. Similarly, by Lemma 5.9 we get that

ǫmin
ℓ+1 ≥ fδ(ǫ

max
ℓ )− 102

C
exp((1 − δ)ǫmax

ℓ ) ≥ fδ(ǫ
max
ℓ )− 300

C
, (5.6)

as ǫmax
ℓ+1 ≤ 1. Now, note that fδ(x) is 3-Lipschitz for x ≤ 1 (as |f ′

δ(x)| = (1 − δ) exp((1 − δ)x)).
Combining (5.5), (5.6), and finally 3-Lipschitzness of fδ(x) gives

ǫmax
ℓ+2 ≤ fδ(ǫ

min
ℓ+1) +

100

C
≤ fδ(fδ(ǫ

max
ℓ )− 300/C) + 100/C ≤ fδ(fδ(ǫ

max
ℓ )) + 1000/C.

�

Lemma 5.11. For any δ ∈ [0, 1/2) and ǫ ≥ 0 we have that fδ(fδ(ǫ)) ≤ (1− δ)ǫ.

Proof. We need to argue that

1− exp((1− δ)(1 − exp((1 − δ)ǫ))) ≤ (1− δ)ǫ.

This can be rearranged as

log(1− (1− δ)ǫ) ≤ (1− δ)(1 − exp((1 − δ)ǫ)).

Taking a Taylor expansion and negating both sides gives the equivalent inequality
∞∑

i=1

(1− δ)iǫi

i!
≥

∞∑

i=1

(1− δ)i+1ǫi

i!
.

This is true term by term for ǫ ≥ 0 as desired. �

We can now use this claim to show Theorem 5.1.

Proof of Theorem 5.1. We claim that if C >
(

e
e−1 + δ

)
∆, then log(C/(C−∆)) ≤ 1−δ, as required

by Lemma 5.10. This latter condition is equivalent to C ≥ exp(1−δ)
exp(1−δ)−1∆. For δ < 1/20, we have

exp(1− δ)

exp(1− δ) − 1
= 1 +

1

exp(1 − δ) − 1
≤ 1 +

1

e(1− δ) − 1

=
e

e− 1
+

eδ

(e− 1)(e− 1− eδ)

≤ e

e− 1
+ δ · e

(e− 1)(e − 1− e/20)
<

e

e− 1
+ δ.

By Lemma 5.7 we know that we can lower bound the probability that edge e is matched by the
probability edge e is matched in some edge matching game (Definition 5.4) where edges not in the
witness tree are ignored, and the boundary edges are fixed obliviously beforehand.

Let us now bound the probabilities that u, v are matched to a vertex below them. Note that these
events are independent. Recall that we know that ǫu ≤ ǫmax

g by definition. We prove on induction
on ℓ = 0, ..., g that

ǫmax
2ℓ ≤

(
1− 103

δC

)
(1− δ)ℓ +

103

δC
.
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For ℓ = 0 (base case) we have ǫmax
0 ≤ 1. Next, by Lemmas 5.10 and 5.11 we know that

ǫmax
2ℓ+2 ≤ fδ(fδ(ǫ

max
2ℓ )) + 103/C

≤ (1− δ)ǫmax
2ℓ + 103/C

≤
(
1− 103

δC

)
(1− δ)ℓ+1 + (1− δ)

103

δC
+

103δ

δC
.

For ℓ = g′ ≥ (g − 1)/2 we get

max(ǫu, ǫv) ≤ ǫmax
2g′ ≤

(
1− 103

δC

)
(1− δ)(g−1)/2 +

103

δC
≤ (1− δ)(g−1)/2 +

1000

δC
(5.7)

By (5.7), the probability that edge e is matched is at least

qu · qv ·
C

(C − cu)(C − cv)
=

C − cu
C

(1− ǫu) ·
C − cv

C
(1− ǫv)

C

(C − cu)(C − cv)

≥ 1

C

(
1− (1− δ)(g−1)/2 − 1000

δC

)2

. �

Given this it is essentially immediate to deduce our main result.

Proof of Theorem 1.1. To use the reduction of Lemma 4.1, we will give an algorithm for online
matching that, given a graph of maximum degree ∆, matches every edge with probability at least
1/(α∆), with α = e

e−1 + 3δ where δ will be determined at the end.

Our online matching algorithm is the following. We first run Algorithm 1 for some choice ∆′ < ∆,

obtaining a graph G′, and then run Algorithm 2 on G′, for the choice C =
(

e
e−1 + δ

)
∆′. Our goal

is to pick δ as small as possible so that every edge e is matched with the required probability.
We will say that an edge e ∈ E(G) is good if e ∈ E(G′) and its g-neighborhood in G′ contains no

cycles (g will also be determined below). By Lemma 4.3, the probability (with respect to randomness

in Algorithm 1) that e is good is at least

(
1− 5

√
log∆′

∆′ − 3 (∆′)5g

∆

)
∆′

∆ . By Theorem 5.1, if e is

good, then it is matched with probability (with respect to randomness in Algorithm 2) at least

1

( e
e−1

+δ)∆′

(
1− (1− δ/4)(g−1)/2 − 104

δC

)2
.

To ensure that the product of these two probabilities is large enough, we will choose δ,∆′, g to
attain the following bounds:

max

(
5

√
log ∆′

∆′
,
3(∆′)5g

∆
, (1− δ/4)

g−1
2 ,

104

δC

)
≤ δ

10
. (5.8)

Then e is matched with probability at least
(
1− δ

10
− δ

10

)
∆′

∆
· 1(

e
e−1 + δ

)
∆′

(
1− δ

10
− δ

10

)2

≥ 1− 3δ
5(

e
e−1 + δ

)
∆
≥ 1(

e
e−1 + 3δ

)
∆

,

where the last inequality is true for δ < 1
2 . Finally, the reduction of Lemma 4.1 yields an edge color-

ing algorithm that, for a graph of maximum degree ∆, outputs an
(

e
e−1 + 3δ +O((log n/∆)1/4)

)
∆

edge coloring with high probability.
It remains to set δ,∆′, g so as to satisfy (5.8). First we set ∆′ = 106δ−3. This implies that

5
√

log∆′

∆′ ≤ δ/10, and 104

δC ≤ 104

δ∆′ ≤ δ/10, as C ≥ ∆′. Additionally we set g = 100
δ log(100/δ), so that

(1− δ/4)(g−1)/2 ≤ (1− δ/4)
40
δ

log(100/δ) ≤ exp(− log(100/δ)) ≤ δ/10.
14



The final condition to check is that 3(∆′)5g/∆ ≤ δ/10. This is equivalent to

3(106δ−3)
500
δ

log(100/δ) ≤ ∆,

so we may set δ = A (log log∆)2

log∆ for some sufficiently large constant A. �

5.2. Tightness of our analysis. We end this section with an informal discussion of why we believe
that the analysis of our algorithm is tight barring major changes in the analysis style. In particular,
we argue why there is a degree-∆′ graph and an edge e such that running our algorithm on it will
cause e to be matched with probability (1−Ω(1))/C if C < e/(e−1)∆′. Thus, if the analysis of our
algorithm is improvable, then we must leverage additional properties of the subsampling procedure
beyond the ∆′ maximum degree bound and the fact that the neighborhood of each edge e is a tree.

Consider a graph of maximum degree ∆′ which is a tree rooted at an edge e, except that at the
leaves, we add a gadget which is not a tree (i.e., it has a somewhat short cycle) and is a boundary
edge for the tree rooted at e. If the algorithm processes the cycle edges first, then the “errors” ǫc for
boundary edges c in the cycles will all be +ǫ. By propagating the errors upwards via the formula
(2.2), the errors at higher levels will converge towards the order-two fixed point of f(f(x)) (for f(x)
defined above). Thus, e will be sampled with probability (1− Ω(1))/C.

6. Conclusions, Open Problems, and Possible Improvements

In this paper we have presented the first nontrivial algorithm for edge-coloring graphs in the
online edge arrival setting against oblivious adversaries. In particular, we prove that one can
use (e/(e − 1) + o(1))∆ colors with high probability. We believe that the conjecture of Bar-Noy,
Motwani, and Naor [BNMN92] is true, and that there is an online algorithm which requires only

∆+O(
√
∆ log n) colors. However, it is not clear to us whether a (1 + o(1))∆-edge coloring can be

achieved in the adaptive adversary setting. A good starting point would be to show a lower bound
against deterministic algorithms.

We end by briefly discussing a concrete strategy based on the methods of this paper to give a
(1 + o(1))∆-edge coloring algorithm in the online setting. First note that the reduction to locally
treelike graphs in fact shows that it suffices to consider the following approximate version of the
problem: given a graph G with maximum degree ∆ and arbitrarily large girth (in terms of ∆), can
one partially edge-color G with ∆ colors such that every edge is colored with probability 1− o∆(1)?
Note that a greedy algorithm gives a probability bound of 1/2 − o∆(1), while our matching-based
algorithm can give (e− 1)/e − o∆(1).

As discussed in Section 5.2, we believe that our current algorithm is the limit of “local” algorithms
with only two states (matched or unmatched) and therefore the key issue is analyzing “local” algo-
rithms with more than two states. For concreteness, we believe the following algorithm colors well
on trees of maximum degree ∆: with probability ǫ leave an edge blank and with probability 1 − ǫ
color it with a random color among the set of available colors (leaving the edge blank in the case
there are no available colors). Note here that there are ∆ colors and hence there are ∆+ 1 states.
This algorithm can hypothetically be analyzed in the framework given in this paper; in particular
the reduction to understanding the corresponding “adversarial” game on trees remains unchanged.
The key issue is in analyzing the “adversarial” game.

For analyzing the adversarial game, our analysis relies on monotonicity (Lemma 5.7) in order
to reduce to a non-adaptive adversary which can be understood through tree recurrences. The
key issue is that the algorithm described above is not obviously monotone in any parameter and
hence understanding the probability that an edge is unmatched via tree recurrences is substantially
more difficult. This lack of monotonicity is closely related to one reason why the algorithm of
Weitz [Wei06] for estimating the partition function of the hardcore model is not currently known to
extend to the setting of non-ferromagnetic models (e.g., approximating the number of colorings of
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a ∆-regular graph). Furthermore, note that using tree recurrences one can still analyze adversaries
which are non-adaptive, and we believe that in this setting, given large girth, one could apply tree
recurrences to analyze the algorithm above. However, such a result for “non-adaptive” adversaries,
without monotonicity, does not imply anything regarding the original algorithm.

On the positive side, one plausible reason why the analysis of an algorithm with more than two
states may be tractable is due to the fact that we can assume that our graphs are high-girth. This
could potentially parallel the analysis of Glauber dynamics for vertex-coloring graphs with maximum
degree ∆ using (1 + o(1))∆ colors. While such a result on the mixing time of Glauber dynamics
on graphs with large girth (in terms of the maximum degree) is not known in the literature, several
results in this direction are known [HV03,GMP05,HV06,FGYZ21]. Hence we suspect that a result
of this form may be within reach via spectral or coupling-based techniques [ALG21] for analyzing
Markov chains. However, it is currently unclear to us how to apply such spectral or coupling-based
techniques to analyze the random process arising in the edge-coloring setting.
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Appendix A. Random Edge Order Arrival

A.1. Sparsification. We now introduce the sparsification procedure used in the random order case.
The proof here is more delicate than Algorithm 1 as we need to preserve various properties of being
a randomly ordered subset in the subsampling algorithm.

Lemma A.1. Let ∆′ ≥ 2. Running Algorithm 3 on graph G with n vertices and maximum degree
at most ∆ outputs a uniformly random partition of the edges of G into T subgraphs G′

1, . . . , G
′
T

(i.e. edge e is in each G′
i with probability exactly 1/T ), and subgraphs Gi ⊆ G′

i for i ∈ [T ] satisfying
the following properties.

• The maximum degree in Gi is ∆′ + 3
√
∆′ log ∆′.

• With probability at least 1− 1/n we have that for all v ∈ V (G) that

degG(v)−
∑

i∈[T ]

degGi
(v) ≤ CA.1(∆/(∆′)2 +

√
∆ log n).

Proof. The first bullet point follows directly by the algorithm.
The second bullet point is slightly more intricate. We consider a fixed vertex v and note that

for an edge e = (u, v) of color i to be deleted we have that either the endpoint u or v has more
than ∆′ + 3

√
∆′ log∆′ edges marked with color i. We say that a vertex v is bad with respect to

the color i if at least ∆′ + 3
√
∆′ log∆′ edges have been marked with the color i. Fix the ordering

of edges e1, . . . , em and let Ee denote the event that there are at least ℓ bad colors in the graph for
17



Algorithm 3: Divides the graph G of maximum degree at most ∆ into a series of maximum
degree approximately ∆′ graphs.

1 procedure Split(G,∆′,∆)
2 T ← ⌈∆/∆′⌉
3 E ← 3

√
∆′ log∆′

4 G1, G2, . . . , GT , R← ∅. ⊲ Initially empty subgraphs.

5 m1
v, . . . ,m

T
v ← 0 for v ∈ V (G). ⊲ Number of adjacent marked edges to vertex v of each

color
6 for i = 1, . . . ,m do

// Edge ei = (u, v) arrives

7 C ← unif({1, . . . , T}) ⊲ We say edge e is marked color C.

8 mC
u ← mu + 1,mC

v ← mv + 1.

9 if mu ≤ ∆′ + E and mv ≤ ∆′ + E then

10 E(GC )← E(GC ) ∪ {e}
11 else

12 E(R)← E(R) ∪ {e}

some vertex in the graph G when e is processed. Note Eei ⊆ Eej for i ≤ j since the set of processed
edges grows. Let Yv denote the number of deleted edges at the vertex v and suppose the edges of
v are presented as (v, u1), . . . , (v, udeg v). Let Xui

v = Yv1Ec
(v,ui)

and note that X
ui+1
v ≤ Xui

v + 1 and

that P[X
ui+1
v = Xui

v + 1] ≤ (2ℓ)/∆ as there are at most ℓ bad colors at ui and v before (v, ui) is

processed if 1Ec
(v,ui)

holds. Therefore we have P[X
udeg(v)
v ≥ 2ℓ +

√
∆t] ≤ exp(−Ω(t2)) by stochastic

domination and Chernoff.
We now bound the event Ee for the final edge e in the ordering; note that if Ece holds then

X
udeg(v)
v serves as an upper bound for the number of deleted edges at the vertex v. Let Zi be the

number of edges emanating from v marked i. Note that (Zi)i∈[T ] are negatively associated (see

e.g. [BGW21, Proposition E.6]) and if Yi = 1

Zi≥∆′+3
√

∆′ log(∆′)
by Chernoff P[Yi = 1] ≤ 1/(∆′)2.

Hence the expected number of bad colors at a vertex is bounded by ∆/(∆′)2, and thus by Hoeffding’s

inequality for negatively associated random variables we see that P[
∑

i∈T Yi ≥ ∆/(∆′)2 +
√
T t] ≤

exp(−Ω(t2)). Setting t to be a sufficiently large multiple of
√
log n, we see that with probability at

most 1/n2 no vertex has more than ∆/(∆′)2 +C
√
T log n bad colors. Setting ℓ as such and t in the

previous bound we find that with probability 1− 1/n the omitted edges at every vertex is less than
C(∆/(∆′)2 +

√
∆ log n). �

A.2. Tree recurrence calculation. We first describe a simple algorithm for sampling a matching
on a graph. We then argue that each edge is matched with the desired probability on any tree G.
Fix a sampling parameter C. When an edge e = (u, v) arrives, if it has no neighbors in the matching
we add it in with probability C

(C−du)(C−dv)
, where du and dv are the degrees of u and v in the edges

that have already arrived. Note that if C > ∆(G) + 2
√

∆(G) the the sampling probability is in
[0, 1] so it is well-defined. This is Algorithm 2.

Lemma A.2. If one runs Algorithm 2 on a tree, then for every e ∈ E(G), it is included in the
matching with probability exactly 1/C.

Proof. We prove this via induction on the position of e. Clearly if it is the first edge, it is in with
probability C/C2 = 1/C. Now suppose it appears later. In order for e = (u, v) to be in the
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matching, none of the adjoining prior edges may be chosen. Suppose they are (u, u1), . . . , (u, udu)
and (v, v1), . . . , (v, vdv ). By induction, each (u, ui) appears with probability 1/∆. These are clearly
disjoint events by definition, so with probability 1 − du/C no such edge has been included yet.
Similarly, with probability 1 − dv/C no edge connected to v has been included yet. These two
events are clearly independent (as the corresponding graphs are disconnected), so the probability e
is included is easily seen to equal

(
1− du

C

)(
1− dv

C

)
· C

(C − du)(C − dv)
=

1

C
. �

We next use this to describe a coloring algorithm on trees which provides the necessary guarantees.

Algorithm 4: Computes an approximate coloring on a graph G with a fixed order on the
edges e1, . . . , em and a maximum degree at most ∆.

1 procedure Tree-Coloring(G)
2 G← {e1, . . . , em}
3 R← {}
4 C = ∆+∆3/4 for i = 1, . . . ,∆ do

5 Remove all vertices in G of degree at least C and add to R (with edges)

6 Run Matching(G,C) and let the output matching beMi

7 G← G \Mi

8 C ← C − 1 +∆−1/12

9 Output G ∪R ⊲ Non-colored edges

As written the above algorithm is sequential, however we will prove that the above algorithm can
be simulated online and that it provides the necessary coloring guarantee.

Lemma A.3. If one runs Algorithm 4 with ∆ ≥ ∆A.3 on a tree of maximum degree at most ∆, then

for every e ∈ E(G) it is output as a non-colored edge with probability at most ∆−1/24. Additionally,
Algorithm 4 can be implemented online for any graph.

Proof. First, we clearly see that Algorithm 4 can be implemented online: simply run the stages of
edge coloring in parallel, passing to the next stage as needed. Since the instances of Algorithm 2
which are called in the iteration are themselves online algorithms, one can maintain the necessary
data in parallel online to run them.

Recall C = ∆ + ∆3/4. We initially show that for a fixed vertex v, its probability of removal is
low. Notice that at every stage i of the matching it has a probability dv/(C − (i− 1)(1−∆−1/12))

of its degree dv decreasing by 1. It is removed if dv > ∆+∆3/4 − (i− 1)(1 −∆−1/12) occurs.

The point is that if ever dv ≥ ∆− (i− 1)(1−∆−1/8), then dv stays the same with probability at

most 2∆3/4−11/12 = 2∆−1/6. If v is removed, consider the last point in time that dv < ∆−(i−1)(1−
∆−1/12). After this point and until it is removed, we have a consecutive string of runs in which

the quantity dv + (i− 1)(1 −∆−1/12) must go up by a total of ∆3/4, yet it goes up by 1−∆−1/12

with probability at most 2∆−1/6 and goes down by −∆−1/12 with probability at least 1 − 2∆−1/6

(those being the only two options). This step clearly has a negative mean with magnitude at least

Ω(∆−1/12). We also see that it will take at least ∆3/4 steps and at most ∆ steps. Therefore, the

probability that it gets removed after t steps is bounded by exp(−Ω(∆3/4)) by the Chernoff bound.
Taking a union bound over the possible values of t, we see that the probability that v is removed is
bounded by exp(−Ω(∆3/4)).
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Next, for a fixed edge e, we therefore see that either of its two vertices are removed with proba-
bility at most exp(−Ω(∆3/4)). In the remaining cases, at each stage by Lemma A.2 it is included

with probability 1/(C − (i − 1)(1 −∆−1/12)), conditional on the previous outcomes. Therefore its
probability of not being included in this case is

∆∏

i=1

(
1− 1

C − (i− 1)(1 −∆−1/12)

)
≤ exp

(
−

∆∑

i=1

1

C − (i− 1)(1 −∆−1/12)

)

≤ exp

(
− 1

1−∆−1/12

∫ C

C−(∆−1)(1−∆−1/12)

dt

t

)
≤ ∆−1/24

for ∆ sufficiently large. �

We now prove that in the random order case it suffices to understand the tree case. The intuition
is that for an edge e and an arrival ordering on other edges, an edge f does not affect the coloring
of edge e if there is no path from f to e in the order given by the input.

Definition A.4 (Witness edges). Consider a graph G with m edges and a permutation e1, . . . , em
on the edges of G. For an edge e = ei(e), and an edge ei 6= e we say that ei is a witness for e if there
are indices i = i0 < i1 < · · · < iℓ = i(e) such that the edges ei0 , ei1 , . . . , eiℓ for a path.

Note that e is a witness of itself. The key point is that the probability an edge e is matched
during an invocation of Algorithm 4 only depends on the witness edges (and their ordering).

Lemma A.5. Given an ordering of edges in a graph G and an edge e, let W be the set of witness
edges (Definition A.4). Then the probability that edge e is matched by Algorithm 4 when run on
graph G is the same as when run as only edges in W with the same ordering.

Proof. We use induction of suffixes of edges in the ordering. Let us consider appending a single
edge f to the start of an ordering. This does not affect whether later edges are witnesses. Thus
it suffices to argue that if f affects the probability that e is matched by Algorithm 4, then it is a
witness. Indeed, this only happens (by induction) if f is adjacent to some later witness edge f ′

because the sampling probabilities in Algorithm 2 only depend on current degrees of the vertices
adjacent to an edge. By induction, there is a path from f ′ to edge e (by the definition of witness
edge), so there is a path from f to e as desired. �

Surprisingly, for a random ordering, almost every edge in the sampled subgraph returned by
Algorithm 3 has that its witnesses form a tree.

Lemma A.6. Consider a graph G, and parameters ∆′, g with g ≥ 10∆′. The probability that for
all vertices v that the number of subgraphs Gi returned by Algorithm 3 where some edge e adjacent
to v has witnesses that do not form a tree is at most 4T (2e∆′/g)g + 6(∆′)5g + CA.6

√
T log n is at

least 1/n over random edge orderings for some absolute constant CA.6.

Proof. We show the desired claim instead for the random subgraphs G′
i – this suffices as Gi is a

subgraph of G′
i. Define Ei(v) as the event (over randomness used to generate G′

i and the random
ordering) where vertex v in G′

i has a cycle in its g-neighborhood, or some witness edges for v are
distance at least g from v. Note that ¬Ei(v) implies that the witness edges of v in G′

i form a tree.
We upper bound P[Ei(v)]. We start by bounding the probability that v has a cycle in This is at

most 3(∆′)5g/∆ by Lemma 4.2. Now we bound the probability that an edge of distance more than
g from v in G′

i is a witness. The number of paths of length ℓ starting at v is bounded by ∆ℓ. The
probability that such a path has an endpoint edge which is a witness is at most 1/ℓ!, as the edges
in the random order must be in the order of the path. Hence the probability that some edge of

20



distance more than g from v is a witness in G′
i is at most

∑

ℓ≥g

∆ℓ/ℓ! · (∆′/∆)ℓ ≤
∑

ℓ≥g

(e∆′/ℓ)ℓ ≤ 2(2e∆′/g)g

for g ≥ 10∆′. Hence P[Ei(v)] ≤ 3(∆′)5g/∆+ 2(2e∆′/g)g for any v.
Note that the variables Ei(v) for i ∈ [T ] are negatively associated because they are all monotone

graph properties (see [BGW21, Appendix E]) and hence by Hoeffding for negatively associated
random variables (see e.g. [BGW21, Proposition E.6]) the result follows.

�

A.3. Completing the Proof. We now complete the proof of the Theorem 1.2. In order to prove
the desired result consider the following algorithm.

• Divide G in G1, . . . , GT , R using Algorithm 3.
• Color G1, . . . , GT using Algorithm 4.
• Color remaining edges in R and not colored in the previous step using the greedy algorithm.

Proof of Theorem 1.2. In order to prove Theorem 1.2 it suffices to prove that the above algorithm
can be simulated online and that the union of the remainder graphs coming from G1, . . . , GT and
R when combined have maximum degree o(∆). Furthermore it will be useful to define the graph R′

consisting of adjacent edges to vertices v in some G′
i whose witness edges (Definition A.4) do not

form a tree. The first claim is clear as both Algorithms 3 and 4 can be implemented online.
By the second bullet point of Lemma A.1 we have with probability 1 − 1/n that the maximum

degree of R is at most CA.1(∆/(∆′)2 +
√
∆ log n). The additional edges in R′ come from edges

adjacent to vertices v in some G′
i whose witness edges (Definition A.4) do not form a tree. The

maximum degree in each Gi is at most 2∆′ by the first bullet point of Lemma A.1. Hence by
Lemma A.6 with probability at least 1− 1/n the degree of any vertex in R′ is bounded by

CA.1(∆/(∆′)2 +
√

∆ log n) + 2∆′ ·
(
2T (2e∆′/g)g/2 + (∆′)g + CA.6

√
T log n

)

≤ O

(
∆

(∆′)2
+∆(2e∆′/g)g/2 + (∆′)g +

√
∆∆′ log n

)
(A.1)

as long as g ≥ 10∆′. Let the expression in (A.1) be ∆R′ .
Now we consider additional edges removed from the union of G1, . . . , Gi through line 5 of

Algorithm 4. Note that Algorithm 4 runs independently for G1, . . . , GT . By the linearity of ex-
pectation, for a fixed vertex the expected number of remaining edges not in R′ and not chosen is
at most 3(∆′)23/24. Furthermore this is at most 2∆′. Hence by Azuma-Hoeffding the probability

that there are more than 6(∆′)23/24T +C
√
T log n∆′ = 6∆/(∆′)1/24 +C

√
∆∆′ log n at a particular

vertex is at most 1/n2 for C sufficiently large. Note that here we have implicitly assumed that
g ≥ 2∆′.

Therefore with probability at least 1 − 3/n we have that the maximum degree in the leftover
graph is at most

∆R′ + 6∆/(∆′)1/24 + C
√
∆∆′ log n.

assuming that g ≥ 10∆′. Now setting g = 10∆′, ∆′ = cmin(log∆/ log log∆,
√

∆/ log n) for a
sufficiently small absolute constant c > 0 and noting that ∆ = ω(log n) implies that ∆′ = ω(1)
gives the desired result. �
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